
  
 

 
 
Oberwolfach 
Preprints 

Mathematisches Forschungsinstitut Oberwolfach gGmbH 
Oberwolfach Preprints (OWP)   ISSN 1864-7596 

OWP 2019 - 14 
SERGEY FINASHIN AND VIATCHESLAV KHARLAMOV  
 
Chirality of Real Non-Singular Cubic Fourfolds 
and Their Pure Deformation Classification   
 



admin@mfo.de 

owlf@mfo.de rip@mfo.de 

Oberwolfach Preprints (OWP)

The MFO publishes a preprint series  Oberwolfach Preprints (OWP),  ISSN 1864-7596, which
mainly contains research results related to a longer stay in Oberwolfach, as a documentation of the
research work done at the MFO. In particular, this concerns the Research in Pairs-Programme (RiP)
and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an Oberwolfach Lecture, for
example.

A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard
copies (DIN A4, black and white copy) by surface mail.

The full copyright is left to the authors. With the submission of a manuscript, the authors warrant
that  they  are  the  creators  of  the  work,  including  all  graphics.  The  authors  grant  the  MFO a
perpetual, non-exclusive right to publish it on the MFO’s institutional repository.

In case of interest, please send a pdf file of your preprint by email to                  or                   ,
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at
the MFO.

There are no requirements for the format of the preprint,  except  that the introduction should
contain  a  short  appreciation and that  the  paper  size  (respectively  format)  should be DIN A4,
"letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we
shall  add a running number (20XX – XX).  Additionally,  each preprint  will  get  a  Digital  Object
Identifier (DOI).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer
and would like to thank you in advance for your cooperation.

Imprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11
77709 Oberwolfach-Walke
Germany

Tel +49 7834 979 50
Fax +49 7834 979 55
Email 
URL www.mfo.de

The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.

DOI 10.14760/OWP-2019-14



CHIRALITY OF REAL NON-SINGULAR CUBIC FOURFOLDS

AND THEIR PURE DEFORMATION CLASSIFICATION

S. FINASHIN, V. KHARLAMOV

Abstract. In our previous works we have classified real non-singular cubic

hypersurfaces in the 5-dimensional projective space up to equivalence that
includes both real projective transformations and continuous variations of co-

efficients preserving the hypersurface non-singular. Here, we perform a finer

classification giving a full answer to the chirality problem: which of real non-
singular cubic hypersurfaces can not be continuously deformed to their mirror

reflection.

... I’ll tell you all my ideas about Looking-glass House.
First, there’s the room you can see through the glass -
that’s just the same as our drawing room, only the things
go the other way ... How would you like to live in
Looking-glass House, Kitty? I wonder if they’d give you
milk in there? Perhaps Looking-glass milk isn’t good to
drink...

Lewis Carroll, Through the Looking-Glass, and What
Alice Found There. (cf. note 6 on page 144 in [CTG])

1. Introduction

1.1. Chirality problem. There are two deformation equivalence relations emerg-
ing naturally in the study of real non-singular projective hypersurfaces in the frame-
work of 16th Hilbert’s problem. One of them is the pure deformation equivalence
that assigns hypersurfaces to the same equivalence class if they can be joined by a
continuous path (called a real deformation) in the space of real non-singular pro-
jective hypersurfaces of some fixed degree. Another one is the coarse deformation
equivalence, in which real deformations are combined with real projective transfor-
mations.

If the dimension of the ambient projective space is even, then the group of
real projective transformations is connected, and the above equivalence relations
coincide. By contrary, if the dimension of the ambient projective space is odd,
this group has two connected components, and some of coarse deformation classes
may split into two pure deformation classes. The hypersurfaces in such a class
are not pure deformation equivalent to their mirror images and are called chiral.
The hypersurfaces in the other classes are called achiral, since each of them is pure
deformation equivalent to its mirror image.

The first case where a discrepancy between pure and coarse deformation equiv-
alences shows up is that of real non-singular quartic surfaces in 3-space (achirality

2010 Mathematics Subject Classification. Primary: 14P25. Secondary: 14J10, 14N25, 14J35,
14J70.
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2 PURE DEFORMATION CLASSIFICATION

of all real non-singular cubic surfaces is due to F. Klein [Kl]). In this case it was
studied in [Kh1, Kh2], where it was used to upgrade the coarse deformation classi-
fication of real non-singular quartic surfaces obtained by V. Nikulin [N] to a pure
deformation classification.

Real non-singular cubic fourfolds is a next by complexity case. Their deformation
study was launched in [FK1], where we classified them up to coarse deformation
equivalence. Then in [FK2] we began studying of the chirality phenomenon and gave
complete answers for cubic fourfolds of maximal, and almost maximal, topological
complexity. The approach, which we elaborated and applied in [FK2] relies on the
surjectivity of the period map for cubic fourfolds established by R. Laza [La] and
E. Looijenga [Lo].

Recall that according to [FK1] there exist precisely 75 coarse deformation classes
of real non-singular fourfold cubic hypersurfaces X ⊂ P 5 (throughout the paper X
stands both for the variety itself and for its complex point set, while XR = X ∩P 5

R
denotes the real locus). These classes are determined by the isomorphism type
of the pairs (conj∗ : M(X) → M(X), h ∈ M(X)) where M(X) = H4(X;Z) is
considered as a lattice, h ∈ M(X) is the polarization class that is induced from
the standard generator of H4(P 5;Z), and conj∗ is induced by complex conjugation
conj : X → X. This result can be simplified further and expressed in terms of a
few simple numerical invariants. Namely, it is sufficient to consider the sublattice
M0

+(X) ⊂ M(X), M0
+(X) = {x ∈ M(X) : conj∗ x = x, xh = 0}, and to retain

only the following three invariants: the rank ρ of M0
+, the rank d of the 2-primary

part discr2 M0
+ of the discriminant discrM0

+, and the type, even or odd, of the
discriminant form on discr2 M0

+ (see Theorem 2.1.1 below).
Thus, to formulate the pure deformation classification of real non-singular cubic

fourfolds, it is sufficient to list the triples of invariants (ρ, d, parity) which specify
the coarse deformation classes and to indicate which of the coarse classes are chiral,
and which ones are achiral.

1.2. Main result.

1.2.1. Theorem. Among the 75 coarse deformation classes precisely 18 are chiral,
and, thus, the number of pure deformation classes is 93. The chiral classes have
pairs (ρ, d) satisfying ρ+ d 6 12. The only achiral classes with ρ+ d 6 12 are three
classes with 4 6 ρ = d 6 6 and one class with (ρ, d) = (8, 4) and even pairity.

A complete description of the pure deformation classes is presented in Table 1,
where the coarse deformation classes are marked by letters c and a: by c, if the
class is chiral, and by a, if it is achiral. We use ρ and d as Cartesian coordinates
and employ bold letters to indicate even parity, while keeping normal letters for
odd. For some pairs (ρ, d) there exist two coarse deformation classes, one with even
discriminant form, and another with odd, and in this case, we put the even one in
brackets.

