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THE FIRST HOCHSCHILD COHOMOLOGY AS A LIE ALGEBRA

LLEONARD RUBIO Y DEGRASSI, SIBYLLE SCHROLL, AND ANDREA SOLOTAR

Abstract. In this paper we study sufficient conditions for the solvability of the first Hochschild

cohomology of a finite dimensional algebra as a Lie algebra in terms of its Ext-quiver in arbitrary

characteristic. In particular, we show that if the quiver has no parallel arrows and no loops then
the first Hochschild cohomology is solvable. For quivers containing loops, we determine easily

verifiable sufficient conditions for the solvability of the first Hochschild cohomology. We apply

these criteria to show the solvabilty of the first Hochschild cohomology space for large families
of algebras, namely, several families of self-injective tame algebras including all tame blocks of

finite groups and some wild algebras including quantum complete intersections.
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1. Introduction

Let K be an algebraically closed field and let A be a finite dimensional K-algebra. The problem
of describing the Hochschild cohomology of A as a Gerstenhaber algebra and in particular the
first Hochschild cohomology space as a Lie algebra, and how this structure is related to A, has
been studied in several recent articles, see for example [1, 4, 8, 17, 21]. The Gerstenhaber bracket
in Hochschild cohomology has been defined more than fifty years ago. Recently, new methods to
explicitly compute it have been introduced rendering the problem more tractable. An interesting
question arising is which Lie algebras can actually appear in this way. The results in this article
contribute to an answer to this question. Namely, we give sufficient criteria for the solvability as
a Lie algebra of the first degree Hochschild cohomology of A, denoted by HH1(A), in terms of its
basic algebra A and, more precisely, in terms of its Ext-quiver and its relations. We prove that in
many cases only solvable Lie algebras appear.

The Hochschild cohomology HH•(A) =
⊕

n≥0 HHn(A) of A has a very rich structure. It is an
associative, graded-commutative algebra with the cup product. It also has a graded Lie bracket
of homological degree −1 and both structures are related by the graded Poisson identity. In
particular, HH•(A) is a Gerstenhaber algebra, HH1(A) is a Lie algebra with bracket induced by
the usual commutator of derivations and HH•(A) is a Lie module for this Lie algebra. All these
structures are invariant under derived equivalence [15].

In this paper we study the solvability of the Lie algebra given by the first Hochschild cohomology
of a finite dimensional algebra. We develop sufficient conditions on the Ext-quiver with relations
so that this Lie algebra is solvable and we give several applications of our methods. In particular,
we show that for wild algebras the first Hochschild cohomology can both be solvable or semi-simple
(or both). We show that it is solvable for quantum complete intersections for arbitrary parameter
and semi-simple for a family of algebras related to Beilinson algebras.

The first condition for solvability is based on the Ext-quiver having no parallel arrows and no
loops.

Theorem 1.1. (see Theorem 3.1) Let A be a finite dimensional K-algebra with no loops in its
Ext-quiver and such that dimK(Ext1

A(S, T )) ≤ 1, for all nonisomorphic simple A-modules S and
T . Then HH1(A) is a strongly solvable Lie algebra.

In particular, if the characteristic of K is zero then HH1(A) is a solvable Lie algebra.

The solvability of the first Hochschild cohomology has recently been extensively studied [4, 8, 16]
and Theorem 1.1 also appears in [16] with a different proof. Our next main result concerns algebras
whose Ext-quiver may have loops.

Theorem 1.2. (see Theorems 3.4,3.5 and 3.11) Let A be a finite dimensional K-algebra such that
the Ext-quiver has at most one loop at each vertex or two loops in the case of the algebra being
local. Suppose that there are no derivations in HH1(A) sending an arrow to a different parallel
arrow.

(1) Suppose that char(K) = 2. Then HH1(A) is a solvable Lie algebra.

(2) Suppose that char(K) 6= 2 and that there are no derivations sending a loop to its square.
Then HH1(A) is a solvable Lie algebra.
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Furthermore, we also show some criteria for the solvability of the first Hochschild cohomology of
graded algebras and we apply these to show that the first Hochschild cohomology of any quantum
complete intersection is solvable in characteristic zero and supersolvable in characteristic p.

In [19] an extensive if not comprehensive classification of self-injective tame algebras up to derived
equivalence has been given. We consider all families of algebras in this classification and we show
that for almost all these algebras the first Hochschild cohomology is solvable in arbitrary charac-
teristic. We also show that almost all tame blocks of finite groups have solvable first Hochschild
cohomology.

Theorem 1.3. (see Theorem 4.4) Let K be an algebraically closed field of arbitrary characteristic.

(1) Let A be a self-injective finite dimensional K-algebra of tame representation type appearing
in the classification in [19]. Then HH1(A) is solvable.

(2) Let A be a symmetric tame algebra of dihedral, semi-dihedral or quaternion type different
from dihedral type in characteristic 2 with Klein defect. Then HH1(A) is a solvable Lie
algebra.

We note that there are two exceptions for the solvability of HH1(A) in the first part of the Theorem.
Namely, if char(K)|r and r ≥ 3, the Lie algebra HH1(K[X]/(Xr)) is perfect. In particular, if
r = p = char(K) then it is simple and it is the so-called Jacobson–Witt algebra. The second
exception is if A is isomorphic to the trivial extension of the Kronecker algebra if char(K) 6= 2, see
[4].

The second part of the Theorem shows that almost all blocks of group algebras of finite groups
of tame representation type have solvable first Hochschild cohomology. As part of the proof of
Theorem 1.3 we also show that the first Hochschild cohomology of a Brauer graph algebra with
any multiplicity function is solvable in arbitrary characteristic, that is with the exception of the
trivial extension of the Kronecker quiver in characteristic different from 2.

In a recent preprint [8] the authors show the solvability of a Lie subalgebra of HH1 for symmetric
tame algebras. This Lie subalgebra is generated by the derivations that preserve the radical. In
positive characteristic proving the solvability of this Lie subalgebra does not necessarily imply the
solvability of HH1(A). An example of this is given by the Lie algebra of derivations of K[X]/(Xp)
in characteristic p which is a simple Lie algebra, however the Lie subalgebra of the derivations
preserving the radical is solvable.

