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Obtaining Error-Minimizing Estimates and Universal
Entry-Wise Error Bounds for Low-Rank Matrix Completion

Franz J. Királybac1 and Louis Therana2

aDiscrete Geometry Group, Freie Universität Berlin
bMachine Learning Group, Berlin Institute of Technology

cMathematisches Forschungsinstitut Oberwolfach

Abstract

We propose a general framework for reconstructing and denoising single entries
of incomplete and noisy entries. We describe: effective algorithms for deciding if and
entry can be reconstructed and, if so, for reconstructing and denoising it; and a priori
bounds on the error of each entry, individually. In the noiseless case our algorithm is
exact. For rank-one matrices, the new algorithm is fast, admits a highly-parallel im-
plementation, and produces an error minimizing estimate that is qualitatively close
to our theoretical and the state-of-the-art Nuclear Norm and OptSpace methods.
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1. Introduction

Matrix Completion is the task to reconstruct low-rank matrices from a subset of its entries and
occurs naturally in many practically relevant problems, such as missing feature imputation, multi-
task learning (Argyriou et al., 2008), transductive learning (Goldberg et al., 2010), or collabo-
rative filtering and link prediction (Srebro et al., 2005; Acar et al., 2009; Menon and Elkan,
2011).

Almost all known methods performing matrix completion are optimization methods such
as the max-norm and nuclear norm heuristics (Srebro et al., 2005; Candès and Recht, 2009;
Tomioka et al., 2010), or OptSpace (Keshavan et al., 2010), to name a few amongst many.

These methods have in common that in general (a) they reconstruct the whole matrix and
(b) error bounds are given for all of the matrix, not single entries. These two properties of
existing methods are in particular unsatisfactory1 in the scenario when one is interested only in
predicting (or imputing) one single missing entry or a set of interesting missing entries instead
of all - which is for real data a more natural task than imputing all missing entries, in particular
in the presence of large scale data.

Indeed the design of such a method is not only desirable but also feasible, as the results
of Király et al. (2012) suggest by relating algebraic combinatorial properties and the low-rank
setting to the reconstructability of the data. Namely, the authors provide algorithms which can
decide for one entry if it can be - in principle - reconstructed or not, thus yielding a statement of
trustability for the output of any algorithm2.

In this paper, we demonstrate the first time how algebraic combinatorial techniques, com-
bined with stochastic error minimization, can be applied to (a) reconstruct single missing entries
of a matrix and (b) provide lower variance bounds for the error of any algorithm or estimator
for that particular entry - where the error bound can be obtained without actually reconstructing
the entry in question. In detail, our contributions include:

• the construction of a variance-minimal and unbiased estimator for any fixed missing entry
of a rank-one-matrix, under the assumption of known noise variances

• an explicit form for the variance of that estimator, being a lower bound for the variance of
any unbiased estimation of any fixed missing entry and thus yielding a quantiative measure
on the trustability of that entry reconstructed from any algorithm

• the description of a strategy to generalize the above to any rank

• comparison of the estimator with two state-of-the-art optimization algorithms (OptSpace
and nuclear norm), and error assessment of the three matrix completion methods with the
variance bound

Note that most of the methods and algorithms presented in this paper restrict to rank one. This
is not, however, inherent in the overall scheme, which is general. We depend on rank one only in
the sense that we understand the combinatorial-algebraic structure of rank-one-matrix comple-
tion exactly, whereas the behavior in higher rank is not yet as well understood. Nonetheless, it

1While the existing methods may be applied to a submatrix, it is always at the cost of accuracy if the data is sparse,
and they do not yield statements on single entries.

2The authors also provide an algorithm for reconstructing some missing entries in the arbitrary rank case, but
without obtaining global or entry-wise error bounds, or a strategy to reconstruct all reconstructible entries.
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is, in principle accessible, and, once available will can be “plugged in” to the results here without
changing the complexity much.

2. The Algebraic Combinatorics of Matrix Completion

2.1. A review of known facts In Király et al. (2012), an intricate connection between the
algebraic combinatorial structure, asymptotics of graphs and analytical reconstruction bounds
has been exposed. We will refine some of the theoretical concepts presented in that paper which
will allow us to construct the entry-wise estimator.