In fact, the values of ρ and d determine the topology of the real locus of the
cubic fourfold and are determined by it. Namely, for all pairs (ρ, d) except one the
real locus of the fourfold is diffeomorphic to RP4#a(S2 × S2)#b(S1 × S3), where
a = 1

2 (ρ − d), b = 1
2 (22 − ρ − d). The exception is (ρ, d,parity) = (12, 10, even), in

which case the real locus is diffeomorphic to RP4 tS4 (see [FK3]). Comparing this
with Table 1 we come to the following conclusion.
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Table 1. Pure deformation classification via chirality

d

11 a

10 a a(a)

9 a a a

8 a(a) a a(a) a

7 a a a a a

6 a a(a) a a(a) a a

5 a c a a a a a

4 a c c(a) a a(a) a a(a) a

3 c c c c a a a a a

2 c c(c) c c c a(a) a a a a(a)

1 c c c a a a

0 c c a

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ρ

1.2.2. Corollary. Chirality of a cubic X ⊂ P 4 is determined by the topological type
of its real locus XR unless XR = RP4#2(S2 × S2)#5(S1 × S3), or equivalently,
(ρ, d) = (8, 4). If (ρ, d) = (8, 4), then X is achiral in the case of even parity, and
chiral in the case of odd. �

The paper is organized as follows. In Section 2 we collect, and develop a bit
further, some results from [FK1, FK2]. In particular, in Section 2.5 we elaborate
some sufficient conditions for a sublattice or a superlattice to inherit achirality. The
proof of the main results is divided into two parts respectively to the parity of the
2-primary part of the discriminant of the lattice M0

+(X): in Section 3 we treat the
even case, and in Section 4 the odd case. Our strategy there is, first, to use the
results of Section 2.5 to reduce the study of chirality to some smaller generating
set of lattices and, second, to apply the same approach as in [FK2] which is based
on analysis of symmetries of fundamental polyhedra of the group generated by
reflections determined by 2- and 6-roots of the lattice. In two cases considered in
Section 4.4, we extend the reflection group by inclusion 4-root reflections, which
simplifies control of symmetries of the fundamental polyhedra. In Section 5 we pose
some related chirality questions and partially respond to them.

Acknowledgements. The main part of this research was completed during the
first author’s visit to Université de Strasbourg. The last touch was made during
Research in Pairs in Mathematiches Forschungsinstitut Oberwolfach. We thank
these institutions for their hospitality. The second author was partially funded by
the grant ANR-18-CE40-0009 of Agence Nationale de Recherche.

2. Preliminaries

2.1. Lattices under consideration. Consider a non-singular cubic fourfold X ⊂
P 5. As is known, there exists a lattice isomorphism between M(X) = H4(X)
and M = 3I + 2U + 2E8 which sends the polarization class h(X) ∈ M(X) to
h = (1, 1, 1) ∈ 3I. It follows then that the primitive sublattice M0(X) = {x ∈
M(X) |xh = 0} is isomorphic to M0 = A2 + 2U + 2E8.
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For X defined over the reals, the complex conjugation conj : X → X induces
a lattice involution conj∗ : M(X) → M(X) such that conj∗(h) = h and, hence,
induces also a lattice involution in M0(X). We denote by M0

±(X) and M±(X) the
eigen-sublattices {x ∈ M0(X) | conj∗(x) = ±x} and {x ∈ M(X) | conj∗(x) = ±x},
respectively. We have obviously M− = M0

− and σ−(M+(X)) = σ−(M0
+(X)), where

σ− denotes the negative index of inertia (i.e., the number of negative squares in a
diagonalization).

It was shown in [FK1, Theorem 4.8] that two non-singular real cubic fourfolds,
X and Y , are coarse deformation equivalent if and only if the lattices M−(X) and
M−(Y ) are isomorphic. In terms of M0

+ this criterion can be translated as follows.

2.1.1. Theorem. The coarse deformation class of a real non-singular cubic fourfold
X is determined by the following three invariants: the rank ρ of the lattice M0

+(X),
the rank d of the 2-primary part discr2 M0

+(X) of discrM0
+(X), and the type, even

or odd, of discr2 M0
+(X).

Proof. As it follows from Nikulin’s uniqueness theorem [N, Th. 3.6.2], the isomor-
phism class of the lattice M−(X), as of any even 2-elementary hyperbolic lattice,
is determined by its rank, the rank of its discriminant form, and the parity of the
latter. Hence, there remain to notice that discr2 M−(X) = −discr2 M0

+(X). �

To determine the isomorphism class of M0
+(X) using exclusively these three

numerical invariants, we use the following uniqueness statement.

2.1.2. Proposition. Let L and L′ be even non-degenerate lattices which have only
discriminant factors 2 and 3. If σ−(L) = σ−(L′) = 1, rkL = rkL′, discr3 L =
discr3 L′ = discr3〈6〉, rk discr2 L = rk discr2 L′, and both discr2 L,discr2 L′ are of
the same parity, then L and L′ are isomorphic.

Proof. It is trivial for lattices of rank 1. For lattices of rank 2, it follows from
classification of binary integral quadratic forms by passing to a reduced form (using
that |detL| 6 6 if rk discr2 L 6 1 and dividing the quadratic form of lattices by 2 if
rk discr2 L = 2). For lattices of rank rkL > 3 with rk discr2 L < rkL, the claim of
proposition follows from Nikulin’s theorem [N, Theorem 1.14.2]. In the remaining
case, rk discr2 L = rkL > 3 it is sufficient to divide the quadratic form of lattices
by 2 and apply the same Nikulin’s theorem to the obtained integral lattices. �

Following [FK2], by Aut+(M0) we denote the group of those automorphisms of
M0 which preserve a simultaneous orientation of negative definite planes in M0,
and put Aut−(M0) = Aut(M0) \Aut+(M0).

We call a lattice involution c : M→M geometric if c(h) = h and σ−(M0
±(c)) = 1,

where M0
±(c) denotes the eigen-sublattices {x ∈M0 | c(x) = ±x}. Let us note that

all geometric involutions preserve M0 and the involutions induced in M0 belong
to Aut−(M0). As was shown in [FK2, Lemma 3.1.1 and Theorem 3.1.2], a pair
(c : M→M, h ∈M) is isomorphic to a pair (conj∗ : M(X)→M(X), h(X) ∈M(X))
for some non-singular real cubic fourfold X if and only if c is a geometric involution.

A pair (c : M → M, h ∈ M) isomorphic to (conj∗ : M(X) → M(X), h(X)) is
called the homological type of X.

2.2. Lattice characterization of chirality. In what follows L is an even lattice
of signature (n, 1), n > 1, whose discriminant discr(L) splits as discr2(L)+discr3(L),
where discr2(L) is a 2-periodic group, and discr3(L) = Z/3.
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We let LR = L⊗ R and consider the cone Υ = {p ∈ LR | p2 < 0}, together with
the associated hyperbolic spaces Λ = Υ/R∗ and Λ# = Υ/R+ where R∗ = R r {0}
and R+ = (0,∞). In this context, given v ∈ L with v2 > 0 we use notation Hv for
the hyperplane {p ∈ LR | vp = 0} and H±v for the half-spaces {p ∈ LR | ± vp > 0}.
For p ∈ Υ, Hv, etc., we use notation [p] ∈ Λ, [Hv] ⊂ Λ, [p]# ∈ Λ#, [Hv]

# ⊂ Λ#,
etc., for the corresponding object after projectivization.

We associate with each v ∈ L, v2 > 0, the reflection Rv : L ⊗ Q → L ⊗ Q, x 7→
x−2xvv2 v, across the hyperplane Hv. It preserves the lattice L invariant and belongs

to the automorphism group Aut(L) if v2 = 2, or if v2 = 6 and xv is divisible by 3
for all x ∈ L. We call such lattice elements 2-roots and 6-roots, denote their sets by
V2 and V6, and let Φ = V2 ∪ V6.

