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The Becker-Gottlieb transfer: a geometric
description

Yi-Sheng Wang

Abstract

In this note, we examine geometric aspects of the Becker-Gottlieb
transfer in terms of the Umkehr and index maps, and rework some clas-
sic index theorems, using the cohomological formulae of the Becker-
Gottlieb transfer. The results are natural from the homotopy-theoretic
point of view; they reveal subtle geometric information in the Umkehr
map, and demonstrate the beauty of the Atiyah-Singer index theorem
for families and its generalizations.

Introduction

The Becker-Gottlieb transfer is a homotopy-theoretically defined stable map
associated to a compact smooth fiber bundle £ = B. Its construction in-
volves no geometries and depends only on the smooth bundle structure 7.
For any spectrum F, it induces a homomorphism [BG74]:

tr*: F*(M) — F*(B),

where [*(—) is the associated cohomology theory.

Given a ring spectrum E and a module spectrum F over E, if the tangent
bundle along the fibers 7M is E-oriented, then one can define, using the
Thom isomorphism induced from the orientation class, an Umkehr map or a
Gysin homomorphism:

7 F*(M) — F*¥(B),

where k is the dimension of X.
Now, suppose F' is the topological K-theory spectrum K. Then there is
a topological index map [AST71], [LM89],

indt . cht(TM) — K(B),
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where 7M is the tangent bundle along the fiber, K.,:(7M) is its topological
K-group with compact support, which is equivalent to the reduced topologi-
cal K-group K (M7) of its Thom space M 7. This definition can be generalized
to any module spectrum F over K:

ind, : F***(M™) — F*7*(B),

where F*(—) is the reduced cohomology group.

The purpose of the note is to find, via the Umkehr map and index maps,
concrete geometric expressions of the Becker-Gottlieb transfer. To this aim,
we prove the following theorem, which is a corollary of Lemma 1.1.

Theorem 0.1. Suppose F is a module spectrum over K and M admits a
spin structure. Then, for any element in F*(M), we have

tr*(z) = 7' (s(M/B) - x) = indy[T;(s(M/B) - )], "

where s(M/B) is the Euler class induced from the complex spinor bundle

$é(7’M) and T, : F*(M) — F**k(MT) is the Thom isomorphism given by
—

the conjugate complex spinor bundle $c(7M).

Using the relation between tr*, 7', and ind;, we reexamine some classic
index theorems of families; we obtain a simple proof for the index theorem
for flat vector bundles (Diagram 9) and extend Lott’s index theorem to a
C/Q-index theorem (Diagram 14).

The relation between the three maps as well as a cohomological formula
for tr* is established in Section 1. In Section 2, the Atiyah-Singer index
theorem for families is used to to show an index theorem for flat vector
bundles. The theorem is first proved in [BS82] with K R-theory; the proof
presented here avoids K R-theory at the cost that 7M need to have a spin
structure. We investigate Lott’s index theorem [Lot94] in Section 3, and
apply it to the Becker-Gottlieb transfer through Theorem 0.1. In Section 4,
we discuss the index theorems from homotopy-theoretic point of view. Some
comments on approaches to a C/Z index theorem for flat vector bundles
(Diagram 17) are given in Section 5.
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!The first identity is an easy generalization of [BG74, Theorem 4.3] to module spectra.
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1 Umkehr maps

Suppose M 5 B is a compact smooth fiber bundle with fiber X a k-
dimensional manifold. Then there exists a fiber-wise embedding

t: M — BxRY,

where N is some large positive even integer, B x RY is considered as a trivial
bundle over B, and + is a base point. This embedding gives us a collapsing
map

B, ASYN — MY,

where M"Y is the Thom space of the normal bundle vM of . Let M™ denote
the Thom space of the tangent bundle along the fibers over M. Then the
Beck-Gottlieb transfer [BG74] is a S-map given by the composition

tr: BL ASY = MY — MY ~ M, A SV,
Given any spectrum F, tr induces a homomorphism
tr*: F*(M) — F*(B).

On the other hand, given a ring spectrum E, if F' is a module spectrum
over E and MV is E-oriented, then there exists an Umkehr map 7' defined
by the composition

s FY(M) — FHN=R(MY) - FNR(B, A SN) ~ F*#(B),

where the first homomorphism is the Thom isomorphism induced by the
E-orientation on M".

