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A CHEEGER TYPE INEQUALITY IN FINITE CAYLEY SUM GRAPHS

ARINDAM BISWAS AND JYOTI PRAKASH SAHA

Abstract. Let G be a finite group and S be a symmetric generating set of G with |S| = d
such that the Cayley sum graph CΣ(G,S) is undirected. We show that if CΣ(G,S) is
an expander graph, then the non-trivial spectrum of its normalised adjacency operator
is bounded away from −1. We also establish an explicit lower bound for the non-trivial
spectrum of these graphs, namely, the non-trivial eigenvalues of the normalised adjacency

operator lies in the interval
(
−1 + hΣ(G)4

η
, 1− hΣ(G)2

2d2

]
, where hΣ(G) denotes the vertex

Cheeger constant of the d-regular graph CΣ(G,S) and η = 29d8. Further, we improve
upon a recently obtained bound on the non-trivial spectrum of the normalised adjacency
operator of the Cayley graph C(G,S).

1. Introduction

Let G be a finite group, and S be a symmetric generating set of G with |S| = d. The
Cayley sum graph CΣ(G,S) is the graph having G as its set of vertices and for g, h ∈ G, the
vertex h is adjacent to g if h = g−1s for some element s ∈ S. These are classical combinato-
rial objects, e.g., see [GGL95] and [Gre17]. In this article, we consider the undirected Cayley
sum graph and this is equivalent to saying that S is closed under conjugation (see Lemma
2.6). We also recall that the Cayley graph of G (sometimes called the Cayley difference
graph) denoted by C(G,S) is the graph having G as its set of vertices and the vertex h is
adjacent to g if h = gs for some element s ∈ S. The structure of C(G,S) and CΣ(G,S) can
be very different. This can be seen considering the Cayley graph C(G,S) and the Cayley
sum graph CΣ(G,S) of G = Z/nZ (n > 5) with respect to the symmetric generating set
S = {±1}. The former is always a cycle graph while the latter need not be so (for instance,
it admits loops whenever n is odd).

In the following, the graphs and the multi-graphs considered are all undirected. The
multi-graphs may possibly admit multiple edges. Moreover, the graphs and the multi-
graphs considered may admit loops. Given a finite d-regular multi-graph G = (V,E) where
V denotes the set of vertices and E ⊆ V ×V the multi-set of edges, we have the normalised
adjacency matrix T of size |V | × |V | whose eigenvalues lie in the interval [−1, 1]. The
normalised Laplacian matrix of G is defined by

L := I|V | − T
where I|V | denotes the identity matrix of size |V | × |V |. The eigenvalues of L lie in the
interval [0, 2]. Denote the eigenvalues of T and the eigenvalues of L as {ti : i = 1, · · · , |V |}
and {λi : i = 1, · · · , |V |} respectively such that λi = 1− ti and

−1 6 tn 6 tn−1 6 · · · 6 t2 6 t1 = 1

0 = λ1 6 λ2 6 · · · 6 λn−1 6 λn 6 2.
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2 ARINDAM BISWAS AND JYOTI PRAKASH SAHA

The multi-graph G is connected if and only if λ2 > 0 (equivalently t2 < 1). Moreover, if
G is connected, then it is bipartite if and only if λn = 2 (equivalently tn = −1).

Let the multi-graph G = (V,E) has vertex set V and edge multi-set E. For a subset
V1 ⊆ V , we denote the neighbourhood of V1 as N(V1) where,

N(V1) := {v ∈ V : (v, v1) ∈ E for some v1 ∈ V1}.

Then the boundary of V1 is defined as δ(V1) := N(V1)\V1.

Definition 1.1 (Vertex Cheeger constant). The vertex Cheeger constant of the multi-graph
G = (V,E), denoted by h(G), is defined as

h(G) := inf

{
|δ(V1)|
|V1|

: ∅ 6= V1 ⊆ V, |V1| 6
|V |
2

}
.

Next, we recall the notion of an expander graph as stated in [Alo86].