Reflections Rv, v ∈ Φ, generate the reflection group W ⊂ Aut(L) which, as
known, acts discretely in both Λ = Υ/R∗ and Λ# = Υ/R+. The hyperplanes [Hv]
(respectively [Hv]

#), v ∈ Φ, form a locally finite arrangement cutting Λ (respec-
tively Λ#) into open polyhedra, whose closures are called the cells. The cells in Λ
(respectively in Λ#) are the fundamental chambers of W .

A cell P ⊂ Λ being fixed, the group Aut(L) splits into a semi-direct product
W+ o Aut(P ), where Aut(P ) = {g ∈ Aut(L) | g(P ) = P} is the stabilizer of P .

The preimage of P in Λ# is the union of a pair of cells, P# and −P#. Each
g ∈ Aut(P ) either permutes P# and −P#, and then we say that it is P -reversing,
or it preserves both P# and −P#, and then we call it P -direct. The subgroup of
Aut(P ) formed by P -direct elements will be denoted by Aut+(P ), while the coset
of P -reversing elements will be denoted by Aut−(P ).

An additional characteristic of g ∈ Aut(L) is its 3-primary component, δ3(g) ∈
Aut(Z/3), which may be trivial or not. We say that g ∈ Aut(L) is Z/3-direct if
δ3(g) = id, and Z/3-reversing if δ3(g) 6= id (that is δ3(g) = − id).

The following theorem is an equivalent reformulation of Theorem 4.4.1 in [FK2].

2.2.1. Theorem. A non-singular real cubic fourfold X is achiral if and only if the
lattice M0

+(X) admits a Z/3-reversing automorphism g ∈ Aut+(P ) for some (or
equivalently, for any) of the cells P of Λ. �

2.3. Chirality of a lattice. Let us pick a cell P ⊂ Λ and fix a covering cell
P# ⊂ Λ#. Choosing any vector p ∈ Υ so that [p]# lies in the interior of P#,
we let Φ± = {v ∈ Φ| ± vp > 0}. The minimal subset Φb ⊂ Φ− such that P# =
∩v∈Φb [H−v ]# is called the basis of Φ defined by P#. The hyperplanes [Hv], v ∈ Φb,
support n-dimensional faces of P . Note that any v ∈ Φ− is a linear combination of
the roots in Φb with non-negative coefficients.

Theorem 2.2.1 motivates the following definitions. We call an automorphism of
L achiral if it is Z/3-reversing and P -direct for some cell P . Respectively, a lattice
L is called achiral if it admits an achiral automorphism, and called chiral otherwise.

By definition, the Coxeter graph Γ of L has Φb as the vertex set. The vertices
of Γ are colored: 2-roots are white and 6-roots are black. The edges are weighted:

the weight of an edge connecting vertices v, w ∈ Φb is mvw = 4 (vw)2

v2w2 , and mvw =
0 means absence of an edge. These weights are non-negative integers, because
2 vwv2 , 2

vw
w2 ∈ Z, and v2, w2 > 0 for any v, w ∈ Φb. In the case of mvw = 1, the angle

between Hv and Hw is π/3, and v2 = w2; such edges are not labelled. The case of
mvw = 2 (which corresponds to angle π/4) cannot happen, since v2, w2 ∈ {2, 6}.
An edge of weight mvw = 3 connects always a 2-root with a 6-root; it corresponds
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to angle π/6, and will be labelled by 6. The case of mvw = 4 corresponds to parallel
hyperplanes in Λ, and we sketch a thick edge between v and w. If mvw > 4, then
the corresponding hyperplanes in Λ are ultra-parallel (diverging), and we sketch a
dotted edge.

For a subset J ⊂ Φb we may also consider the polyhedron P#(J) = ∩v∈J [H−v ]#

and the subgraph ΓJ of Γ spanned by J . We say that ΓJ is the Coxeter’s graph
of J . A permutation σ : J → J will be called a symmetry of ΓJ if it preserves the
weight of edges and the length of the roots, i.e., (σ(v))2 = v2 and mσ(v)σ(w) = mvw

for all v, w ∈ J .

2.3.1. Theorem. [FK2] Each P -direct automorphism of L permutes the elements
of Φb and yields a symmetry of Γ. Conversely, if a subset J ⊂ Φb spans L over Z,
then any symmetry of ΓJ is induced by a P -direct automorphism of L. �

To recognize Z/3-reversing symmetries of Γ, one can use the following obser-
vation. Considering some direct sum decomposition of L, we observe that one of
the direct summands, L1, has discr3(L1) = Z/3, while the other direct summands
have 2-periodic discriminants (because discr(L) gets an induced direct sum decom-
position). For any vertex w of Γ viewed as a vector in L, we can consider its
L1-component. This leads to the following conclusion.

2.3.2. Proposition. An automorphism of L induced by a symmetry σ of ΓJ as in
Theorem 2.3.1 is Z/3-direct if for some (equivalently for all) of the 6-roots vertices
v of ΓJ the L1-components of v and σ(v) are congruent modulo 3L1. It is Z/3-
reversing if for some v ∈ V6 we have v − σ(v) /∈ 3L. �

2.4. Vinberg’s criterion of termination. To calculate the root system Φb, and
thus to determine its Coxeter’s graph, we use Vinberg’s algorithm which produces
Φb in a certain natural order, see Section 5.3 in [FK2] for details. The following
Vinberg’s finite volume criterion (stated as Theorem 5.4.1 in [FK2]) assures that
we found all the root vectors.

2.4.1. Theorem (Vinberg [V]). A set of root vectors J ⊂ L in a hyperbolic lattice
of signature (n, 1), obtained at some step of Vinberg’s algorithm is complete (admits
no continuation) if and only if the hyperbolic volume of the polyhedron P#(J) is
finite. �

We will use repeatedly the following sufficient criterion that guarantees finiteness
of the volume (it is an advanced version of the criterion stated as Theorem 5.4.3 in
[FK2]).

2.4.2. Proposition (McLeod [M]). Under the assumptions of Theorem 2.4.1 the
volume of the polyhedron P#(J) is finite if the following two conditions are satisfied.

• Each connected parabolic subgraph ΓI of ΓJ , I ⊂ J , should be a connected
component of a parabolic subgraph of rank n− 1.

• For any Lannér’s subgraph (for example, a dotted edge) ΓS spanned by
S ⊂ J there should exist a set of vertices T ⊂ J which includes neither
vertices of S nor vertices adjacent to S, so that the graph ΓT is elliptic and
the sum of ranks of S and T is n+ 1. �

For the list of connected parabolic and Lannér’s graphs see Vinberg’s survey [V].
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2.5. Chirality under reductions and extensions. Let Γ be the Coxeter graph
of L and ΓJ be its elliptic subgraph whose vertex set, J, spans a sublattice LJ ⊂ L
with 2-periodic discriminant (this means that the connected components of ΓJ have
types A1, D2n (n ≥ 2), E7, and E8). Then the orthogonal complement LJ ⊂ L of
LJ is, like L, a hyperbolic lattice with the discriminant splitting into a direct sum
of the component discr3(LJ) = Z/3 and a 2-periodic component discr2(LJ).