The article is structured as follows. Section 2 contains background material on Lie algebras both
in characteristic zero and in positive characteristic. It also contains a brief introduction of the
Lie algebra structure of the first Hochschild cohomology of a finite dimensional algebra. Section 3
contains the main results of the paper, that is criteria for the solvability of the first Hochschild
cohomology of a finite dimensional algebra in terms of its Ext-quiver, the relations on the quiver as
well as some results for graded algebras. In Section 4, we apply the results of Section 3 to several
families of algebras such self-injective algebras of tame representation type including Brauer graph
algebras and blocks of groups algebras of finite groups as well as quantum complete intersections.
We end the paper with an example of an infinite family of algebras for which the first Hochschild
cohomology is semi-simple.
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Conventions

Let A = KQ/I be a finite dimensional K-algebra, where Q = (Q1, Q0) with Q0 the vertices or Q
and Q1 the arrows in Q. Unless otherwise stated, all modules will be right modules. For an arrow
a in Q, we write s(a) for the source of a and t(a) for the target of a. We write Ae = A⊗K Aop.

2. Background material

In this section we collect some background material on modular Lie algebras and the Lie bracket
on the first Hochschild cohomology of a finite dimensional algebras (in any characteristic). For
this let L be a Lie algebra and recall that the derived Lie algebra L(1) is the Lie algebra defined
by the linear span of all commutators [x, y] for x, y ∈ L. We denote by L(i) = [L(i−1),L(i−1)] the
i-th term of the derived series of L.

2.1. Modular Lie algebras. We begin by collecting some well-known facts about modular Lie
algebras. For this assume that the characteristic of K is p ≥ 0.

Definition 2.1. A Lie algebra L is strongly solvable if its derived subalgebra is nilpotent, and L
is supersolvable (also called completely solvable) if there exists a sequence of ideals L = I1 ⊃ I2 ⊃
· · · ⊃ In ⊃ {0} such that dimk(Ii) = n+ 1− i.

Remark 2.2. If the characteristic of K is zero, the classes of strongly and supersolvable Lie
algebras coincide with the class of solvable Lie algebras as a consequence of Lie’s theorem (see, for
example, [13]).

Over a field of positive characteristic Lie’s theorem is false. However, a modular analogue holds
for strongly solvable Lie algebras.

Theorem 2.3 ([7, Theorem 3]). Let K be a field of characteristic p > 0. Then a Lie algebra L is
strongly solvable if and only if L is supersolvable.

Furthermore, we have the following.

Lemma 2.4. Every subalgebra and every factor of a strongly solvable Lie algebra is strongly solv-
able.

2.2. The Lie bracket on the first Hochschild cohomology. For a finite dimensional K-
algebra A = KQ/I, we briefly recall a construction of the Lie bracket on HH1(A) as defined in
[6]. By the Wedderburn-Malcev theorem, we have A = E ⊕ J(A) where E = KQ0 is a maximal
semi-simple subalgebra and J(A) the Jacobson radical of A. We denote by B the basis of A given
by images of paths under the canonical map KQ → KQ/I. We will freely refer to elements of B
as paths.
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Two paths ε and γ in Q are parallel if they have same source and target. If X and Y are sets of
paths in Q, define

X||Y = {(ε, γ) ∈ X × Y |ε and γ are parallel}.
The vector spaces K(X||Y ) and HomEe(KX,KY ) are isomorphic and we freely denote by α||β an
element in K(X||Y ) and as well as the morphism in HomEe(X,Y ) sending α to β and any other
basis element to zero.

Next we recall a construction of the Lie bracket on the HH1(A) from [6]. Let R = (S,F) be a
reduction system. Let R be a minimal generating set of I. Then by [6, Theorems 4.1 and 4.2] the
following is the start of an A-bimodule resolution of A

· · · −→ A⊗E KR⊗E A
d1−→ A⊗E KQ1 ⊗E A

d0−→ A⊗E A −→ 0,

with differentials d0(1⊗ v⊗ 1) = v⊗ 1− 1⊗ v and, d1(1⊗ r⊗ 1) =
∑
i λi

∑ni

l=1 vj1 . . . vjl−1
⊗ vjl ⊗

vjl+1
. . . vjni

where r =
∑
i λiai ∈ R, with ai = vj1 . . . vjni

and vjk ∈ Q1.

If we apply HomE⊗Eop(−, A) to this chain complex, we obtain a cochain complex

0 · · · −→ K(Q0||A)
δ0−→ K(Q1||A)

δ1−→ K(R||A) −→ . . . ,

with the induced differentials.

The Gerstenhaber structure is computed for example via comparison morphisms between the
resolution described above and the E-reduced Bar resolution, introduced in [5]. The Lie bracket
can then be expressed as in [1] by

[α||h, β||b] = β||bα||h − α||hβ||b,
with α||h, β||b ∈ HomEe(KQ1, A) and where bα||h is the sum of all the nonzero paths obtained
replacing every appearance of α in b by h. If b does not contain the arrow α or if when we replace
α in b by h, the all the corresponding paths are zero, then we set bα||h = 0.

2.3. Lie algebras of graded algebras. Let A = KQ/I with I an admissible ideal generated by
homogeneous relations. Following [20], the Lie algebra K(Q1||B) admits a grading by considering
the elements of K(Q1||Bi) to have degree i− 1 for all i ∈ N. The Lie subalgebra Kerδ1 preserves
this grading and Im(δ0) is a graded ideal. We thus obtain an induced grading on HH1(A). Set

L0 := K(Q1||Q0) ∩Kerδ1

L1 := K(Q1||Q1) ∩Kerδ1/I1

Li := K(Q1||Bi) ∩Kerδ1/Ii
where

I1 = 〈
∑
a∈Q1e

a||a−
∑
a∈eQ1

a||a | e ∈ Q0〉

and for all i > 1

Ii = 〈
∑

a∈Q1e,γa∈B
a||γa−

∑
a∈eQ1,aγ∈B

a||aγ | e||γ ∈ Q0||Qi〉

With the above notation HH1(A) = ⊕i≥0Li and [Li,Lj ] ⊂ Li+j−1 for all i, j ≥ 0 where L−1 = 0.
Set N := ⊕i≥2Li. Then N is a nilpotent Lie algebra.
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3. Criteria for solvability of HH1(A)

In this section we prove several criteria that if satisfied, induce the solvability of the first Hochschild
cohomology of a finite dimensional K-algebra.