Definition 1.2 ((n, d, ε)-expander). Let ε > 0. An (n, d, ε)-expander is a graph (V,E) on
|V | = n vertices, having maximal degree d, such that for every set ∅ 6= V1 ⊆ V satisfying
|V1| 6 n

2 , |δ(V1)| > ε|V1| holds (equivalently, h(G) > ε).

We are interested in the spectrum of the expander graphs. It was remarked in [BGGT15]
that the eigenvalues of the normalised Laplacian matrix of non-bipartite finite Cayley graphs
are bounded away from 2. Recently the first author established an explicit upper bound.
See [Bis19, Theorem 1.4].

In this article, we show that a similar phenomenon occurs for the spectrum of the Cayley
sum graph CΣ(G,S).

Theorem 1.3. Let hΣ(G) denote its vertex Cheeger constant of the Cayley sum graph
CΣ(G,S). Then if CΣ(G,S) is non-bipartite, we have

λn < 2− hΣ(G)4

29d8
(equivalently − 1 +

hΣ(G)4

29d8
< tn),

where λn (respectively tn) is the largest (respectively smallest) eigenvalue of the normalised
Laplacian matrix (respectively normalised adjacency matrix) of CΣ(G,S).

This result is deduced after the proof of Theorem 2.10. Note that the above result holds
even if the hypothesis that CΣ(G,S) is non-bipartite is relaxed since the spectrum of the
adjacency operator of any bipartite graph is symmetric about the origin. As a corollary of
the above theorem it follows that

Corollary 1.4. Let d > 2 be an integer. Let {CΣ(Gk, Sk)}k>1 be a sequence of non-bipartite,
finite Cayley sum graphs with |Gk| → ∞, |Sk| = d. Then, if there exists an uniform ε > 0,
such that each graph CΣ(Gk, Sk) in the sequence is an (|Gk|, d, ε)-expander, we have all the
eigenvalues of the normalised adjacency matrix of each graph are uniformly bounded away
from −1.

As a by-product of our proof we improve the bound established for Cayley graphs in
[Bis19, Theorem 1.4]. See Theorem 2.11. Further, we prove sharper estimates for both
Cayley sum graphs and Cayley graphs under the assumption that no proper symmetric
subset of S generates G. See Section 3, Theorem 3.2.
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1.1. Outline of the proof. We outline the proof of Theorem 1.3. To prove this result, we
assume on the contrary that the normalised adjacency matrix T of the Cayley sum graph
admits an eigenvalue close to −1 (see Theorem 2.10). This implies that T 2 has an eigenvalue
close to 1. We define a multi-graphM(G,S×S) such that its normalised adjacency matrix
is equal to T 2 (see the proof of Proposition 2.8). Then the discrete Cheeger–Buser inequality
yields an upper bound on the edge-Cheeger constant ofM(G,S×S), which in turn implies
an upper bound on the vertex-Cheeger constant of M(G,S × S). This yields a subset A of

G of size ≤ |G|
2 having a convenient upper bound on |SAS \ A|/|A|. Using combinatorial

arguments, we obtain upper bounds on the sizes of several subsets defined using A (see
Proposition 2.8). As a consequence, for a given element g ∈ G, we establish a dichotomy
result on the size of A∩Ag (see Proposition 2.9), which states that the size A∩Ag is either
very small or quite large as compared to the size of A. This allows us to adapt an argument
due to Frĕıman [Fre73] in our set-up to construct a subgroup H+ of G (see Theorem 2.10).
From the bound on the smallest eigenvalue of T , it follows that the subgroup H+ has index
two in G. In Proposition 2.9, we also establish a similar dichotomy result on the size of
A ∩ A−1g. Using the strategy of Frĕıman once again, we define a subset H− of G, which
avoids S and is equal to a coset of H+ in G, i.e., to H+ or G \H+. To conclude the result,
we consider two cases. First, if H− is equal to H+, then the index two subgroup H+ avoids
S, which contradicts the hypothesis that CΣ(G,S) is non-bipartite (by Lemma 2.5). Next,
if H− is equal to G \ H+, then the index two subgroup H+ contains S, which contradicts
the hypothesis that S generates G.