Below we put HJ = ∩v∈JHv.

2.5.1. Lemma. Assume that the lattice L is achiral, and a P -direct Z/3-reversing
f ∈ Aut(P ) is induced by a symmetry of the graph Γ which preserves ΓJ invariant.
Then LJ is also achiral.

Proof. Since ΓJ is elliptic, the face P#∩HJ of P# is of the same dimension as LJ .
Therefore, from discr3(LJ) = discr3(L) = Z/3 it follows that P# ∩HJ is contained
in some cell of LJ . Let us denote the latter by P J#. Since f preserves both P# and
HJ , it should preserve also P J#. The restriction f|LJ has the same, non-trivial,

3-primary component in discr3(LJ) = discr3(L) = Z/3 as f . Thus, f|LJ ∈ Aut(P J)

is a P J -direct Z/3-reversing authomorphism, and hence LJ is also achiral. �

2.5.2. Lemma. Let Lh be an achiral lattice, and let Le be an elliptic lattice which
is generated by 2-roots and has 2-periodic discriminant. Then their direct sum,
L = Le + Lh, is also an achiral lattice.

Proof. Due to assumptions made, we may start Vinberg’s root sequence Φb from a
root basis of Le. Thus, we can identify Le with LJ for a corresponding vertex set
J of Coxeter’s graph of L, and Lh with the orthogonal complement LJ of LJ .

Consider, now, a cell P J ⊂ Λ(LJ) and the components of its preimage, ±P J# ⊂
Λ#(LJ). By the same reason as in Lemma 2.5.1, P J contains the face P ∩HJ of
some cell P in Λ(L). However, here, the relation is stronger: P ∩HJ = P J . Indeed,
if a wall Hv of P is not disjoint from P ∩HJ , then either v ∈ LJ (and so Hv⊥HJ),
or v ∈ LJ (and so Hv ⊃ HJ). To see it, let us consider a root v = vJ +vJ ∈ LJ +LJ
whose components vJ + vJ are both non-zero. Since Hv intersects Λ(LJ), we have
(vJ)2 > 0. And since LJ is positive definite, we have (vJ)2 > 0. The both squares
are even. Hence, v2 > 2. If v2 = 6, then, in addition, (vJ)2 and (vJ)2 are divisible
by 3, which also leads to a contradiction.

Choose a P J -direct Z/3-reversing automorphism fJ ∈ Aut(P J) and consider its
extension f : L→ L that acts as the identity map on LJ . As it follows from above,
it preserves all the walls of P which are not disjoint from P ∩HJ . Thus, it preserves
P . Clearly, it is P -direct and Z/3-reversing (it has the same 3-primary component
as fJ). �

3. Cases of Even Parity

3.1. Lattices with even discriminant forms. For the list of coarse deformation
classes in terms of numerical invariants of M−, we address the reader to Fig. 1
in [FK3]. Since 2-primary parts of the discriminant forms of M− are M0

+ are just
opposite, we keep from this list only the classes of even parity (type I in terminology
of [FK3]). Then, using the relation rkM0

+ = 22 − rkM− we apply Proposition
2.1.2 and obtain Table 2 which shows for each of the classes of even parity the
corresponding lattice M0

+. As in Table 1 the answers are arranged in columns and
rows according to the values of d and ρ.
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Table 2. Lattices with even discriminant form

d

10 U(2) +A2 + E8(2) = U(2) + E6(2) +D4

8 U(2) + E6(2) U +A2 + E8(2) = U + E6(2) +D4

6 U + E6(2) U(2) +A2 + 2D4

4 U(2) +A2 +D4 U +A2 + 2D4 U(2) +A2 +D4 + E8

2 U(2) +A2 U +A2 +D4 U(2) +A2 + E8 U +A2 +D4 + E8 U(2) +A2 + 2E8

0 U +A2 U +A2 + E8 U +A2 + 2E8

4 8 12 16 20 ρ

3.1.1. Theorem. Table 2 contains 4 chiral lattices: U +A2, U(2) +A2, U +A2 +D4,
and U +A2 + E8. All the others are achiral.

The three lattices in the bottom row were already treated in [FK2]: U +A2 and
U + A2 + E8 were shown to be chiral, while U + A2 + 2E8 to be achiral. So, our
task is to examine the remaining thirteen cases.

We start with one trivial example.

3.1.2. Lemma. The lattice L = U(2) + E6(2) is achiral.

Proof. This lattice has neither 2-roots nor 6-roots. Hence, here P = Λ+(c), and
therefore g : U(2) +E6(2)→ U(2) +E6(2) that is equal to − id on U(2) and id on
E6(2) is Z/3-direct and it belongs to Aut−(P ). Thus, L is achiral. �

3.2. A few more direct calculations. Here we treat the cases U(2) + A2, U +
A2 +D4, U(2) +A2 +E8, and U(2) +A2 +D4 using the same approach (based on
Vinberg’s algorithm for finding Coxeter’s graphs of the fundamental domains) as
we applied in [FK2] for M- and (M-1)-lattices.

3.2.1. Lemma. (1) The lattices U(2) +A2 and U +A2 +D4 are chiral.
(2) The lattices U(2) +A2 + E8 and U(2) +A2 +D4 are achiral.

Proof. As in [FK2], we fix standard bases: u1, u2 for U and U(2); a1, a2 for A2;
d1, d2, d3, d4 for D4 along with its dual d∗1, d

∗
2, d
∗
3, d
∗
4 for D∗4 ⊂ D4⊗Q; and e1, . . . , e8

for E8 along with its dual e∗1, . . . , e
∗
8 for E∗8 = E8. We denote by d1 the “central”

root vector of D4 and then d∗1 = 2d1 + d2 + d3 + d4, while d∗i = d1 + d2+d3+d4+di
2

for i = 2, 3, 4. For the expressions of ei, see for instance [FK2, Fig.1].
Each time to lunch Vinberg’s algorithm, we select as the initial vertex of the

fundamental domain the point p = u1− u2. The resulting Vinberg’s sequences and
their Coxeter graphs are shown below in Fig. 1, 2, 3, and 4, respectively. As in
[FK2], we omit at level 0 of Vinberg’s sequence the standard simple root vectors:
ei of E8, e′i of the second copy of E8, i = 1, . . . , 8, and di, i = 1, . . . 4, of D4 (when
such summands appear).

(1) The completeness of Vinberg’s sequences for U(2)+A2 and U+A2+D4 follows
from Theorem 2.4.1 and Proposition 2.4.2. Indeed, in both cases the Coxeter graph
does not contain Lannér’s diagrams, and the only connected parabolic subgraphs

are: G̃2 for U(2) +A2; G̃2 and D̃4 for U +A2 +D4.
Thus, by Theorem 2.3.1 in the case of U(2) +A2 the only P -direct symmetry is

given by v1 → v1, v2 → v2, v3 → v4, v4 → v3. Since due to Proposition 2.3.2 this
symmetry is Z/3-direct (preserves v2), we conclude that U(2) +A2 is chiral.