Definition 2.1 An matrix M ∈ {0, 1}m×n is called mask. If A is a partially known matrix, then the
mask of A is the mask which has 1-s in exactly the positions which are known in A; and 0-s otherwise.

Definition 2.2 Let M be an (m×n) mask. We will call the unique bipartite graph G(M) which has
M as bipartite adjacency matrix the completion graph of M. We will refer to the m vertices of G(M)
corresponding to the rows of M as blue vertices, and to the n vertices of G(M) corresponding to the
columns as red vertices. If e = (i, j) is an edge in Km,n (where Km,n is the complete bipartite graph
with m blue and n red vertices), we will also write Ae instead of Ai j and for any (m× n) matrix A.

A fundamental result, (Király et al., 2012, Theorem 2.3.5), says that identifiability and recon-
structability are, up to a null set, graph properties.

Theorem 2.3 Let A be a generic3 and partially known (m× n) matrix of rank r, let M be the mask
of A, let i, j be integers. Whether Ai j is reconstructible (uniquely, or up to finite choice) depends only
on M and the true rank r; in particular, it does not depend on the true A.

For rank one, as opposed to higher rank, the set of reconstructible entries is easily obtainable
from G(M) by combinatorial means:

Theorem 2.4 ((Király et al., 2012, Theorem 2.5.36 (i))) Let G ⊆ Km,n be the completion graph
of a partially known (m×n) matrix A. Then the set of uniquely reconstructible entries of A is exactly
the set Ae, with e in the transitive closure of G. In particular, all of A is reconstructible if and only if
G is connected.

2.2. Reconstruction on the transitive closure We extend Theorem 2.4’s theoretical recon-
struction guarantee by describing an explicit, algebraic algorithm for actually doing the recon-
struction. This algorithm will be the basis of an entry-wise, variance-optimal estimator in the
noisy case. In any rank, such a reconstruction rule can be obtained by exposing equations which
explicitly give known and unknown entries in terms of only known entries due to the fact that the
set of low-rank matrices is an irreducible variety (the common vanishing locus of finitely many
polynomial equations). We are able to derive the reconstruction equations for rank one.

Definition 2.5 Let P ⊆ Km,n (or, C ⊆ Km,n) be a path (or, cycle), with a fixed start and end. We
will denote by E+(P) be the set of edges in P (resp. E+(C) and C) traversed from blue vertex to a
red one, and by E−(P) the set of edges traversed from a red vertex to a blue one 4. From now on,

3In particular, if A is sampled from a continuous density, then the set of non-generic A is a null set.
4This is equivalent to fixing the orientation of Km,n that directs all edges from blue to red, and then taking E+(P) to

be the set of edges traversed forwards and E−(P) the set of edges traversed backwards. This convention is convenient
notationally, but any initial orientation of Km,n will give us the same result.
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when we speak of “oriented paths” or “oriented cycles”, we mean with this sign convention and some
fixed traversal order.

Let A = Ai j be a (m× n) matrix of rank 1, and identify the entries Ai j with the edges of Km,n.
For an oriented cycle C, we define the polynomials

PC(A) =
∏

e∈E+(C)

Ae −
∏

e∈E−(C)

Ae, and

LC(A) =
∑

e∈E+(C)

log Ae −
∑

e∈E−(C)

log Ae,

where for negative entries of A, we fix a branch of the complex logarithm.

Theorem 2.6 Let A= Ai j be a generic (m× n) matrix of rank 1. Let C ⊆ Km,n be an oriented cycle.
Then, PC(A) = LC(A) = 0.

Proof: The determinantal ideal of rank one is a binomial ideal generated by the (2×2) minors of
A (where entries of A are considered as variables). The minor equations are exactly PC(A), where
C is an elementary oriented four-cycle; if C is an elementary 4-cycle, denote its edges by a(C),
b(C), c(C), d(C), with E+(C) = {a(C), d(C)}. Let C be the collection of the elementary 4-cycles,
and define LC(A) = {LC(A) : C ∈ C} and PC(A) = {PC(A) : C ∈ C}.