1.2. Acknowledgements. We wish to thank Emmanuel Breuillard for a number of helpful
discussions during the opening colloquium of the Münster Mathematics Cluster. The first
author would like to acknowledge the support of the OWLF program and would also like
to thank the Fakultät für Mathematik, Universität Wien where he was supported by the
European Research Council (ERC) grant of Goulnara Arzhantseva, “ANALYTIC” grant
agreement no. 259527. The second author would like to acknowledge the Initiation Grant
from the Indian Institute of Science Education and Research Bhopal and the INSPIRE
Faculty Award from the Department of Science and Technology, Government of India. He
would also like to thank the MFO for their hospitality.

2. Proof of the main result

The degree of a vertex of a multi-graph is the number of half-edges adjacent to it (in the
absence of loops). The presence of a loop at a vertex increases its degree by one. A multi-
graph is said to be r-regular if each vertex has degree r. Apart from the vertex expansion
as in Definition 1.2, we also have the notion of edge expansion.

Definition 2.1 (Edge expansion). Let G = (V,E) be a d-regular multi-graph with vertex
set V and edge multi-set E. For a subset ∅ 6= V1 ⊆ V , let E(V1, V \V1) be the edge boundary
of V1, defined as

E(V1, V \V1) := {(v1, v2) ∈ E : v1 ∈ V, v2 ∈ V \V1}.

Then the edge expansion ratio φ(V1) of V1 is defined as

φ(V1) :=
|E(V1, V \V1)|

d|V1|
.
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Definition 2.2 (Edge-Cheeger constant). The edge-Cheeger constant h(G) of a multi-graph
G is defined by

h(G) := inf
∅6=V1⊆V,|V1|6|V |/2

φ(V1).

In a d-regular multi-graph the two Cheeger constants are related by the following -

Lemma 2.3. Let G = (V,E) be a d-regular multi-graph

h(G)

d
6 h(G) 6 h(G).

Proof. Let ∅ 6= V1 ⊆ V and we consider the map

ψ : E(V1, V \V1)→ δ(V1) given by (v1, v2) 7→ v2.

The map is surjective hence we have the left hand side and at the worst case d to 1 wherein
we get the right hand side. �

The discrete Cheeger–Buser inequality relates the (edge) Cheeger constant with the sec-
ond smallest eigenvalue of the Laplacian matrix. It is the version for graphs of the corre-
sponding inequalities for the Laplace–Beltrami operator on compact Riemannian manifolds.
It was first proven by Cheeger [Che70] (lower bound) and by Buser [Bus82] (upper bound).
The discrete version was shown by Alon and Millman [AM85] (Proposition 2.4).

Proposition 2.4 (Discrete Cheeger–Buser inequality). Let G = (V,E) be a finite d-regular
multi-graph. Let λ2 denote the second smallest eigenvalue of its normalised Laplacian matrix
and h(G) be the (edge) Cheeger constant. Then

h(G)2

2
6 λ2 6 2h(G).

Proof. See [Lub94, Proposition 4.2.4, 4.2.5] or [Fri92, Section 1].
�

Lemma 2.5. The Cayley sum graph CΣ(G,S) is bipartite if and only if G contains a
subgroup of index two which does not intersect S.

Proof. Suppose G contains a subgroup H of index two which does not intersect S. Note that
H forms an independent subset of the set of vertices of the graph CΣ(G,S). Otherwise, for
two adjacent elements x, y ∈ H with y = x−1s for some s ∈ S, we will obtain s = xy ∈ H,
which contradicts H ∩S = ∅. We claim that G \H also forms an independent subset of the
set of vertices of the graph CΣ(G,S). Otherwise, for two adjacent elements x, y ∈ G \ H
with y = x−1s for some s ∈ S, we will obtain s = xy. Since H has index two in G, it
follows that the product of any two elements of G lying outside H lies in H. Thus we get
H ∩ S 6= ∅. Hence G \H is independent as claimed. So the Cayley sum graph CΣ(G,S) is
bipartite.