Similarly, in the case of U + A2 + D4 each P -direct symmetry keeps fixed the
vector v3. Hence, all P -direct symmetries are Z/3-direct, and we conclude that
U +A2 +D4 is chiral.
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Figure 1. Vinberg’s vectors and their Coxeter’s graph for U(2) +A2

vv v
312

6

v
4

Parabolic of rank 2

G̃2

U(2) A2

p 1,−1 0, 0

level 0

v1 0, 0 0, 1

v2 0, 0 1,−1

level 4

v3 0,−1 −1,−1

v4 1, 0 −1,−1

Figure 2. Vinberg’s vectors and their Coxeter’s graph for U +A2 +D4

6
v v v v v
3 2 514

d

d

d

d1

2

3

4

Parabolic of rank 6

G̃2 + D̃4

U A2 D4

p 1,−1 0, 0 0

level 0

v1 1, 1 0, 0 0

v2 0, 0 0, 1 0

v3 0, 0 1,−1 0

level 1

v4 0,−1 −1,−1 0

v5 0,−1 0, 0 −d∗1

(2) When we treat U(2) + A2 + E8 and U(2) + A2 +D4, we perform Vinberg’s
algorithm only up to a step that provides a Coxeter subgraph which has a symmetry
inducing a P -direct Z/3-reversing involution, see Fig. 3 and 4. For U(2)+A2 +E8,
this is the involution that permutes the vectors of Vinberg’s sequence in accordance
with the reflection in the vertical middle axs of the graph; by Theorem 2.3.1 it
defines a P -direct automorphism which maps v2 to v8 = −v2 mod 3M0

+ and by
Proposition 2.3.2 is Z/3-reversing. For U(2) +A2 +D4, this is again the involution
permuting the vectors of Vinberg’s system in accordance with the reflection in the
vertical middle axis of the graph, and it also maps v2 to v8 = −v2 mod 3M0

+, and
by similar reason it is P -direct and Z/3-reversing. �

3.2.2. Remark. Coxeter’s graphs on Fig. 3 and 4 are indeed complete.

3.3. Achirality of lattices via extension and reduction.

3.3.1. Proposition. Lattices U(2) +A2 + 2D4, U(2) +A2 +D4 +E8, U(2) +A2 +
E8(2), and U(2) +A2 + E8 are achiral.

Proof. To prove achirality of lattices U(2) +A2 + 2D4, U(2) +A2 +D4 +E8, and
U(2) +A2 +E8(2) = U(2) +E6(2) +D4 we apply Lemma 2.5.2 to U(2) +A2 +D4,
U(2) +A2 +E8, and U(2) +E6(2) respectively. The same lemma applied to U(2) +
A2 + E8 shows achirality of U(2) +A2 + 2E8. �



10 PURE DEFORMATION CLASSIFICATION

Figure 3. Vinberg’s vectors and their Coxeter’s subgraph for
U(2) +A2 + E8
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v
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v
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5

e e e

e

e e e

e

1 3

2

4 5 6

7

8

v
7

v v

8

6 6

Parabolic of rank 10

G̃2 + D̃8, 2G̃2 + Ẽ6, 2Ã1 + D̃8

U(2) A2 E8

p 1,−1 0, 0 0

level 0

v1 0, 0 0, 1 0

v2 0, 0 1,−1 0

level 4

v3 0,−1 −1,−1 0

v4 1, 0 −1,−1 0

v5 0,−1 0, 0 −e∗8
v6 1, 0 0, 0 −e∗8

level 16

v7 1,−1 −1,−1 −e∗1
level 48

v8 3,−3 −4,−2 −3e∗8

Figure 4. Vinberg’s vectors and their Coxeter’s subgraph for
U(2) +A2 +D4
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4v
5

6

v
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d

d

d

d

1

2

3

4

6

v
8

7
v

7
v

7
v

2

3

4

6

Parabolic of rank 6

6Ã1, G̃2 + D̃4

U(2) A2 D4

p 1,−1 0, 0 0

level 0

v1 0, 0 0, 1 0

v2 0, 0 1,−1 0

level 4

v3 0,−1 −1,−1 0

v4 1, 0 −1,−1 0

v5 0,−1 0, 0 −d∗1
v6 1, 0 0, 0 −d∗1

level 16

v2
7 1,−1 −1,−1 −2d∗2
v3

7 1,−1 −1,−1 −2d∗3
v4

7 1,−1 −1,−1 −2d∗4
level 48

v8 3,−3 −4,−2 −3d∗1

Figure 5 shows a hexagonal subgraph Γ of Coxeter’s graph of the lattice U+A2+
2E8 which we found in [FK2], where we proved also the achirality of the involution
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Figure 5. Vinberg’s vectors and their Coxeter’s subgraph for U+
A2 + 2E8
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1
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v

vv

1 4

5

v'
5

6

v'

2

7

7

U A2 E8 E8

p 1,−1 0, 0 0 0

level 0

v1 1, 1 0, 0 0 0

v2 0, 0 0, 1 0 0

v3 0, 0 1,−1 0 0

level 1

v4 0,−1 −1,−1 0 0

v5 0,−1 0, 0 −e∗8 0

v′5 0,−1 0, 0 0 −(e′8)∗

level 16

v6 2,−2 −1,−1 −e∗1 −(e′1)∗

level 36

v7 3,−3 −2,−1 −e∗7 −(e′2)∗

v′7 3,−3 −2,−1 −e∗2 −(e′7)∗

level 48

v8 6,−6 −4,−2 −3e∗8 −3(e′1)∗

v′8 6,−6 −4,−2 −3e∗1 −3(e′8)∗

Ψ : Γ→ Γ that interchanges vertices v1 and e4 and keeps fixed the other trivalent
vertices (at the corners of the hexagon).

3.3.2. Lemma. For each n = 1, 2, 3 the vertex-set of the Coxeter graph Γ of the
lattice L = U +A2 + 2E8 admits a subset J with the following properties:

(1) J is invariant with respect to the achiral involution Ψ;
(2) the sublattice LJ spanned by J in L is primitive and isomorphic to nD4;
(3) the orthogonal complement LJ of LJ in L is isomorphic to U+A2+D4+E8,

U +A2 + 2D4, and U + E6(2) for n = 1, 2, and 3, respectively.

Proof. The set of vertices J = {v7, e6, e7, e8}∪{v′7, e′6, e′7, e′8}∪{e1, e
′
1, v2, v6} of the

graph Γ spans a sublattice LJ = 3D4, where each D4-component is invariant under
the involution Ψ. The embedding LJ ⊂ L is primitive because for any subset S of
J there exists a vertex of Γ adjacent only to one element of S. This proves (1) and
(2) in the case n = 3. For the cases n = 1 and n = 2, we take subsets of J that
span just one and, respectively, two of the above three summands D4 and get (1)
and (2) in the same way.