3.1. Algebras without self-extensions of simples.

Theorem 3.1. Let K be an algebraically closed field and let A = KQ/I be a finite dimensional K-
algebra. Suppose that Ext1

A(S, S) = {0} for every simple A-module S and that dimK(Ext1
A(S, T )) ≤

1 for all nonisomorphic simple A-modules S and T . Then HH1(A) is a strongly solvable Lie algebra.
Moreover, if the characteristic of K is zero then HH1(A) is a solvable Lie algebra.

The following are direct consequences of the proof of Theorem 3.1.

Corollary 3.2. Let A = KQ/I be a finite dimensional algebra such that Q contains no loops
and such that the Lie algebra K(Q1||B) is abelian. Then HH1(A) is strongly solvable and if the
characteristic of K is zero, then HH1(A) is solvable.

Set K(Q1||B) = ⊕i∈NK(Q1||Bi), where Bi is the subset of B consisting of paths of length i.

Corollary 3.3. The Lie algebra L := ⊕i≥2K(Q1||Bi) is nilpotent.

Proof of Theorem 3.1. If Ext1
A(S, S) = {0} for every simple A-module S, then Q has no loops.

Therefore K(Q1||B0) = {0}. Since dimK(Ext1
A(S, T )) ≤ 1 for every simple A-modules S and

T , there are no parallel arrows in Q. Equation (2.2) then immediately gives that K(Q1||B1)
is an abelian Lie algebra. Consequently the derived subalgebra of K(Q1||B) is contained in
⊕i≥2K(Q1||Bi). Furthermore, for i ≥ 2 we have Bi ⊆ J(A)2. Let α||β ∈ K(Q1||J(A)i)
and γ||δ ∈ K(Q1||J(A)j) where i, j ∈ N. Suppose, δ = a1a2 . . . aj ∈ J(A)j and β =

b1b2 . . . bi ∈ J(A)i. Then δα||β =
∑
l a1 . . . al−1βal+1 . . . ak ∈ K(Q1||J(A)i+j−1) and similarly,

α||βγ||δ ∈ K(Q1||J(A)i+j−1). Therefore [α||β, γ||δ] ∈ K(Q1||J(A)i+j−1). In particular, this im-

plies that L′ ⊆ ⊕i≥2K(Q1||Bi ∩ J(A)3). By iterating this process, since A is finite dimensional, it
follows that ⊕i≥2K(Q1||Bi) is a nilpotent Lie algebra. Subalgebras of nilpotent Lie algebras are
nilpotent, therefore K(Q1||B) is a strongly solvable Lie algebra. As a consequence of Lemma 2.4,
the Lie algebras Ker(δ1), Im(δ0) and HH1(A) are strongly solvable.

Now suppose that the characteristic of K is zero. Then combining the above, with Remark 2.2, it
implies that K(Q1||B) is a solvable Lie algebra. Every subalgebra and every factor of a solvable
Lie algebra is solvable and the result follows. �

We note that a different proof of Theorem 3.1 appears in [16].

3.2. Algebras with self-extensions of simples. Let us now consider the case Ext1
A(S, S) 6= {0},

that is, when the quiver has loops.

For i ∈ N, define the set

Σi := {α||β ∈ Q1||Bi | α||β = αj ||βj for some x =
∑
λjαj ||βj ∈ Ker(δ1) with λj ∈ K∗}.
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We say that α||β, γ||ε ∈ Σi are equivalent whenever α||γ. This defines an equivalence relation on
Σi. We denote by Σi its set of equivalence classes. By abuse of notation we denote the class of an
element α||β by the same symbol. We call a class α||β ∈ Σi nontrivial if it contains at least two
elements.

We now state our first result on algebras with self-extensions of simples.

Theorem 3.4. Let A = KQ/I be a finite dimensional K-algebra such that dimKExt1
A(S,S) ≤ 1

for every simple A-module S. Suppose that every class in Σ1 is trivial and that α||α2 is not in Σ2,
for all α ∈ B0. Then HH1(A) is a solvable Lie algebra.

Before proving Theorem 3.4, we give some preliminary results and state a consequence in charac-
teristic 2.

Corollary 3.5. Let A = KQ/I be a finite dimensional K-algebra over an algebraically closed field
of characteristic 2 such that dimKExt1

A(S,S) ≤ 1 for every simple A-module S. Suppose that every
class in Σ1 is trivial. Then HH1(A) is a solvable Lie algebra.

Proof. Since the characteristic of K is 2, we have for any loop α at vertex e that [α||e, α||α2] = 0.
Therefore we can apply the same arguments as in the theorem and the result follows. �

Proposition 3.6. Let A be a finite dimensional basic K-algebra. Suppose Σ0 is empty and that
every class in Σ1 is trivial. Then HH1(A) is a solvable Lie algebra.