By sending the term log Ae to a formal variable xe, we see that the free Z-group generated by
the LC(A) is isomorphic to H1(Km,n,Z). With this equivalence, it is straightforward that, for any
oriented cycle D, LD(A) lies in the Z-span of elements of LC(A) and, therefore, formally,

LD(A) =
∑

C∈C
αC · LC(A)

with the αC ∈ Z. Thus LD(·) vanishes when A is rank one, since the r.h.s. does. Exponentiating,
we see that







∏

e∈E+(D)

Ae













∏

e∈E−(D)

Ae







−1

=
∏

C∈C

�

Aa(C)Ad(C)A
−1
b(C)A

−1
c(C)

�αC

If A is generic and rank one, the r.h.s. evaluates to one, implying that PD(A) vanishes. �

Corollary 2.7 Let A = Ai j be a (m × n) matrix of rank 1. Let v, w be two vertices in Km,n. Let
P,Q be two oriented paths in Km,n starting at v and ending at w. Then, for all A, it holds that
LP(A) = LQ(A).

Remark 2.8 It is possible to prove that the set of PC forms the set of polynomials vanishing on the
entries of A which is minimal with respect to certain properties. Namely, the PC form a universal
Gröbner basis for the determinantal ideal of rank 1, which implies the converse of Theorem 2.6. From
this, one can deduce that the estimators presented in section 3.2 are variance-minimal amongst all
unbiased ones.

3. A Combinatorial Algebraic Estimate for Missing Entries and Their Error

In this section, we will construct an estimator for matrix completion which (a) is able to complete
single missing entries and (b) gives universal error estimates for that entry that are independent
of the reconstruction algorithm.
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3.1. The sampling model In all of the following, we will assume that the observations arise
from the following sampling process:

Assumption 3.1 There is an unknown fixed, rank one, matrix A which is generic, and an (m× n)
mask M ∈ {0, 1}m×n which is known. There is a (stochastic) noise matrix E ∈ Rm×n whose entries
are uncorrelated and which is multiplicatively centered with finite variance, non-zero5 variance; i.e.,
E(logEi j) = 0 and 0< Var(logEi j)<∞ for all i and j.

The observed data is the matrix A ◦ M ◦ E = Ω(A ◦ E), where ◦ denotes the Hadamard (i.e.,
component-wise) product. That is, the observation is a matrix with entries Ai j ·Mi j ·Ei j .

The assumption of multiplicative noise is a necessary precaution in order for the presented esti-
mator (and in fact, any estimator) for the missing entries to have bounded variance, as shown in
Example 3.2 below. This is not, in practice, a restriction since an infinitesimal additive error δAi j
on an entry of A is equivalent to an infinitesimal multiplicative error δ log Ai j = δAi j/Ai j , and
additive variances can be directly translated into multiplicative variances if the density function
for the noise is known6. The previous observation implies that the multiplicative noise model is
as powerful as any additive one that allows bounded variance estimates.

Example 3.2 Consider the rank one matrix

A=

�

A11 A21
A12 A22

�

.

The unique equation between the entries is A11A22 = A12A21. Solving for any entry will have another
entry in the denominator, for example

A11 =
A12A21

A22
.

Thus we get an estimator for A11 when substituting observed and noisy entries for A12, A21, A22.
When A22 approaches zero, the estimation error for A11 approaches infinity. In particular, if the
density function of the error E22 of A22 is too dense around the value −A22, then the estimate for A11
given by the equation will have unbounded variance. In such a case, one can show that no estimator
for A11 has bounded variance.

3.2. Estimating entries and error bounds In this section, we construct the unbiased estimator
for the entries of a rank-one-matrix with minimal variance. First, we define some notation to
ease the exposition:

Notations 3.3 We will denote by ai j = log Ai j and εi j = logEi j the logarithmic entries and noise.
Thus, for some path P in Km,n we obtain

LP(A) =
∑

e∈E+(P)

ae −
∑

e∈E−(P)

ae.