Part (3) follows from Proposition 2.1.2. Indeed, LJ is even and hyperbolic,
discr3 LJ = discr〈6〉 = discr3E6(2), discr2 LJ = −discr2 LJ = ⊕n discr2D4, and
discr2E6(2) = ⊕3 discr2D4. �

3.3.3. Proposition. Lattices U +A2 +D4 +E8, U +A2 + 2D4, and U +E6(2) are
achiral.



12 PURE DEFORMATION CLASSIFICATION

Proof. We deduce achirality of U + A2 + D4 + E8, U + A2 + 2D4, and U + E6(2)
from achirality of U +A2 + 2E8 by applying Lemma 2.5.1. �

Proof of Theorem 3.1.1. The lattice U+A2+E8(2) = U+E6(2)+D4 is obtained by
adding D4 to U+E6(2). Hence, by Lemma 2.5.2, U+A2 +E8(2) is also achiral. All
the other lattices from Table 2 are treated in Lemmas 3.1.2 and 3.2.1, Proposition
3.3.1, and in [FK2]. �

4. Cases of Odd Parity and Proof of Theorem 1.2.1

4.1. Lattices with odd discriminant forms. Similar to the even case, we select
from the list given in [FK3] the classes of odd parity, translate them in terms of
the invariants (d, ρ, parity), and apply Proposition 2.1.2 to obtain lattices shown
in Table 3.

Table 3. Lattices M0
+ with odd discriminant form

ρ− d d

0 t+ 2 −A1 +〈6〉 +tA1, 0 6 t 6 9

2 t+ 1 −A1 +A2 +tA1, 0 6 t 6 9

4 t U +A2 +tA1, 1 6 t 6 9

6 t+ 2 U +A2 +D4 +tA1, 1 6 t 6 6

8 t+ 2 −A1 +〈6〉+ E8 +tA1, 0 6 t 6 5

10 t+ 1 −A1 +A2 + E8 +tA1, 0 6 t 6 5

12 t U +A2 + E8 +tA1, 1 6 t 6 5

14 t+ 2 U +A2 +D4 + E8 +tA1, 1 6 t 6 2

16 t+ 2 −A1 +〈6〉+ 2E8 +tA1, 0 6 t 6 1

18 t+ 2 −A1 +A2 + 2E8 +tA1, 0 6 t 6 1

20 t U +A2 + 2E8 +tA1, t = 1

4.2. Achirality of lattices via extension and reduction. Achirality of the
lattices U +A2 + E8 +A1 and U +A2 + 2E8 is already established in [FK2].

4.2.1. Lemma. If a lattice L in Table 3 with some code (ρ, d) is achiral, then the
lattice with the code (ρ+ 1, d+ 1) (if belongs to this table) is also achiral.

Proof. The lattice with the code (ρ+ 1, d+ 1) must be in the same row of Table 3
as L but with the value of t increased by one, that is L+A1, and it is left to apply
Lemma 2.5.2. �

By Lemma 4.2.1, it is left to determine in each row of Table 3 an achiral lattice
with the minimal value t = t0, it follows then that all the lattices with t > t0 are
also achiral.

Our main result in this section can be stated as follows.

4.2.2. Theorem. In Table 3 the first achiral lattice in the first row ρ = d is defined
by t = 2, in the rows ρ = d + 2k, k = 1, . . . , 6, it is defined by ρ + d = 14, and in
the last four rows all lattices are achiral.
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Figure 6. Vinberg’s vectors and their partial Coxeter’s subgraph
for U +A2 + E8 +A1

v v v v2 5 1 6

v e e e e
7 8 6 57

3e eee 4
2

1

U A2 A1 E8

p 1,−1 0, 0 0 0

level 0

v1 1, 1 0, 0 0 0

v2 0, 0 0, 1 0 0

v3 0, 0 1,−1 0 0

v4 0, 0 0, 0 1 0

level 1

v5 0,−1 −1,−1 0 0

v6 0,−1 0, 0 −1 0

v7 0,−1 0, 0 0 −e∗8
level 48

v8 6,−6 −4,−2 −3 −3(e1)∗.

We complete its proof in section 4.5 after an analysis of several particular cases.

4.2.3. Lemma. For any n = 1, . . . , 4, Coxeter’s graph Γ of the lattice L = U +
A2 + E8 +A1 contains a set J of n pairwise non-incident vertices so that:

(1) J is invariant under an achiral involution of L;
(2) J generates a sublattice LJ = nA1 primitively embedded into L;
(3) the orthogonal complement LJ of LJ has odd 2-discriminant form discr2 LJ

whose rank is bigger by n than that of discr2 L.

Proof. In [FK2], Sect. 7.5, we determined the initial Vinberg’s vectors of L. These
vectors and Coxeter’s graph corresponding to the set of vectors {v1, v2, v5, v6, v7, e1,
. . . , e8} are reproduced on Fig. 6. This graph has an obvious reflection symmetry
which induces on L an achiral involution as it was shown in [FK2].

As J we choose {e7}, {e6, e8}, {v7, e7, e5}, and {v1, e6, e8, e4} for n = 1, 2, 3, 4
respectively. It is invariant under this achiral involution.

Property (2) is satisfied for the same reasons as in the proof of Proposition 3.3.2.
To prove (3) we consider det2 L = det2A1 and its discriminant form q = 〈 12 〉 as

a result of gluing of (det2 LJ , q1) with (det2 LJ , q2) (see [N, Proposition 1.3.1]) and
notice that, since for any non-empty subset of J the sum of its elements has odd
intersection with some element of L, this gluing corresponds to a group-embedding
det2 LJ → det2 LJ reversing the discriminant forms, so that the only nontrivial
element in det2 L is an image of an element e ∈ det2 LJ with q2(e) = q(e) = 1

2 . �

4.2.4. Lemma. For any n = 1, 2, 3 Coxeter’s graph Γ of the lattice L = U+A2+2E8

contains a set J of n pairwise non-incident vertices so that:
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Figure 7. Vinberg’s vectors and their Coxeter’s graph for −A1 +
〈6〉+A1

v v
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1

v

v

3

4

−A1 〈6〉 A1

p 1 0 0

level 0

v1 0 1 0

v2 0 0 1

level 12

v3 3 −1 −3

v4 3 −2 0

(1) J is invariant under an achiral involution of L;
(2) J generates a sublattice LJ = nA1 primitively embedded into L;
(3) the orthogonal complement LJ of LJ has odd 2-discriminant form discr2 LJ

whose rank equals n.

Proof. For the cases n = 1, 2, 3 we choose as J the sets {e7}, {e7, e
′
7} and {e7, e

′
7, v6}

respectively (see Fig. 5), which are obviously invariant with respect to the achiral
involution Ψ introduced in section 3.3. The proof of (2) is the same as in Lemma
4.2.3, while for (3) it is much easier, because discr2 S = −discr2 S

⊥ for primitive
sublattices in a lattice with trivial discr2. �

4.2.5. Proposition. All lattices in Table 3 for which ρ+ d > 14 are achiral.

Proof. Lemma 4.2.3 shows that all the lattices in Table 3 for which ρ+ d = 14 are
achiral. Lemma 4.2.4 treats similarly a fragment of line ρ+ d = 20. From this, and
achirality of U+A2 +2E8, we obtain the required claim applying Lemma 4.2.1. �

4.3. A few more chiral lattices. We start from analysis of lattices in the first
row of Table 3.

4.3.1. Proposition. Lattices −A1 + 〈6〉+ tA1 are chiral for t = 0, 1 and achiral for
t > 2.

Proof. For L = −A1 + 〈6〉 + A1 (the case t = 1), Vinberg’s algorithm gives easily
four root vectors which together with the corresponding Coxeter’s graph are shown
on Figure 7. This graph describes a quadrilateral on the hyperbolic plane with
consecutive sides defined by the roots v1, v3, v4, v2; two of its vertices (defined
by the parabolic edges v1, v3 and v3, v4) lie at infinity and the other two vertices
(defined by elliptic edges) are finite. The area of this quadrilateral is finite, which
according to Vinberg’s criterion 2.4.1 means that Coxter’s graph that we found is
complete. By Theorem 2.3.1 its only non-trivial P -direct symmetry keeps fixed
v2, v3 and interchanges v1 and v4. It is chiral, because it does not change the 〈6〉-
component modulo 3 and due to Proposition 2.3.2 induces a trivial automorphism
of discr3(L) = Z/3.