Proof. Using the description of the bracket, every element in the derived algebra of HH1(A) has
as summands elements in Σi, for i ≥ 2. We denote by N the Lie algebra generated by these
summands. By Corollary 3.3 we have that N is nilpotent. Note that the derived subalgebra of
Ker(δ1) is a Lie subalgebra of N , therefore it is solvable. Since quotients of solvable Lie algebras
are solvable, it follows that HH1(A) is solvable. �

Proof of Theorem 3.4 Let L be the Lie algebra generated by the elements in Σi+1, for all i ∈
{−1, . . . , n} and for some for n ∈ N. Note that since A is finite dimensional such n exists. Then
L is a graded Lie algebra and can be written as L = ⊕ni=−1Li where Li is generated by Σi+1. If
L−1 = 0, the statement follows from Proposition 3.6. So assume now that L−1 6= 0. Then α||α is
not in L(1) since the only way to obtain it, is as [α||e, α||α2]. Then L(2) does not contain α||e since
the only way to obtain it is as [α||e, α||α]. Thus the Lie algebra L(2) satisfies the hypotheses of
Proposition 3.6 and L(2) is solvable. Consequently (L(2))(s) = L(s+2) = 0, for all s ≥ 0. Therefore
L and hence HH1(A) are solvable. �

The next result is similar but only applies to algebras which are not symmetric.

Proposition 3.7. Let A = KQ/I be a finite dimensional K-algebra such that dimKExt1
A(S,S) ≤ 1

for every simple A-module S. Suppose that every class in Σ1 is trivial and that there are no paths
parallel to any of the loops other than the loop itself. Then HH1(A) is a solvable Lie algebra.

Proof. Let L be the Lie algebra generated by the elements in Σi for all i ∈ {0, . . . , n}. If char(K) =
0, then every derivation preserves the radical. Thus α||α2 /∈ Σ2 for all loops α and the result follows
from Theorem 3.4. Let char(K) = p for some prime number p. If p = 2, the result follows from
Theorem 3.5. Now suppose p is odd. Then since α is not parallel to any path in Q, the only
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potential nonzero derivations in Σi that send α to an element in Bi are α||αi. Therefore the
derivation α||αp−1 is not in L(1). Iterating this process it is easy to check that α||e is not in L(p+1).
So L(p) is solvable and consequently L is solvable. The statement follows. �

Remark 3.8. The hypotheses in Proposition 3.7 imply that the Cartan matrix of A cannot be
symmetric [9, I.6.1].

3.3. Local algebras. We finish this section by considering the case when A is a local algebra.

Proposition 3.9. Let A = KQ/I be a local finite dimensional K-algebra such that Σ0 = ∅.
Suppose Q has two loops α1 and α2. If α1||α2 (or α2||α1) is not in Σ1, then HH1(A) is solvable.

Proof. Let L be Lie algebra generated by the elements in Σi for all i ∈ {0, . . . , n}. Then L
is a graded Lie algebra and can be written as ⊕ni=−1Li where Σi = Li−1. Since Σ0 = ∅, we

have L−1 = 0. Because of the grading, L(1)
1 is abelian (it only contains α2||α1 or α1||α2) and

consequently L(2) is solvable. The statement follows. �

Remark 3.10. Proposition 3.9 can be extended to n loops α1, . . . , αn under the assumption that

αi||αj are not in Σ1 for 1 ≤ i < j ≤ n. Then an analogous argument shows that L(n−1)
1 is abelian.

The next result is for the more general case that Σ0 is not empty.

Theorem 3.11. Let A = KQ/I be a local finite dimensional K-algebra with two loops α1 and α2

such that α1||α2 and α2||α1 are not in Σ1. Then

(1) if char(K) = 2, then HH1(A) is solvable.

(2) if char(K) 6= 2 and αi||α2
i /∈ Σ2 for i ∈ {1, 2}, then HH1(A) is solvable.

Proof. Let L be the Lie algebra generated by the elements in Σi for all i ∈ {0, . . . , n}. Then L is
a graded Lie algebra and can be written as ⊕ni=−1Li where Σi = Li−1. If Σ0 is empty then the
statement follows from Proposition 3.9. So assume that Σ0 is not empty.

(1) Firstly, we consider the case when both α1||e and α2||e are in Σ0. Then the Lie algebra L does
not contain αi||αiαj and αi||αjαi for i, j ∈ {1, 2}, i 6= j, because otherwise the derived subalgebra
contains [αi||e, αi||αiαj ] = αi||αj and [αj ||e, αj ||αiαj ] = αj ||αi which are not in L by hypothesis.

Hence L(1) does not contain αi||αi for i = {1, 2} since the only way to obtain them is through the
bracket [αi||α2

i , αi||e] for i ∈ {1, 2} (note that the rest of the elements in L2 are zero). The Lie
algebra L(2) does not contain αi||e for i = {1, 2} since the only way to obtain them is through the
bracket [αi||αi, αi||e] for i ∈ {1, 2} but αi||αi are not in L(1). Therefore the Lie algebra L(2) is
solvable and consequently L is solvable.

The only case left to consider is when α1||e ∈ Σ0 and α2||e /∈ Σ0 (or viceversa). Using the same
argument as the previous paragraph, α1||α1α2 and α1||α2α1 are not in L because otherwise the
derived subalgebra has the element [α1||e, α1||α1α2] = [α1||e, α1||α2α1] = α1||α2 which is not in
L by hypothesis. Therefore the derivation α1||α1 is not in the derived subalgebra L(1) since the
only way to obtain α1||α1 is through the bracket [α1||α2

1, α1||e] and the rest of the elements in
L1 are zero. The Lie algebra L(2) does not contain α1||e since the only way to obtain α1||e is as
[α1||α1, α1||e] but we have seen that α1||α1 is not in L(1). Therefore, by Proposition 3.9 the Lie
algebra L(2) is solvable and consequently L is solvable.
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(2) The argument is analogous to that in (1). �

3.4. Graded Algebras. Let A = KQ/I be a graded algebra. We adopt the notation of Sec-
tion 2.3. Furthermore, from now on we suppose that L0 = 0. In the remaining part of the section
we provide some sufficient conditions which lead to a method to verify the (super)solvability of
HH1(A). Since L0 = 0, in order to investigate the (super)solvability of HH1(A) it is enough to
look at L1.

First note that every element in L1 can be written as
∑
α||β λα,βα||β where α||β ∈ Q1||Q1 and

λα,β ∈ K. In the monomial case the elements of the form α||α are always in Ker(δ1) which is not
true in general for graded algebras. Let

∑
γ||ε µγ,εγ||ε in L1 where γ||ε ∈ Q1||Q1 and µγ,ε ∈ K.