Denote by bi j = ai j + εi j the logarithmic (observed) entries, and B the (incomplete) matrix which
has the (observed) bi j as entries. Denote by σi j = Var(bi j) = Var(εi j).

5The zero-variance case corresponds to exact reconstruction, which is handled already by Theorem 2.4.
6The multiplicative noise assumption causes the observed entries and the true entries to have the same sign. The

change of sign can be modeled by adding another multiplicative binary random variable in the model which takes
values ±1; this adds an independent combinatorial problem for the estimation of the sign which can be done by
maximum likelihood. In order to keep the exposition short and easy, we did not include this into the exposition.
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The components of the estimator will be built from the LP :

Lemma 3.4 Let G = G(M) be the graph of the mask M. Let x = (v, w) ∈ Km,n be any edge with v
red. Let P be an oriented path7 in G(M) starting at v and ending at w. Then,

LP(B) =
∑

e∈E+(P)

be −
∑

e∈E−(P)

be

is an unbiased estimator for ax with variance

Var(LP(B)) =
∑

e∈P

σe.

Proof: By linearity of expectation and centeredness of εi j , it follows that

E(LP(B)) =
∑

e∈E+(P)

E(be)−
∑

e∈E−(P)

E(be),

thus LP(B) is unbiased. Since the εe are uncorrelated, the be also are; thus, by Bienaymé’s
formula, we obtain

Var(LP(B)) =
∑

e∈E+(P)

Var(be) +
∑

e∈E−(P)

Var(be),

and the statement follows from the definition of σe.

In the following, we will consider the following parametric estimator as a candidate for esti-
mating ae:

Notations 3.5 Fix an edge x = (v, w) ∈ Km,n. Let P be a basis for the set of all oriented paths
starting at v and ending at w 8, and denote #P by p. For α ∈ Rp, set

X (α) =
∑

P∈P
αP LP(B).

Furthermore, we will denote by 1 the n-vector of ones.

The following Lemma follows immediately from Lemma 3.4 and Theorem 2.6:

Lemma 3.6 E(X (α)) = 1>α · bx ; in particular, X (α) is an unbiased estimator for bx if and only if
1
>α= 1.

We will now show that minimizing the variance of X (α) can be formulated as a quadratic
program with coefficients entirely determined by ax , the measurements be and the graph G(M).
In particular, we will expose an explicit formula for the αminimizing the variance. Before stating
the theorem, we define a suitable kernel:

7If x ∈ G, then P can also be the path consisting of the single edge e.
8This is the set of words equal to the formal generators x(v,w) in the free abelian group generated by the xe, subject

to the relations LC = 0 for all cycles C in G ∪ {(v, w)}. Independence can be taken as linear independence of the
coefficient vectors of the LC .
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Definition 3.7 Let e ∈ Km,n be an edge. For an edge e and a path P, set ce,P = ±1 if e ∈ E±(P)
otherwise ce,P = 0. Let P,Q ∈ P be any fixed oriented paths. Define the (weighted) path kernel
k : P×P→ R by

k(P,Q) =
∑

e∈Km,n

ce,P · ce,Q ·σe.

Under our assumption that Var(be) > 0 for all e ∈ Km,n, the path kernel is positive definite, since
it is a sum of p independent positive semi-definite functions; in particular, its kernel matrix has
full rank. Here is the variance-minimizing unbiased estimator:

Proposition 3.8 Let x = (s, t) be a pair of vertices, and P a basis for the s–t path space in G with
p elements. Let Σ be the p× p kernel matrix of the path kernel with respect to the basis P. For any
α ∈ Rp,

Var(X (α)) = α>Σα.

Moreover, under the condition 1>α= 1, the variance Var(X (α)) is minimized by

α=
�

Σ−1
1

��

1
>Σ−1

1

�−1

Proof: By inserting definitions, we obtain

X (α) =
∑

P∈P
αP LP(B)

=
∑

P∈P
αP

∑

e∈Km,n

ce,P be.