Similar calculations in the case t = 2 give the result shown on Figure 8. The
vertices of the graph obtained span our lattice, and by this reason the reflection
over the vertical mirror line of the graph induces a P -direct automorphism of the
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Figure 8. Vinberg’s vectors and their Coxeter’s subgraph for
−A1 + 〈6〉+ 2A1

v
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v
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v

v3

v

8
v

−A1 〈6〉 A1 A1

p 1 0 0 0

level 0

v1 0 1 0 0

v2 0 0 1 0

v3 0 0 0 1

level 4

v4 1 0 −1 −1

level 12

v5 3 −1 −3 0

v6 3 −1 0 −3

v7 3 −2 0 0

level 16

v8 2 −1 −1 −1

lattice. This automorphism is Z/3-reversing by Proposition 2.3.2, since it changes
modulo 3 the 〈6〉-components of the 6-roots. Applying Theorem 2.3.1 we conclude
that this lattice is achiral (note that this theorem does not require knowledge of
the complete Coxeter’s graph).

To deduce the result for other values of t, we use Lemma 4.2.1. �

Analysis of chirality of lattices with ρ + d 6 12 requires case-by-case study of
the ones on the line ρ+ d = 12.

4.3.2. Proposition. Lattices U+A2 +D4 +A1 and −A1 +〈6〉+E8 (from the fourth
and fifth rows of Table 3) are chiral.

Proof. The result of calculation of Vinberg’s vectors and Coxeter’s graphs for these
two lattices are shown on Fig. 9 and 10 respectively. Each of these graphs has an
obvious symmetry:

• S3-symmetry on Fig. 9 permuting 3 pairs of vertices: di, v6+i, i = 2, 3, 4;
• S2-symmetry on Fig. 10 permuting 2 pairs of vertices: v5, v1, and v2, v4.

We take into account this symmetry when we apply Proposition 2.4.2 to check that
our calculation of Vinberg’s vectors is complete. The details of this check (based
on application of Theorem 2.4.1 and Proposition 2.4.2) are shown on the leftmost
tables of Figures 9 and 10 (right below Coxeter’s graphs). In the upper tables we
list: in the first column, the sets of vertices I that generate a connected parabolic
subgraph, ΓI , one set in each symmetry class; in the second column, the types of
these subgraphs; and, in the third column, the types of the parabolic subgraphs that
complement ΓI to a rank (n−1) parabolic graph. In the bottom leftmost tables we
list the sets (denoted by T ) of vertices of elliptic complements to the dotted edges
(whose endpoint pairs are denoted by S), taking again just one representative from
each symmetry class.
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Figure 9. Vinberg’s vectors and their Coxeter’s graph for U +
A2 +A1 +D4
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v
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6

7

v

v3v d

d

d

d1

2

3

4

6
v
8

v

v
10

9

Set I type complement

1 v2, v3, v5 G̃2 D̃4 + Ã1

2 d1, d2, d3, d4, v7 D̃4 G̃2 + Ã1

3 v4, v6 Ã1 G̃2 + D̃4

4 d1, d2, d3, v1, v7, v5, v6 D̃6 Ã1

5 v3, v10 Ã1 D̃6

S T T -type

d2, v8 d3, d4, v1, v6, v7, v5, v2 2A1 +D5

v4, v8 d1, d3, d4, v7, v1, v5, v2 D7

v9, v10 d1, d2, v7, v1, v6, v5, v2 E7

U A2 A1 D4

p 1,−1 0, 0 0 0

level 0

v1 1, 1 0, 0 0 0

v2 0, 0 0, 1 0 0

v3 0, 0 1,−1 0 0

v4 0, 0 0, 0 1 0

level 1

v5 0,−1 −1,−1 0 0

v6 0,−1 0, 0 −1 0

v7 0,−1 0, 0 0 −d∗1
level 48

v8 6,−6 −4,−2 −3 −6d∗2
v9 6,−6 −4,−2 −3 −6d∗3
v10 6,−6 −4,−2 −3 −6d∗4

Figure 10. Vinberg’s vectors and their Coxeter’s graph for −A1+
〈6〉+ E8
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7

v

v
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2 4 6 8

v

e

e

e e e e e e
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5

6

Set I type complement

1 v2, e1, e2, e3, e4, e5, e6, e7 Ẽ7 Ã1

2 v1, v3 Ã1 Ẽ7

3 v2, v5, e1, e2, e3, e4, e5 D̃6 G̃2

4 v3, v7, e8 G̃2 D̃6

S T T -type

v1, v4 e1, e2, e3, e4, e5, e6, e7, e8 E8

v1, v5 v2, e2, e3, e4, e5, e6, e7, e8 A1 +D7

−A1 〈6〉 E8

p 1 0 0

level 0

v1 0 1 0

level 4

v2 1 0 −e∗8
level 12

v3 3 −1 −3e∗8
v4 3 −2 0

level 16

v5 2 −1 −e∗1

To conclude, we note that although Coxeter’s graphs on Fig. 9 and 10 have sym-
metries that interchange 6-roots, such symmetries do not change the A2-component
(in Fig. 9), or the 〈6〉-component (in Fig. 10) modulo 3. Thus, by Proposition 2.3.2
these symmetries are Z/3-direct and the corresponding lattices are chiral. �
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4.3.3. Corollary. In Table 3 all lattices in the fourth row and below are chiral
provided ρ+ d 6 12.

Proof. Only the first seven rows of Table 3 contain some lattices with ρ + d 6 12.
The claim for the fourth and fifth rows follows from Proposition 4.3.2 and Lemma
4.2.1. For the sixth and seventh row, ρ + d 6 12 holds only for t = 0, that is for
lattices −A1 +A2 +E8 and U +A2 +E8 which were analyzed in [FK2], and shown
there to be achiral. �

4.4. Extension of the root system. In this subsection, to prove chirality of
lattices we apply a bit different method. Namely, we enlarge the root system by
adding 4-roots to 2- and 6-roots. This extends the reflection group with new reflec-
tions (defined by 4-roots) and leads to subdivision of initial fundamental polyhedra
(defined by 2- and 6-roots) into more simple fundamental polyhedra corresponding
to the extended reflection group. The following lemma shows that we still keep
control over the symmetries of the initial fundamental polyhedra.

4.4.1. Lemma. Let W be a subgroup of a discrete group G generated by reflections
in a hyperbolic space Λ. Then, for any fundamental polyhedron Π of G, there in only
one fundamental polyhedron P of W containing Π, and the group of symmetries of
P is generated by the group of symmetries of Π and those reflections in facets of Π
that do not belong to G.

Proof. Straightforward consequence of another simple, well known, lemma stating
that for any discrete reflection group the group of symmetries of the system of its
mirror hyperplanes is a semi-direct product of the group it-self with the group of
symmetries of any of its fundamental polyhedra. �

To find a sequence of roots defining a fundamental polyhedron of the extended
reflection group we use Vinberg’s algorithm like before. In corresponding Coxeter’s
graphs the 4-roots are marked by encircled black squares.