Then

[
∑
α||β

λ(α||β),
∑
γ||ε

µ(γ||ε)] =
∑
α||β

∑
γ||ε

λµ([α||β, γ||ε]) =
∑

α||β,γ||ε

λµ (δα,εγ||β − δβ,γα||ε)

where δα,ε and δβ,γ are Kronecker coefficient and where for the sake of simplicity we have written
the scalars without subscripts.

We use the same notation for the sets Σi and Σi as defined in the beginning of Section 3.2. For

each equivalence class α||β ∈ Σ1 we define Lα||β1 to be the Lie algebra generated by the elements
in this class. We denote

L1 :=
∏

α||β∈Σ1

Lα||β1

the product of these Lie algebras.

Proposition 3.12. If L1 is a (super)solvable Lie algebra, then L1 is a (super)solvable Lie algebra.

Proof. By construction L1 ⊂ L1. Since L1 is a (super)solvable then L1 is a (super)solvable Lie
algebra. �

Remark 3.13. (1) When we want to check the (super)solvability of L1, and consequently of
HH1(A), we just need to consider the nontrivial classes in Σ1. If every element α||β, α 6= β,
in a nontrivial class satisfy β||α is not in Σ1, then L1 is (super)solvable. This follows from
[20, Lemma 4.9].

(2) If Σ1 contains only classes of the form α||α, then L1, and consequently L1, are abelian Lie
algebras.

4. Applications

In this section we prove the solvability of HH1(A) for the self-injective tame algebras A classified
in [19], as an application of the results previously stated. As usual, throughout this section K is
an algebraically closed field.
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4.1. Dihedral, semi-dihedral and quaternion. We first focus on symmetric tame algebras of
dihedral, semi-dihedral and quaternion type, studied and classified up to Morita equivalence and up
to scalars in [9]. This classification has been extended up to derived equivalences in [12] and more
recently most of the algebras of dihedral, semi-dihedral and quaternion have been distinguished up
to stable equivalence of Morita type [23]. For algebras of dihedral type the classification has been
completed in [22].

Theorem 4.1. Let K be an algebraically closed field of arbitrary characteristic. Let A be a
symmetric tame algebra of dihedral, semi-dihedral or quaternion type different from dihedral type
in characteristic 2 with Klein defect. Then HH1(A) is a solvable Lie algebra.

Proof. We organise the proof by the number of simple modules, and within each case we consider
the dihedral, semi-dihedral and quaternion cases. The strategy is to show that we can use either
Proposition 3.9, or, in characteristic 2, Theorem 3.11.

In the local algebra case the quiver Q has two loops X and Y and we denote the single vertex by
e.

In dihedral type we have that A is either:

(1) K[X,Y ]/(XY,Xm − Y n): for m ≥ n ≥ 2,m+ n > 4,

(2) D(1A)1
1 = K[X,Y ]/(X2, Y 2),

(3) D(1A)k1 , k ≥ 2;

and when char(K) = 2, there are two more cases:

(4) K[X,Y ]/(X2, Y X − Y 2),

(5) D(1A)k2(d), k ≥ 2, d ∈ {0, 1}.
In case (1), note that the derivations X||e, Y ||e, X||Y and Y ||X do not belong to Σi for i = 0, 1,
respectively, and the result follows from Theorem 3.11. In Case (2), we have that HH1(A) is a
Witt–Jacobson algebra which is a simple Lie algebra of Cartan type [14]. In case (3), X||Y and
Y ||X do not belong to Σ1 and if char(K) 6= 2, then X||e and Y ||e do not belong to Σ0 and
we are done using Proposition 3.9. If char(K) = 2, then we use Theorem 3.11. In case (4) it

is enough to verify that X||e and Y ||e c and that the Lie algebra generated by ˜Q1||B1 has K-
basis {X||X + Y ||Y,X||X +X||Y, Y ||X} and its derived algebra is one dimensional and therefore
HH1(K[X,Y ]/(X2, Y X − Y 2)) is solvable. Finally, case (5) is a consequence of the fact that X||e
and Y ||e are not in Σ0, and X||Y is not in Σ1.

Next we consider local algebras of semi-dihedral type. In this situation, there are two possibilities,
one of them only in characteristic 2.

(1) SD(1A)k1 , k ≥ 2. It is easy to verify that X||Y and Y ||X do not belong to Σ1 In addition,
if char(K) 6= 2, X||e and Y ||e are neither in Σ0. Hence the solvability of HH1(A) follows
from Proposition 3.9 if the characteristic of K is different from 2, otherwise it follows from
Theorem 3.11.

(2) SD(1A)k2(c, d), char(K) = 2, k ≥ 2, (c, d) 6= (0, 0). For c, d 6= 0, the derivations X||Y and
Y ||X are not in Σ1, and solvability follows from Theorem 3.11. For c = 0 and for d = 0
the proof is analogous.
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Finally, we consider local algebras of quaternion type. Again, there are two possibilities, one of
them only in characteristic 2.

(1) Q(1A)k1 , k ≥ 2. Here, X||Y and Y ||X are not in Σ1. Moreover, if char(K) 6= 2, we deduce
that X||e and Y ||e are not in Σ0. The solvability of HH1(A) follows from Proposition 3.9.
For char(K) = 2, we use Theorem 3.11.

(2) Q(1A)k2(c, d), char(K) = 2, k ≥ 2, (c, d) 6= (0, 0). By length reasons, X||e and Y ||e are not
in Σ0, and it is easy to see that X||Y is not in Σ1. For c, d = 0, the situation does not
change. We apply Theorem 3.11.

Up to derived equivalence, there are four families of symmetric tame algebras with two simple
modules and they all have the same quiver. We denote the two loops by α and η having source e0

and e1, respectively.

In characteristic 2 the solvability of HH1(A) follows from Cor. 3.5, so it is enough to consider the
case char(K) 6= 2.