Writing b = (be) ∈ Rmn as vectors, and C = (ce,P) ∈ Rp×mn as matrices, we obtain

X (α) = b>Cα.

By using that Var(λ·) = λ2 Var(·) for any scalar λ, and independence of the be, an elementary
calculation yields

Var(X (α)) = α>Σα

In order to determine the minimum of the variance in α, consider the Lagrangian

L(α,λ) = α>Σα+λ

 

1−
∑

P∈P
αP

!

,

where the slack term models the condition `(α) = 1. An elementary calculation yields

∂ L

∂ α
= 2Σα−λ1

where 1 is the vector of ones. Due to positive definiteness of Σ the function Var(X (α)) is convex,
thus α = Σ−1

1/1>Σ−1
1 will be the unique α minimizing the variance while satisfying 1>α = 1.

�

Remark 3.9 The above setup works in wider generality: (i) if Var(be) = 0 is allowed and there is
an s–t path of all zero variance edges, the path kernel becomes positive semi-definite; (ii) similarly
if P is replaced with any set of paths at all, the same may occur. In both cases, we may replace
Σ−1 with the Moore-Penrose pseudo-inverse and the proposition still holds: (i) reduces to the exact
reconstruction case of Theorem 2.4; (ii) produces the optimal estimator with respect to P, which is
optimal provided that P is spanning, and adding paths to P does not make the estimate worse.
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3.3. Rank 2 and higher An estimator for rank 2 and higher, together with a variance analysis,
can be constructed similarly once all polynomials known which relate the entries under each
other. The main difficulty lies in the fact that these polynomials are not parameterized by cycles
anymore, but specific subgraphs of G(M), see (Király et al., 2012, Section 2.5). Were these
polynomials known, an estimator similar to X (α) as in Notation 3.5 could be constructed, and a
subsequent variance or perturbation analysis performed.

3.4. The algorithms In this section, we describe the two main algorithms which calculate the
variance-minimizing estimate bAi j for any fixed entry Ai j of an (m×n)matrix A, which is observed
with noise, and the variance bound for the estimate bAi j . It is important to note that Ai j does not
necessarily need to be an entry which is missing in the observation, it can also be any entry which
has been observed. In the latter case, Algorithm 3 will give an improved estimate of the observed
entry, and Algorithm 4 will give the trustworthiness bound on this estimate.

Since the the path matrix C , the path kernel matrix Σ, and the optimal α is required for
both, we first describe Algorithm 1 which determines those. The steps of the algorithm follow

Algorithm 1 Calculates path kernel Σ and α.
Input: index (i, j), an (m× n) mask M , variances σ.
Output: path matrix C , path kernel Σ and minimizer α.
1: Find a linearly independent set of paths P in the graph G(M), starting from i and ending at

j.
2: Determine the matrix C = (ce,P) with e ∈ G(M), P ∈ P; set ce,P = ±1 if e ∈ E±(P), otherwise

ce,P = 0.
3: Define a diagonal matrix S = diag(σ), with See = σe for e ∈ G(M).
4: Compute the kernel matrix Σ = C>SC .
5: Calculate α= Σ−1

1/‖Σ−1
1‖1.

6: Output C ,Σ and α.

the exposition in section 3.2, correctness follows from the statements presented there. The only
task in Algorithm 1 that isn’t straightforward is the computation of a linearly independent set
of paths in step 1. We can do this time linear in the number of observed entries in the mask M
with the following method. To keep the notational manageable, we will conflate formal sums of
the xe, cycles in H1(G,Z) and their representations as vectors in Rmn, since there is no chance of
confusion. We prove the correctness of Algorithm 2.

Algorithms 3 and 4 then can make use of the calculated C ,α,Σ to determine an estimate
for any entry Ai j and its minimum variance bound. The algorithms follow the exposition in
Section 3.2, from where correctness follows; Algorithm 3 additionally provides treatment for the
sign of the entries.