Suppose the Cayley sum graph CΣ(G,S) is bipartite, i.e., its vertex set is the union of
two disjoint partite sets A,B. Without loss of generality, suppose A contains the identity
element e of G. Let x, y be two elements of A. Since CΣ(G,S) is connected, the vertices
x, y are connected to e. Since S is symmetric, the elements x, y are equal to products of
even number of elements of S. So xy is also equal to a product of even number of elements
of S. Thus xy ∈ A, and hence A is a subgroup of G. Since A is independent, it does not
intersect S. Let s ∈ S be an element. Since A is independent, the image of the map A→ G
defined by a 7→ a−1s does not intersect A, and hence |A| ≤ |B|. Similarly, |B| ≤ |A|. So
|A| = |B|, and hence A is a subgroup of G of index two avoiding S. �
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Lemma 2.6. The Cayley sum graph CΣ(G,S) is undirected if and only if S is closed under
conjugation.

Proof. If h is adjacent to g, then h = g−1s for some s ∈ S. Note that g = sh−1 =
h−1(hsh−1), which implies that g is adjacent to h if and only if hsh−1 ∈ S. Hence g is
adjacent to each of its adjacent vertices if and only if (g−1s)s(g−1s)−1 = g−1sg ∈ S. Hence
CΣ(G,S) is undirected if and only if S contains gsg−1 for any s ∈ S,G ∈ G. �

Lemma 2.7. Suppose CΣ(G,S) is an ε-vertex expander for some ε > 0, i.e.,

|A−1S \A| ≥ ε|A|

for every subset A ⊆ G with |A| ≤ 1
2 |G|. Then for any subset A of G with |A| ≥ 1

2 |G|, the
inequality

|A−1S \A| ≥ ε

d
|G \A|

holds.

Proof. The claimed inequality follows from

|AcS \ (Ac)−1| = | ∪s∈S (Acs \ (Ac)−1)|
= | ∪s∈S (Acs ∩A−1)|

≤
∑
s∈S
|Acs ∩A−1|

=
∑
s∈S
|Ac ∩A−1s−1|

=
∑
s∈S
|A−1s−1 \A|

≤
∑
s∈S
|A−1S \A|

= d|A−1S \A|
and

|AcS \ (Ac)−1| ≥ ε|(Ac)−1|
= ε|Ac|
= ε|G \A|.

�

Proposition 2.8. Let CΣ(G,S) be an ε-vertex expander for some ε > 0. Suppose the
normalised adjacency matrix of CΣ(G,S) has an eigenvalue in the interval (−1,−1 + ζ] for

some ζ satisfying 0 < ζ ≤ ε2

4d4 . Then for some subset A of G, the following conditions hold

with β = d2
√

2ζ(2− ζ).

(1)

(
1

2+β+ dβ
ε

)
|G| ≤ |A| ≤ 1

2 |G|.

(2) |Ag ∩ (Ag)−1S| ≤ β
ε |A| for all g ∈ G.

(3) |(Ag)−1s∆(Ag)c| ≤ β
ε (ε+ d+ 2)|A| for all s ∈ S, g ∈ G.

(4) |A−1g ∩ (A−1g)−1S| ≤ β
ε |A| for all g ∈ G.
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(5) |(A−1g)−1s∆(A−1g)c| ≤ β
ε (ε+ d+ 2)|A| for all s ∈ S, g ∈ G.

Proof. Since CΣ(G,S) is not bipartite, by Lemma 2.5, it follows that |G| ≥ 3. Let s be an
element of S with s 6= 1. If G has order 3, then S = {s, s−1} and s is of order 3, and hence

ε = ε|{s}| ≤ |{s}−1S \ {s}| = |{1, s−2} \ {s}| = |{1, s} \ {s}| = 1 = d− 1.

When |G| ≥ 4, we have

ε|{1, s}| ≤ |{1, s}−1S \ {1, s}| = |(S ∪ s−1S) \ {1, s}| ≤ |(S \ {s})∪ (s−1S \ {1})| ≤ 2(d− 1),

which implies

(2.1) ε ≤ d− 1.