(1) D(2B)k,s(c). Again, by length reasons, η||e1 and α||e0 are not in Σ0, and the statement
follows from Proposition 3.6.

(2) SD(2B)k,t1 (c). Analogously to case D(2B)k,s(c), we deduce that η||e1 is not in Σ0, and
neither does α||e0. We conclude as before.

(3) SD(2B)k,t2 (c). The elements η||e0 and α||e0 are not in in Σ0. Again we use Proposition
3.6.

(4) Q(2B)k,s1 (a, c). The reasoning is similar to the previous one.

For symmetric tame algebras with 3 simple modules, the solvability of HH1 for algebras of type
3K and of type 3A follows from Theorem 3.1. For the algebra D(3R)k,s,t,u the results holds in
case char(K) = 2 by Corollary 3.5 and in any other characteristic, from Proposition 3.9. �

Corollary 4.2. Suppose char(K) = 2 and let A be a tame nonlocal symmetric algebra. If
dimK(Ext1

A(S, T )) ≤ 1 for all simple A-modules S 6= T , then HH1(A) is solvable.

Proof. Since A is tame symmetric dimK(Ext1
A(S, S)) ≤ 1. The statement follows from Corollary

3.5. �

4.2. Brauer graph algebras. In this short subsection we prove the solvability of HH1(A) for A
a Brauer graph algebra different from the trivial extension of the Kronecker algebra. In the latter
case, HH1(A) is isomorphic to gl2(K) which is not solvable except in characteristic 2.

The solvability of the first Hochschild cohomology of Brauer graph algebras with multiplicity
function identically equal to one and different from the trivial extension of the Kronecker algebra
has been shown in [4]. We now prove that the first Hochschild cohomology of any Brauer graph
algebra with any multiplicity function (apart from the trivial extension of the Kronecker algebra)
is solvable in any characteristic.

Theorem 4.3. Let B be Brauer graph algebra different from the trivial extension of the Kronecker
algebra if the characteristic of K is not 2. Then HH1(B) is a solvable Lie algebra.
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Proof. The first step is to show that if B is a Brauer graph algebra different from the trivial
extension of the Kronecker algebra, then Σ1 is trivial. Since B is a Brauer graph algebra, there
are at most two arrows starting and ending at each vertex of the quiver Q. Given two parallel
arrows α1 and α2 in Q, there exist βi and γi such that αiβi /∈ I and γiαi /∈ I for i ∈ {1, 2}. Since
B is special biserial, we infer that Σ1 is trivial. The only exception is when the Brauer graph has
exactly two vertices and two edges. If the valencies at each vertex are 1, then B is the trivial
extension of the Kronecker algebra. Let the valency at each vertex be m, n respectively, such that
m+ n > 2 and let α1, α2,β1, β2 be respectively the two pairs of parallel arrows. It is easy to show
that two Type III relations are given by β2α1 and α2β1. In addition α2α1, β2β1 /∈ I. Therefore
the derivations α1||α2 and β1||β2 are not in Σ1.

The next step is to apply the results from Section 3. More precisely, if there are no loops in the
quiver, then the statement follows from Proposition 3.6. If there are loops and if char(K) = 2, then
from Theorem 3.11 we deduce that HH1(A) is solvable. In any other characteristic, we proceed as
follows. We note that there are two types of loops in Ext quiver of a Brauer graph algebra, say
ε and α, with vertices e1 and e2, respectively. They are induced, respectively, from vertices with
multiplicities greater than 1 and from loops of the Brauer graph. The former appears in Type III
relations in the form αε or εα for some arrow α. Therefore the derivation ε||e1 is not in Σ1. The
latter also occurs in the Type III relations as α2 = 0. Since char(K) 6= 2, the derivation α||e2 does
not belong to Σ0. The statement follows from Proposition 3.6. �

4.3. Self-injective tame algebras. In this subsection A is a self-injective tame algebra which is
in the classification of Skowroński’s survey paper in [19]. Our aim is to prove the following.

Theorem 4.4. Let A be a self-injective tame algebra that appears in the classification in [19] dif-
ferent from K[X]/(Xr) when char(K) | r and different from the trivial extension of the Kronecker
algebra if char(K) 6= 2. Then HH1(A) is a solvable Lie algebra.

We start by recalling the following result from [19] (using the notation in that paper), which
provides the derived equivalent classes of algebras of nonsimple connected symmetric algebras of
finite type.

Theorem 4.5 ([19]). The algebras Nem
e ,m ≥ 2, e ≥ 1, D(m),m ≥ 2, T (K∆(An)) n ≥ 1,

T (K∆(Dn)) n ≥ 4, T (K∆(En)), 6 ≤ n ≤ 8 and D
′
(m), m ≥ 2 and char(K) = 2, form a

complete family of representatives of the derived classes of the nonsimple connected symmetric
algebras of finite type.

Proposition 4.6. Let A be as in Theorem 4.5, excluding Nakayama algebras Nem
e where e = 1

and char(K) divides m+ 1. The Lie algebra HH1(A) is solvable.

Proof. Let Nem
e ,m ≥ 2, e ≥ 1 be a Nakayama algebra with e vertices and such that all the

compositions of em + 1 consecutive arrows generate the admissible ideal. If e = 1, then Nem
e
∼=

K[x]/(xm+1). If p divides m + 1, then HH1(K[x]/(xm+1)) is a perfect Lie algebra, therefore not
solvable. If p does not divide m+ 1, then the derivation x||e is not in Σ0 and so by Proposition 3.6
we have that HH1(Nem

e ) is a solvable Lie algebra. If e > 1 the statement follows from Theorem
3.1.
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The trivial extension algebra T (K∆(An)) for n ≥ 1 is the Nakayama algebra Nn
n therefore the

solvability of HH1(T (K∆(An)) follows from the previous paragraph. For the other self-injective

algebras of Dynkin type, we proceed as follows. The algebras D(m) and D
′
(m) have the same

Ext-quiver which has only one loop, say α, at a vertex e, and dimK(Ext1
A(S, T )) ≤ 1 for every two

simple modules S and T . Since D
′
(m) for m ≥ 2 is defined only in characteristic 2, the solvability

of HH1(D
′
(m)) follows from Theorem 3.11. For D(m), it is enough to verify that the derivation

α||e is not in Σ0. The solvability follows then from Proposition 3.6. From Theorem 3.1 we obtain
the solvability of HH1(T (K∆(Dn))) and of HH1(T (K∆(En))). �

The description of self-injective algebra of Euclidean type given in [19] is as follows.