Note that even if observations are not available, Algorithm 4 can be used to obtain the vari-
ance bound. The variance bound is relative, due to its multiplicativity, and can be used to approx-
imate absolute bounds when any reconstruction estimate bAi j is available - which does not neces-
sarily need to be the one from Algorithm 3, but can be the estimation result of any reconstruc-
tion. Namely, if bσi j is the estimated variance of the log, we obtain an upper confidence/deviation

bound bAi j · exp
�p

bσi j

�

for bAi j , and a lower confidence/deviation bound bAi j · exp
�

−
p

bσi j

�

, cor-

responding to the log-confidence log bAi j ±
p

bσi j . Also note that if Ai j is not reconstructible from

8



Algorithm 2 Calculates a basis P of the path space.
Input: index (i, j), an (m× n) mask M .
Output: a basis P for the space of oriented i– j paths.
1: If (i, j) is not an edge of M , and i and j are in different connected components, then P is

empty. Output ;.
2: Otherwise, if (i, j) is not an edge, of M , add a “dummy” copy.
3: Compute a spanning forest F of M that does not contain (i, j), if possible.
4: For each edge e ∈ M \ F , compute the fundamental cycle Ce of e in F .
5: If (i, j) is an edge in M , output {−x(i, j)} ∪ {Ce − x(i, j) : e ∈ M \ F}.
6: Otherwise, let P(i, j) = C(i, j)− x(i, j). Output {Ce − P(i, j) : e ∈ M \ (F ∪ {(i, j)})}.

Algorithm 3 Estimates the entry ai j .
Input: index (i, j), an (m× n) mask M , log-variances σ, the partially observed and noisy matrix
B.
Output: The variance-minimizing estimate for Ai j .

1: Calculate C and α with Algorithm 1.
2: Store B as a vector b = (log |Be|) and a sign vector s = (sgn Be) with e ∈ G(M).
3: Calculate bAi j = ±exp

�

b>Cα
�

. The sign is + if each column of s>|C | (|.| component-wise)
contains an odd number of entries −1, else −.

4: Return bAi j .

the mask M (i.e., if the edge (i, j) is not in the transitive closure of G(M), see Theorem 2.4),
then the deviation bounds will be infinite.

4. Experiments

4.1. Universal error estimates For three different masks, we calculated the predicted mini-
mum variance for each entry of the mask. The multiplicative noise was assumed to be σe = 1
for each entry. Figure 1 shows the predicted a-priori minimum variances for each of the masks.
Notice how the structure of the mask affects the expected error; known entries generally have
least variance, while it is interesting to note that in general it is less than the starting variance
of 1. I.e., tracking back through the paths can be successfully used even to denoise known en-
tries. The particular structure of the mask is mirrored in the pattern of the predicted errors; a
diffuse mask gives a similar error on each missing entry, while the more structured masks have
structured error which is determined by combinatorial properties of the completion graph and
the paths therein.

4.2. Influence of noise level We generated 10 random mask of size 50× 50 with 200 entries
sampled uniformly and a random (50×50)matrix of rank one. The multiplicative noise was cho-
sen entry-wise independent, with variance σi = (i − 1)/10 for each entry. Figure 2(a) compares
the Mean Squared Error (MSE) for three algorithms: Nuclear Norm (using the implementation
Tomioka et al. (2010)), OptSpace (Keshavan et al., 2010), and Algorithm 3. It can be seen that
on this particular mask, Algorithm 3 is competitive with the other methods and even outperforms
them for low noise.
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Algorithm 4 Determines the variance of the entry log(Ai j).
Input: index (i, j), an (m× n) mask M , log-variances σ.
Output: The variance lower bound for log(Ai j).
1: Calculate Σ and α with Algorithm 1.
2: Return α>Σα.

4.3. Prediction of estimation errors The data are the same as in Section 4.2, as are the com-
pared algorithm. Figure 2(b) compares the error of each of the methods with the variance
predicted by Algorithm 4 each time the noise level changed. The figure shows that for any of
the algorithms, the mean of the actual error increases with the predicted error, showing that the
error estimate is useful for a-priori prediction of the actual error - independently of the particular
algorithm. Note that by construction of the data this statement holds in particular for entry-wise
predictions. Furthermore, in quantitative comparison Algorithm 4 also outperforms the other
two in each of the bins. The qualitative reversal between the algorithms in Figures 2(b) (a)
and (b) comes from the different error measure and the conditioning on the bins.