The relation between the Umkehr map and the Becker-Gottlieb transfer
can be summarized as follows [BG74, Theorem 4.3]: for any x € F*(M),

tr*(z) = 7' (e(M/B) - ),

where e(M/B) is the Euler class of 7M induced by the E-orientation of M
and the trivialization M"®™ ~ M, A S¥ given by pulling back the trivial
bundle

BxRYxRY —» BxRY

along the embedding «.
Now, we recall the construction of the topological index map of M — B
[AST1], [LM89, Chapter 15] and let F be the topological K-theory spectrum



K. The embedding ¢ induces a map between tangent bundles (along the
fiber)
T1:TM — B x R

the normal bundle v(7M) of 71 in B x R* admits a complex structure and
hence there is a Thom isomorphism

Kept(TM) = Kept(v(TM)).
The topological index is then defined by the composition:
indy : Kopo(TM) = Koo (v(TM)) = Koo (B x R*Y) ~ K(B). (1)

Recall that an element in a complex topological K-theory with compact sup-
port can be represented as the formal difference of two vector bundles, each
of which is trivialized outside a compact set [LM89, p.66]. Hence, we may
rewrite the composition (1) in terms of Thom spaces and reduced cohomology
groups [Rud08, Corollary 1.5]:

ind; : K(M™) — K(M™®) - K(B, A S*™) ~ K(B). (2)

This expression allows us to generalize the composition (1) to any module
spectrum F over E with E a ring spectrum equipped with a ring morphism
K — E.

F*-‘rk’(MT) N F*+2N—k‘<MT€9V€BV) N F*+2N—k(B+ /\SQN) ~ F*—k(B) (3)

If, furthermore, the Thom space M™ is E-oriented, then we can precom-
pose (3) with the Thom isomorphism

T, : F*(M) — F**™F(M™)

to get a map
ind, : F*(M) — F**(B). (4)

For instance, if thi TM is an even-dimensional spin vector bundle, then
the complex spinor $(7M) along with the Dirac operator

P T($E(rM)) — T($c(TM)),

gives a Thom class in K p(7M) =~ K(M7) where ['(E) is the space of sections
of a vector bundle £ — B [LM89, Appendix C]. To compare with the
Becker-Gottlieb transfer, we need to choose the Thom class induced from its

—
conjugate bundle $(7M).



Lemma 1.1. Suppose F is a module spectrum over K, and let T, be the Thom

—t
isomorphism induced from the conjugate spinor bundle $-(TM). Then the
Umkehr map 7 is equal to ind,.

Proof. Observe that we have the isomorphism

Pewin ® (M) ~ Cly_(vM) ® C,

where Cly (v M) is the Clifford bundle [LM89, IV.10.16]; taken into account
the grading in $¢(vM) and $(vM), their tensor recovers the complex spinor

Ag]en/Odd(VM ®vM) ~ $§(VM ®vM)

induced from the complex structure on vM @ vM; in addition, there is an
identification [LM89, 1.5.21]

EC(TM) ®EC(VM) ~ EC(TM ©vM) ~ EC(M x RY).

Therefore, the diagram below commutes:

F*+k M’T‘ F*+2N k MT@V@V F*+2N k B /\52N

S

T, F*+N k MV %F*J’_N k B /\SN F* k:

()

Note that T}, is induced from the spinor $¢(vM) without conjugation and 7,
is induced from the spinor

@é(M x RM).
0

The lemma implies Theorem 0.1.
The index map ind; : Kp(7M) — K(B) has a cohomological formula
[AST1]
chlind,(u)] = (—1)*&'[ch(u) U A(TM)?], (6)

for any u € Kqu(TM), where 7 is the bundle map 7M — B, and 7' is
integration over the fiber, and U is the cup product.