Theorem 4.7 ([19]). Let A be a self-injective algebra of Euclidean type. The following are equiv-
alent

• A is symmetric and has nonsingular Cartan matrix.

• A is derived equivalent to an algebra of the form A(p, q), Λ(n) or Γ(n).

Proposition 4.8. The first Hochschild cohomology space of any symmetric algebra A of Euclidean
type with nonsingular Cartan matrix is a solvable Lie algebra.

Proof. Such an algebra is a Brauer graph algebra, therefore the statement follows from Theorem
4.3. �

In order to describe what happens when A is a self-injective symmetric algebra of Euclidean type
with singular Cartan matrix we need a preliminary result.

Proposition 4.9 ([19]). Let A be a self-injective symmetric algebra of Euclidean type with singular
Cartan matrix. There exists an Euclidean canonical algebra C such that A is isomorphic to the
trivial extension T (C).

Proposition 4.10. The first Hochschild cohomology space of any self-injective symmetric algebra
A of Euclidean type with singular Cartan matrix is a solvable Lie algebra.

Proof. We already know that A is isomorphic to the trivial extension T (C) of an Euclidean canon-
ical algebra C. Let C(2, 3, 3) be the canonical algebra with three parallel branches (α1, α2),
(β1, β2, β3) and (γ1, γ2, γ3) . Its trivial extension has two more arrows mβ ,mγ such that s(mβ) =
s(mγ) = t(α2) and t(mβ) = t(mγ) = s(α1). Note that β3mγ and γ3mβ belong to the admissible
ideal I, while β3mβ and γ3mγ are not in I. Therefore the derivations mβ ||mγ and mγ ||mβ are

not in Σ1. From Proposition 3.6, HH1(T (C(2, 3, 3))) is solvable. The proof is analogous for the
algebras C(2, 3, 4) and C(2, 3, 5) and C(2, 2, r) with r ≥ 2. �

Next we consider self-injective algebras of tubular type. We first recall the following two results.

Theorem 4.11 ([19]). Let A be a standard weakly symmetric algebra of tubular type with nonsin-
gular Cartan matrix. Then A is derived equivalent to an algebra of the form A1(λ), A2(λ) with
λ ∈ K {0, 1}, A3,A4, A5 or A12.
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Theorem 4.12 ([19]). Let A be a nonstandard nondomestic weakly symmetric algebra of polyno-
mial growth with nonsingular Cartan matrix. Then A is derived equivalent to an algebra of the
form Λ1, Λ3(λ) where λ ∈ K {0, 1}, Λ4 or Λ9.

Proposition 4.13. Let A be an algebra either as in Theorem 4.11 or as in Theorem 4.12. The
Lie algebra HH1(A) is solvable.

Proof. For the algebras A1(λ),A3,A4, A12, Λ4 and Λ9 the solvability of the first Hochschild co-
homology space follows from Theorem 3.1, while for A2(λ), A5, Λ1(λ), Λ3(λ) in char(K) = 2 it
is a consequence of Cor. 3.5. In any other characteristic, we need to do some checks. We start
with A2(λ) by observing that the derivations α||e1 and β||e2 are not in Σ0. Similarly, we deduce
the solvability of HH1(Λ3(λ)). For A5, we deduce that α||e is not in Σ0 and we apply the same
argument to Λ1. �

The case where A has singular Cartan matrix is covered by the following results. Let us recall the
following theorem.

Theorem 4.14 ([19]). Let A be a self-injective algebra. The following statements are equivalent:

• A is symmetric of tubular type and has singular Cartan matrix.

• A is derived equivalent to the trivial extension of a canonical tubular algebra.

Proposition 4.15. Let A be derived equivalent to the trivial extension of a canonical tubular
algebra. Then HH1(A) is solvable.

Proof. Let A be derived equivalent to the trivial extension T (C) = KQ/I of a canonical tubu-
lar algebra C. Let C(2, 4, 4) be the canonical algebra with three parallel branches (α1, α2),
(β1, β2, β3, β4) and (γ1, γ2, γ3, γ4). Its trivial extension has two more arrows mβ ,mγ such that
s(mβ) = s(mγ) = t(α2) and t(mβ) = t(mγ) = s(α1). Note that β4mγ and γ4mβ belong to the ad-
missible ideal I, while β4mβ and γ4mγ are not in I. As a consequence, the derivations mβ ||mγ and

mγ ||mβ are not in Σ1. Using Proposition 3.6, we conclude that HH1(T (C(2, 4, 4))) is solvable. An
analogous proofs holds for the algebras C(3, 3, 3), C(2, 3, 6) and C(2, 2, 2, 2, λ) for λ ∈ K {0, 1}. �

The structure of arbitrary standard self-injective algebras of polynomial growth is described by
the following theorem.

Theorem 4.16 ([19]). Let A be a nonsimple basic connected self-injective algebra. The algebra A
is standard of polynomial growth if and only if A is isomorphic to a self-injective algebra of Dynkin
type, Euclidean type or tubular type.

Another class of tame self-injective algebras that is in the classification in [19] are quaternion type.
For these the solvability of HH1 follows from Theorem 4.1.

4.4. Quantum complete intersections. The Hochschild cohomology of quantum complete in-
tersections has been extensively studied, see for example [2, 3, 10, 18]. In this section we apply
Proposition 3.12 together with Remark 3.13 to calculate the Lie algebra structure of the first
Hochschild cohomology of arbitrary quantum complete intersection, that is of rank r with nonzero
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arbitrary parameter. In particular, it follows from our result that to a certain degree this Lie
algebra structure is independent of the rank and the parameters.