Consequently, it follows that ζ < 1. Let T denote the normalised adjacency matrix of the
Cayley sum graph CΣ(G,S). Since T has an eigenvalue in (−1,−1 + ζ] and ζ < 1, it follows
that T 2 has an eigenvalue ν in [(1− ζ)2, 1).

Consider the undirected multi-graph M(G,S × S) (which may contain multiple edges,
also and multiple loops at a single vertex) with G as its set of vertices and its edges are
obtained by drawing an edge from g to sgt for each (s, t) ∈ S × S. Since S is symmetric,
this multi-graph is indeed undirected (since g = s−1(sgt)t−1 for any (s, t) ∈ S × S and for
any g ∈ G). For two distinct elements (s, t), (s′, t′) ∈ S × S, the edges from g to sgt and
s′gt′ are considered distinct (even when sgt = s′gt′). Note that the normalised adjacency
matrix ofM(G,S×S) is equal to T 2. Thus the second largest eigenvalue of the normalised
adjacency matrix of M(G,S × S) is ≥ ν ≥ (1 − ζ)2 = 1 − ζ(2 − ζ). Hence the second
smallest eigenvalue of the normalised Laplacian matrix of M(G,S × S) is ≤ ζ(2 − ζ). By
the discrete Cheeger–Buser inequality (Proposition 2.4), it follows that the edge-Cheeger
constant of M(G,S × S) satisfies

1

2
h(M(G,S × S))2 ≤ ζ(2− ζ),

which yields

h(M(G,S × S)) ≤
√

2ζ(2− ζ).

Consequently, by Lemma 2.3, the vertex-Cheeger constant of M(G,S × S) satisfies

h(M(G,S × S)) ≤ d2h(M(G,S × S)) ≤ d2
√

2ζ(2− ζ).

This implies that for some subset A of G with |A| ≤ 1
2 |G|,

(2.2)
|SAS \A|
|A|

≤ d2
√

2ζ(2− ζ)

holds (since the size of the set SAS \ A is no larger than the size of the boundary of the
subset A of the set of vertices of M(G,S × S)).

We claim that

(2.3) |A ∪A−1S| ≥ 1

2
|G|.

Otherwise, the inequality |A ∪A−1S| ≤ 1
2 |G| would imply

ε|A ∪A−1S| ≤ |((A ∪A−1S)−1S) \ (A ∪A−1S)|,
which combined with the inequalities

ε|A| ≤ ε|A ∪A−1S|
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and

|((A∪A−1S)−1S)\(A∪A−1S)| = |(A−1S∪SAS)\(A∪A−1S)| = |SAS\S| ≤ |A|d2
√

2ζ(2− ζ)

implies

ε ≤ d2
√

2ζ(2− ζ) < d2
√

4ζ.

This contradicts the assumption ζ ≤ ε2

4d4 . Hence Equation (2.3) holds.
Applying Lemma 2.7 to the Cayley sum graph CΣ(G,S), we obtain

ε

d
|G \ (A ∪A−1S)| ≤ |((A ∪A−1S)−1S) \ (A ∪A−1S)| ≤ |A|d2

√
2ζ(2− ζ) = |A|β.

So

dβ

ε
|A| ≥ |G \ (A ∪A−1S)| = |G| − |A ∪A−1S|

which implies

|G| ≤ dβ

ε
|A|+ |A ∪A−1S|

≤ dβ

ε
|A|+ |A|+ |A−1S|

=
dβ

ε
|A|+ |A|+ |SA|

≤ dβ

ε
|A|+ |A|+ |SAS|

≤ dβ

ε
|A|+ |A|+ |A|+ |SAS \A|

≤ dβ

ε
|A|+ 2|A|+ β|A|,

where the last inequality follows from Equation (2.2). This proves the inequalities as in
statement (1).