If M is an even-dimensional spin vector bundle. Then the Thom iso-
morphism induced by the Thom class (7 M) of the conjugate spinor bundle
is given by the assignment:

K(M) — K (M)
y—u=38(TM)- 7'y,
where y is represented by the formal difference of complex vector bundle

[V] — [W]. Now, recall that given a 2-dimensional spin bundle V' — M its
complexification has the decomposition

VoC~LaL

and o o X
— 1 —1
FEV)@® $c(V) = L2 L7,

Since L ~ V as an oriented bundle [LM89, p.238]. Using the splitting prin-

cipal, we obtain )
ch(s(tM)) = A~ (T M)

(compare with [LM89, I11.12.15])2, the cohomological formula (6) can be
rewritten as

k(k+1)

)™= w'leh(y) UA(M/B)], (T)

chfind, (u)] = (—1)*7'[ch(E(rM) - 7*y) U A(rM)?]
= (=

where 7' is integration over the fiber X.

Now, let y be the product of the Euler class s(M/B) := s*s(rM) and
another element x, where s is the zero section. Then one can compute the
BG transfer:

tr*(z) = indy[s(7 M) - 7*y] = indy[s(7 M) - 7" (s(M/B) - x)].

Since ch(s(M/B)) = (—1)2e(M/B)A(M/B)~" [LMS9, III. 11.24], we have
the cohomological formula for the BG transfer:

k(k+1) |

k(k+1)

chtr ()] = (1)~ = x'[ch(u) U A(M/B)]
= (=1)" 7 (=1)27'(e(M/B) U ch(x)) = 7'(e(M/B) U ch(x)),

which is equivalent to the commutative diagram below:

2The arguments in [LM89, II1.11] actually require the non-triviality of the Euler class
e(M/B) of TM; however, Diagram 8 as well as Diagrams 13 and 14 holds trivially when
e(M/B) vanishes.



K(M) H*(M,R)
tr* fX M/B
KB — % B R)

where [, is integration over the fiber.

2 Analytic indices

We may think of the smooth fiber bundle M 5 B as a family of manifolds
over the parameter space B with structure group Diff(X). A vector bundle
over M can be viewed as a family of vector bundles parameterized by B with
structure group of bundle diffeomorphisms Diff (£, X). Given two families
V, W of vector bundles over M parameterized by B, a family of differential
operators is a differential operator from I'(V) — I'(W) such that for each
n~ (), x € B, it restricts to an elliptic operator

F(V |ﬂ.—1(x)> — F(W ‘ﬂ.—l(m)).

The definition of families of elliptic operators can be extended to elliptic
pseudo-differential operators. And the symbol o(P) of an elliptic pseudo-
differential operator P gives rise to an element in K, (7M); conversely, every
element in K., (7M) can be realized by some symbol [AS71]. The index of
P is defined by

ind, : K(tM) — K(B)
o(P) — Ker(P) — Coker(P),

where P is the associated pseudo-differential elliptic operator which has lo-
cally constant kernel and cokernel [AS71, Proposition 2.2}, [LM89, III 8.4].
The Atiyah-Singer theorem asserts that

Theorem 2.1 (Index theorem for families [AS71]).
ind, = ind, : Kope(rM) — K(B).

On the other hand if M is spln any element [V — W] in K (M) induces
a Dirac bundle $c (TM)®V — $C(7'M) ® W, and hence gives rise to an
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element in K. (7M). This assignment is precisely the Thom isomorphism
induced by §(M). Now take s(M/B) = [$&(7M) — $o(rM)] € K(M).
Then the resulting Dirac bundle $((:|::(TM) ® s(M/B) corresponds to the de
Rham complex A" (M) @ C — A°¥(rM) @ C [BGV92, p.130;Prop. 3.40].
It implies that the analytic index for flat vector bundles given by taking
fiberwise homology

(M, BU®] OB, iy B

Vo — H*(M/B,V,),

can be realized by ind,[S(TM)n*(s(M/B) - V,)], where V, is a flat vector
bundle. Thus, we have the following commutative diagrams:

(M, BUY| K(M)
H*(M/B7 —) tr*
(B, BU] ! K(B)

where ¢ is the canonical inclusion by forgetting flat connections.