Recall that KQ/I is a quantum complete intersection of rank r, if

KQ/I = K〈X1, . . . , Xr〉/〈XiXj − qijXjXi, X
ni
i , for 1 ≤ i, j ≤ r, 〉

where if the characteristic of K is zero we set ni ∈ N≥2 and if the characteristic of K is p, we set
ni = pmi for mi ∈ N≥2.

Proposition 4.17. Let A be a quantum complete intersection of rank r.

(1) Suppose the characteristic of K is zero. Then HH1(A) is a solvable Lie algebra.

(2) Suppose the characteristic of K is odd. Then HH1(A) is a supersolvable Lie algebra.

Proof. We write the relations ρij = (XiXj , qijXjXi) and ρii = (Xpni

i , 0), for 1 ≤ i < j ≤ r, where
ni ≥ 1 are integers. The first step in order to apply Proposition 3.12 is to show that L0 = 0.
The term of the differential of Xi||e0 given by ρii+1||Xi+1− qii+1ρii+1||Xi+1 is never in the kernel.
The only element that would have a nonzero term for that relation is Xi+1||e0 and is given by
ρii+1||Xi − qii+1ρii+1||Xi. Since Xi 6= Xi+1 the previous statement follows. By Remark 3.13 it
is enough to check that Xi||Xj is not in Σ1 for i 6= j. If we apply δ1 to Xi||Xj , then one of
the nonzero elements in the image is given by ρij ||X2

j − qijρij ||X2
j . The only element that has a

nonzero image for these relations is Xj ||Xi which gives ρij ||X2
i − qijρij ||X2

i . Since Xi 6= Xj , it

follows that HH1(A) is a supersolvable Lie algebra and both (1) and (2) follow. Note that in the
characteristic zero case, if ρii = (X2

i , 0) for some i, then it is enough to notice that in the image of
Xi||Xj , we have ρii||XjXi +XiXj .

�

4.5. Examples of algebras with nonsolvable first Hochschild cohomology. In this section
we give two examples of families of algebras for which the Lie algebra given by the first Hochschild
cohomology is not solvable but rather semi-simple. These examples generalise the example of the
Kronecker algebra given in [4], see also [8].

The first family consists of monomial algebras with radical square zero over a field of arbitrary
characteristic. Let n,m ∈ N≥1. We denote by Qn,m the quiver with n vertices 1, . . . , n and for
each consecutive pair of vertices (i, i+ 1) there are m parallel arrows denoted by αi,1, . . . αi,m from

i to i+ 1. For n = 2, the quiver Q2,m is the m-Kronecker quiver. Set An,m = KQn,m/rad2KQn,m.

Proposition 4.18. There is an isomorphism of Lie algebras

HH1(An,m) ∼=
n∏
i=1

slm(K),

for n,m ≥ 2. In particular, HH1(An,m) is a solvable Lie algebra if and only if char(K) = 2 and
m = 2.

Proof. A short calculation shows that, for j 6= l where j, l ∈ {1, . . .m}, h ∈ {1, . . .m − 1} and
i ∈ {1, . . . n}, the set {αi,h||αi,h − αi,h+1||αi,h+1, αi,j ||αi,l} is a basis of HH1(An,m). Since the

Lie bracket of different classes of parallel arrows is zero, the Lie algebra structure of HH1(An,m)
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decomposes as a product of Lie algebras. The next step is to show that for a fixed i each of
these Lie algebras is isomorphic to slm(k). We consider the basis for slm(K) given by the set of
elementary matrices {est}s,t for s 6= t, together with hs = ess − es+1,s+1. Given i, we denote αi,j
by αj . Then if we write est := αs||αt and hs := αs||αs − αs+1||αs+1 it is easy to show that the

above statement follows. Therefore HH1(A) is isomorphic to
∏n
i=1 slm(k). If char(K) = 2 and

m = 2 this Lie algebra is not solvable. �

An analogous proof to the above shows the following generalisation of Proposition 4.18. Let n,m
be such that m = (m1, . . . ,mk) and n,m1, . . . ,mk ∈ N≥1. We denote by Qn,m the quiver with
n vertices 1, . . . , n and for each consecutive pair of vertices (i, i + 1) there are mi parallel arrows
denoted by αi,1, . . . αi,mi

from i to i+1. For n = 2 and m = m, the quiver Q2,m is the m-Kronecker

quiver. Set An,m = KQn,m/rad2KQn,m.

Corollary 4.19. For An,m as above, we have

HH1(An,m) ∼=
n∏
i=1

slmi(K),

for n,m1, . . . ,mk ≥ 2.

It can be shown in a similar way that HH1(KQn,m) ∼=
∏n
i=1 slmi

(K), for n,m1, . . . ,mk ≥ 2.
In fact, this result also follows from the fact that An,m is the Koszul dual of KQn,m so their
respective Hochschild cohomologies –that are isomorphic as graded algebras– are also isomorphic
as Gerstenhaber algebras [11].

Corollary 4.20. Let A = KQ/I be a finite dimensional algebra such that Q contains Qn,m as a
subquiver and the other arrows of Q form a simple directed graph. Suppose that I contains all or
none of the relations of degree 2 involving the arrows of Qn,m and that for any arrow α in Qn,m
and any arrow β not in Qn,m, either αβ /∈ I or βα /∈ I. Then

HH1(A)/rad(HH1(A)) ∼=
n∏
i=1

slm(K).

Proof. By construction, HH1(A) =
∏n
i=1 slm(K) ⊕ S, where S is a solvable Lie algebra. The

statement follows. �

It follows from Corollary 4.20, see also [8] in characteristic zero, that the first Hochschild cohomol-
ogy of a special biserial algebra A (beyond the Kronecker algebra) is not necessarily solvable. This
is the case, for example, when the quiver contains Q2,m for some m as subquiver with all relations

of length two for all arrows in Q2,m. In that case sl2(k) is a Lie subalgebra of HH1(A).
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