5. Conclusion

In this paper, we have introduced an algebraic combinatorics based method for reconstructing
and denoising single entries of an incomplete and noisy matrix, and for calculating confidence
bounds of single entry estimations for arbitrary algorithms. We have evaluated these methods
against state-of-the art matrix completion methods. The results of section 4 show that our recon-
struction method is competitive and that - for the first time - our variance estimate provides a
reliable prediction of the error on each single entry which is an a-priori estimate, i.e., depending
only on the noise model and the position of the known entries. Furthermore, our method allows
to obtain the reconstruction and the error estimate for a single entry which existing methods
are not capable of, possibly using only a small subset of neighboring entries - a property which
makes our method unique and particularly attractive for application to large scale data. We thus
argue that the investigation of the algebraic combinatorial properties of matrix completion, in
particular in rank 2 and higher where these are not yet completely understood, is crucial for the
future understanding and practical treatment of big data.
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A. Correctness of Algorithm 2

We adopt the conventions of Section 2, so that G is a bipartite graph with m blue vertices, n red
ones, and e edges oriented from blue to red. Recall the isomorphism, observed in the proof of
Theorem 2.6 of the Z-group of the polynomials LC(·) and the oriented cycle space H1(G,Z).

Define β1(G) = e − n − m + c (the first Betti number of the graph). Some standard facts
are that: (i) the rank of H1(G,Z) is β1(G); (ii) we can obtain a basis for H1(G,Z) consisting
only of simple cycles by picking any spanning forest F of G and then using as basis elements the
fundamental cycles Ce of the edges e ∈ E \ F . This justifies step 4.

Let (i, j) be an edge of G. Define an i– j to be the set of subgraphs such that, for generic rank
one A, LP(A) = −x(i, j). By Theorem 2.6, we can write these as Z-linear combinations of x(i, j)
and oriented cycles. From this, we see that the rank of the path space is β1(G)+1 and the graph
theoretic identification of elements in the path space with subgraphs that have even degree at
every vertex except i and j. Thus, if (i, j) is an edge of G, step 5 is justified, completing the proof
of correctness in this case.

If (i, j) was not an edge, step 1 guarantees that the dummy copy of (i, j) that we added is not
in the spanning tree computed in step 3. Thus, the element P(i, j) = C(i, j)− x(i, j) computed in step
6 is a simple path from i to j. The collection of elements generated in step 6 is independent by
the same fact in H1(G∪{(i, j)},Z) and has rank β1(G)+1 and does not put a positive coefficient
on the dummy generator x(i, j). �
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Figure 1: The figure shows three pairs of masks and predicted variances. A pair consists of two
adjacent squares. The left half is the mask which is depicted by red/blue heatmap with red entries
known and blue unknown. The right half is a multicolor heatmap with color scale, showing
the predicted variance of the completion. Variances were calculated by our implementation of
Algorithm 4.
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Figure 2: For 10 randomly chosen masks and 50 × 50 true matrix, matrix completions were
performed with Nuclear Norm (green), OptSpace (red), and Algorithm 3 (blue) under multi-
plicative noise with variance increasing in increments of 0.1. For each completed entry, mini-
mum variances were predicted by Algorithm 4. 2(a) shows the mean squared error of the three
algorithms for each noise level, coded by the algorithms’ respective colors. 2(b) shows a bin-
plot of errors (y-axis) versus predicted variances (x-axis) for each of the three algorithms: for
each completed entry, a pair (predicted error, true error) was calculated, predicted error being
the predicted variance, and the actual prediction error being the squared logarithmic error (i.e.,
�

log |at rue| − log |apredic ted |
�2

for an entry a). Then, the points were binned into 11 bins with
equal numbers of points. The figure shows the mean of the errors (second coordinate) of the
value pairs with predicted variance (first coordinate) in each of the bins, the color corresponds
to the particular algorithm; each group of bars is centered on the minimum value of the associ-
ated bin.
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