4.4.2. Proposition. Lattices −A1+A2+4A1 and −A1+A2+A1+D4 = U+A2+4A1

are chiral.

Proof. We extend the group W generated by the reflections Rv, x 7→ x − 2 exe2 v,
in the 2- and 6-roots, up to a group G generated, in addition, by the reflections
x 7→ x − 2 exe2 e in the 4-roots e, that is e ∈ Λ with e2 = 4, e · Λ = 0 mod 2.
Applying Vinberg’s algorithm to the group G we obtain the lists of roots shown in
the rightmost tables of Figures 11 and 12, and derive from them the corresponding
Coxeter’s graphs. Completeness of these root-lists follows easily from Theorem 2.4.1
and Proposition 2.4.2: see the list of connected parabolic subgraphs supplied with
the type of parabolic subgraphs that complement them to a rank n − 1 parabolic
graph, and the list of the elliptic complements to Lannér’s subgraphs (here, they
are limited to dotted edges)

None of these graphs has a non-trivial symmetry. Hence, according to Lemma
4.4.1, the reflections defined by the 4-roots from our lists preserve a certain funda-
mental polyhedron P of W and generate all the symmetries of P . The action of each
of these 4-reflections on the A2-component is trivial modulo 3. Due to Proposition
2.3.2 this implies that all the P -direct symmetries are Z/3-preserving. �

4.4.3. Corollary. Lattices in the second and third rows of table 3 with ρ + d 6 12
are chiral.
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Figure 11. Vinberg’s vectors and their Coxeter’s graph for −A1+
A2 +A1 +D4 = U +A2 + 4A1
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dd

f

f

1

2

3

4

6

Set I type complement

1 v5, v1, v2 G̃2 F̃4

2 v6, v1, v2 G̃2 C̃4

3 v6, d1, d4, f3, f2 F̃4 2Ã1

4 d1, d4, f3, f2, v4 F̃4 G̃2

5 d4, f3, f2, v4, v3 C̃4 G̃2

S T T -type

v4, v7 v1, v5, v6, d1, d4, f3 B6

−A1 A2 A1 D4

p 1 0, 0 0 0

level 0

v1 0 0, 1 0 0

v2 0 1,−1 0 0

v3 0 0, 0 1 0

d1 0 0, 0 0 d1

f2 0 0, 0 0 d2 − d3

f3 0 0, 0 0 d3 − d4

d4 0 0, 0 0 d4

level 2

v4 1 0, 0 −1 −2d∗2
level 4

v5 1 −1,−1 −1 0

v6 1 −1,−1 0 −d∗1
level 12

v7 3 −4,−2 0 0

Figure 12. Vinberg’s vectors and their Coxeter’s graph for −A1+
A2 + 4A1
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4 v8, v3, v4, v5, v6 C̃4 Ã1
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v2, v10 v3, v4, v5, v7, v8 B5

v7, v9 v1, v3, v4, v8, v6 F4 +A1

v6, v10 v1, v8, v3, v4, v7 F4 +A1

−A1 A2 A1 A1 A1 A1

p 1 0, 0 0 0 0 0

level 0

v1 0 0, 1 0 0 0 0

v2 0 1,−1 0 0 0 0

v3 0 0, 0 1 −1 0 0

v4 0 0, 0 0 1 −1 0

v5 0 0, 0 0 0 1 −1

v6 0 0, 0 0 0 0 1

level 2

v7 1 0, 0 −1 −1 −1 0

level 4

v8 1 −1,−1 −1 0 0 0

level 12

v9 3 −4,−2 0 0 0 0

level 108

v10 9 −8,−4 −3 −3 −3 −3
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Proof. It follows from Proposition 4.4.2 and Lemma 4.2.1. �

4.5. Proof of Theorem 4.2.2. Lemma 4.2.1 shows existence of a border between
the chiral and achiral lattices in each row of Table 3. For the first row the border
is found in Proposition 4.3.1. For the other rows, the border is the line ρ+ d = 14,
since for ρ+ d > 14 the lattices are achiral by Proposition 4.2.5, and for ρ+ d < 14
are chiral by Corollaries 4.3.3 and 4.4.3. �

4.6. Proof of Theorem 1.2.1. Theorem 2.2.1 reduces the question on chirality
of non-singular real cubic fourfolds X to analysis of their lattices M0

+(X). These
lattices are listed in Tables 2 (even lattices) and 3 (odd lattices). The required
analysis is performed in Theorems 3.1.1 and 4.2.2 and yields 18 chiral lattices
described in Theorem 1.2.1. �

5. Concluding Remarks

5.1. Topological chirality. It is natural to ask if it is possible for some chiral
real non-singular cubic fourfold X ⊂ P 5 to distinguish it from its mirror image
just by the topology of embedding of XR into P 5

R. More precisely, is it possible
that XR and its mirror image are not isotopic? The answer turns out to be in the
negative. Indeed, all the coarse deformation classes shown on the upper-right side
of Table 1 are achiral, and hence, for any X from these classes, XR is isotopic to its
mirror image. On the other hand, as is shown in [FK3], starting from these classes
and performing surgeries through cuspidal-strata only, one can reach all the other
classes except, in notation of [FK3], C10,1 and C2,1

I (that is, in Table 1, the classes
with even parity and (ρ, d) equal to (20, 0) and (12, 8)), which are achiral by the
results of the present paper. Hence, there remain to notice that a surgery through
a cuspidal-stratum creates a handle embedded into P 5

R in a standard ”non-knotted”
way.

5.2. Pointwise achirality. If a real cubic X ⊂ P 5 is symmetric with respect to
some hyperplane in P 5

R, then X is obviously achiral. A naturally arising question
is whether the converse is true: if a coarse deformation class is achiral, does it
contain a representative which is symmetric with respect to some mirror reflection?
The methods of this paper can be developed further to respond to this question
as well, but requires an essential additional work. Already first inspection shows
existence of such a representative (symmetric across a hyperplane) in each of the 3
achiral classes from the two bottom lines of Table 1 (that is all the achiral classes
of M - and (M − 1)-cubics).

Another approach is to look for explicit mirror-symmetric equations. For exam-
ple, such an equation can be always written in an appropriate coordinate system in
the form f3(x0, . . . , x4)+x2

5f1(x0, . . . , x4) = 0 where x5 = 0 is the mirror-hyperplane
and f3 = 0 defines a real non-singular threefold cubic in P 4 transversal to a real
hyperplane f1 = 0 (compare, f.e., [LPZ]). This led us to a recurrent procedure that
produces a sequence of maximal symmetric real non-singular cubic hypersurfaces
in consecutive dimensions (the details are to be exposed in a separate publication).

Note finally that as was already pointed in [FK2], the equation t(x3
0 + · · ·+x3

5)−
(x0+· · ·+x5)3 = 0 provides symmetric (across hyperplanes xi = xj) representatives
for 4 achiral classes of cubics. Each of these classes is determined by topology of the
real locus which is as follows: RP4 for t < 0 and t > 36, RP4 t S4 for 16 < t < 36,
RP4#5(S1 × S3) for 4 < t < 16, and RP4#10(S2 × S3) for 0 < t < 4.
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