3 Topological K-theory with coefficients

In this section, we discuss the Becker-Gottlieb transfer in Topological K-
theory with coefficients in R/Z. In [Lot94], Lott describes a geometric model
for an R/Z-valued K-group of a compact manifold KHQ/IZ(M ). An element in
Kﬂg/lZ(M) is a quadruple & = (Vi, h"* VY% w), where (Vi,h"*) is a Z/2Z-
graded hermitian vector bundle on M, VV* is a hermitian connection on V4,
and w € Q°/Im(d) satisfies dw = ch(V"+) — ch(V"~). The last condition
implies that there exists a number k£ such that £V, and k£V_ are isomorphic.

Choosing an isomorphism ¢ : KV, = kV_. we define a cohomology class
Ky (M) = H(M,R)
1
&= (Ve,h, VY w) Ecs(k:VK,qb*kV‘_/) - w,

where cs(—, —) is the Chern-Simons class. The image of the cohomology
class under

H*"(M,R) — H*"(M,R/Q)
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is the R/Q character of &, and it is independent of the choice of an isomor-
phism ¢. KHQ/IZ(M) is a K (M)-module, and given a cocycle C = (W, " VW)
in K(M), C - & is defined by

(W e Ve, " @h™* VW @Id+1d@V"*, ch(VV) Aw),

where (W, h") is a hermitian vector bundle and V" a hermitian connection.
The character chr/q respects the module structures:

ch(C - 8) = ch(C) - chg/g(8).

There is another R/Z-valued model, called Segal’s model [APS76, p.8§],
which is closer to the homotopy-theoretic definition of topological K-theory
with R/Z-coefficients. We want to show that Lott’s model is equivalent to
Segal’s and hence also equivalent to the homotopy-theoretic definition using
Moore spectrum.

Segal’s model is generated by the quadruple ([w];V,W,¢), where w is
a closed odd form representing a class in H°%(M,R), and V, W are two
vector bundles over M, and ¢ is an isomorphism between kV and kW. Two
elements are equivalent

(WiViWe)  ~ (W]V, W', ¢)

if and only if (V,W,¢) and (V', W’ ¢') are the same in K@}Z(M ), namely
there exists bundle isomorphisms

mV mV’
o[ ¢ |
mW = mW’ (10)

such that w — ' represents the Chern-Simon class of the commutative di-
agram, where ¢ and ¢ are isomorphisms induced from ¢ and ¢/, and m is
some positive integer.

Given an element in Segal’s model ([w];V,W,¢), we let V, = V and
V_ = W and choose a hermitian metric and a hermitian connection for each
of V.. This gives an assignment from Segal’s model to Lott’s model:

([w); Vi, Vo, @) — (Vi hY=, VY=, %cs(kvw, PkVY) —w)  (11)



Conversely, given an element (Vi, hV*, V= w) in Lott’s model, we choose an
isomorphism ¢ : kV, — kV_. Then the inverse to (11) is given by

1
(Vi b9, 0¥ ) s ([ cs(R0Y, 6RYY) — Vi, Vo)) (12)
Segal’s model is built from the cokernel of the homomorphism
K(M)©Q 2% k(M) 9 Re Kj,(M),
where ¢ and j are the natural projection and inclusion, respectively, and
hence equivalent to the topological definition of topological K-theory with
R/Z-coefficient using the Moore spectrum. In view of (11), (12), Lott’s
model is also equivalent to the homotopy theoretic definition of topological
K-theory with R/Z-coefficient.

Now, suppose 7M is an even dimensional spin vector bundle. Then we

have the Umkehr map for 7 : KHQ;Z(M) — KHQ}Z(B), and using Diagram (5)

and the fact that the chg /g is a module morphism, we obtain a cohomological
formula for chgq(7'(8)) € H*™(M,R/Q):
chi/g(m'(8)) = (=1) 2 «'[A(M/B) U chiq(8)],

for any cocycle & € Kﬂg/lz(]\/[) (Compare with [Lot94, p.295]).
On the other hand, we know that the Becker-Gottlieb transfer tr* is
related to 7' via the formula

tr*(8) = 7'[(s(M/B) - &].

k(k+1)
2

Since
chr/q(s(M/B) - &) = ch(s(M/B)) U chr/g(6)

and
ch(s(M/B)) = (—1)%e(M/B) U A(M/B)™",

we obtain the cohomological formula for tr*(&):
chz/q[tr*(8)] = 7'[e(M/B) U chg/q(8)],

which is equivalent to the commutative diagram

ch
Kyl (M) — 2 frodd(0 R/Q)
tr* er(M/B)U_
ch
Ky ly(B) — 2 [edd(B R/Q)

(13)

10



This index theorem can be easily extended to K¢ z-theory. Since K (E/lz(M )
can be identified with the cokernel of the homomorphism:

K(M) @R % K(M) © Co Ky, (M),

every element in K 6/1Z(M ) can be expressed as a quadruple § = (Vi, h"*, VY% w)
with w is in Q°¥(M) ® C/Im(dc) and dw = ch(VY+) — ch(V'=). Next, we
define che/g(8) to be the image of the form 1 cs(kVY, ¢*kVY) —w under the
homomorphism

HM(M,C) — H*(M,C/Q);

note that che/g respects the module structures. We have the following C/Z
index theorem

ch,
K¢l (M) —2 Hodd(0, /)
‘tr* er(M/B)U—
ch
K }y(B) —— Hedd(B, C/Q)

(14)
and a cohomological formula for tr*(§), & € K(E/IZ(M ):
cheo(tr*)(8) = / e(M/B) U che/o(8).
X

In fact, Lott’s index theorem can also be generalized to this context read-
ily. Following [Lot94, Def. 13], we define the analytic index to be

ind, (&) = (Indy, hmdx vinds / A(M/B) Aw — 7)), (15)
X

where the graded hermitian index bundle (Ind., h™4*) with hermitian con-
nection V™4 and the analytic-defined odd differential form 7 are the same
as in [Lot94]3. Then the C/Z index theorem says:

ind,(&) = 7' : K5 (M) — K¢, (B).

3In case the index bundle is not well-defined, we may consult the construction in [Lot94,
Def. 14]

11



4 Homotopy-theoretic aspects

In this section, we approach the discussed index theorems from homotopy-
theoretic point of view. We have seen commutative diagrams (8), (13) and
(14) are consequences of the cohomological formulae of the Umkehr map.
Now, since the Becker-Gottlieb transfer is induced from an infinite loop map,
the diagrams also follows, without employing Umkehr maps, if ch, chg,g and
che/q are induced from infinite loop maps. To see this, we need to verify that
they respect the Bott map [Hat, Prop. 4.3]. That is there are commutative
diagrams

- h - _ chp/q _
RK(Xy NS —— Hv(X, AS%LR) Kph(Xy AS?) — Ho%(X, A %, F/Q)

B 1 B 1 B B
- c . - chy -
R(Xy) — S Boen(X R)  Kph(Xy) — " A44(X,, F/Q)
(16)

where F = R or C, and B is the Bott map, namely multiplying with the
generator of K(S?) and H?(S? R), respectively. Note that the generator
of K(S?)is [H — 1], where H is the Hopf bundle, and hence ch(H — 1) =
¢i(H) = e(H) is the generator of H?(S?,R); in particular,

Boch(z) =e(H)Uch(z) = ch([H — 1] - ) = choB(x).

For the case of chp/g, the assertion follows from its being a module homo-
morphism.

5 A flat index theorem

In this section, we comment on some approaches to a conjectured index
theorem for flat vector bundles, namely, the following commutative diagram

(17)

12



where eaps is the map induced from the construction of the topological index
for flat vector bundles in [APST76] (see also [JW95]), and K,(—,C) is the
Grothendieck group of virtual flat vector bundles with zero dimension.

One way to approach the problem is to utilize the analytic index (15).
For this, we need to analyze the n-form in ind, (&), and compute the Chern-
Simon class of the induced flat connection on H,(M/B,—) — B and the
associated unitary flat connection.

The conjectured index theorem refines the BL index theorem [BL95] and
the MZ index theorem [MZ08]. On the other hand, from the homotopy-
theoretic point of view, Diagram 17 is a quick consequence of the DWW
index theorem [DWWO03] if one can prove the associated map

e: Ka(C — E’c/z

is an infinite loop map.

The homomorphism eppg is of interest in differential topology and geom-
etry, given its relation with the Cheeger-Chern-Simons class [MZ08], [Ho18],
the Borel regulator [JW95], and the é-invariant [APS76].
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