To obtain the inequality in statement (2), note that |A| ≤ 1
2 |G| implies that |Ag ∩

(Ag)−1S| ≤ 1
2 |G|. Since CΣ(G,S) is an ε-vertex expander, it follows that

ε|Ag ∩ (Ag)−1S| ≤ |((Ag ∩ (Ag)−1S)−1S) \ (Ag ∩ (Ag)−1S)|
= |(((Ag)−1 ∩ SAgS) \ (Ag ∩ (Ag)−1S)|
≤ |((Ag)−1S ∩ SAgS) \ (Ag ∩ (Ag)−1S)|
≤ |SAgS \Ag|
= |SAgSg−1 \A|
= |SAS \A|
≤ β|A|.

This establishes the inequality in statement (2).
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To obtain the inequality in statement (3), it suffices to observe that

|(Ag)−1s∆(Ag)c| = |(Ag)−1s|+ |(Ag)c| − 2|(Ag)−1s ∩ (Ag)c|
= |Ag|+ |G| − |Ag| − 2(|(Ag)−1s| − |(Ag)−1s ∩Ag|)
= |G| − 2|(Ag)−1s|+ 2|(Ag)−1s ∩Ag|
= |G| − 2|A|+ 2|Ag ∩ (Ag)−1s|
≤ |G| − 2|A|+ 2|Ag ∩ (Ag)−1S|

≤
(

2 + β +
dβ

ε

)
|A| − 2|A|+ 2β

ε
|A|

= β

(
1 +

d

ε
+

2

ε

)
|A|

holds, where the final inequality is obtained by applying statement (1) and (2).
To obtain the inequality in statement (4), note that |A−1| ≤ 1

2 |G| implies that |A−1g ∩
(A−1g)−1S| ≤ 1

2 |G|. Since CΣ(G,S) is an ε-vertex expander, it follows that

ε|A−1g ∩ ((A−1g)−1S)| ≤ |((A−1g ∩ ((A−1g)−1S))−1S) \ (A−1g ∩ ((A−1g)−1S))|
= |(((A−1g)−1 ∩ (SA−1gS)) \ (A−1g ∩ ((A−1g)−1S))|
≤ |(((A−1g)−1S) ∩ (SA−1gS)) \ (A−1g ∩ ((A−1g)−1S))|
≤ |SA−1gS \A−1g|
= |SA−1gSg−1 \A−1|
= |SA−1S \A−1|
= |SAS \A|
≤ β|A|.

This establishes the inequality in statement (4).
To complete the proof, it suffices to observe that

|(A−1g)−1s∆(A−1g)c| = |(A−1g)−1s|+ |(A−1g)c| − 2|(A−1g)−1s ∩ (A−1g)c|
= |A−1g|+ |G| − |A−1g| − 2(|(A−1g)−1s| − |(A−1g)−1s ∩A−1g|)
= |G| − 2|(A−1g)−1s|+ 2|(A−1g)−1s ∩A−1g|
= |G| − 2|A|+ 2|A−1g ∩ (A−1g)−1s|
≤ |G| − 2|A|+ 2|A−1g ∩ ((A−1g)−1S)|

≤
(

2 + β +
dβ

ε

)
|A| − 2|A|+ 2β

ε
|A|

= β

(
1 +

d

ε
+

2

ε

)
|A|

holds, where the final inequality is obtained by applying statement (1) and (4). �

Proposition 2.9. Under the notations and assumptions as in Proposition 2.8, and the
additional hypothesis

β <
ε2

4d(d+ 1)
,
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it follows that for a given element g ∈ G,

(1) exactly one of the inequalities

|A ∩Ag| ≤ dβ

ε2
(ε+ d+ 2)|A|, |A ∩Ag| ≥

(
1− dβ

ε2
(ε+ d+ 2)

)
|A|

holds,
(2) exactly one of the inequalities

|A ∩A−1g| ≤ dβ

ε2
(ε+ d+ 2)|A|, |A ∩A−1g| ≥

(
1− dβ

ε2
(ε+ d+ 2)

)
|A|

holds.

Proof. Note that the inequalities

2dβ

ε2
(ε+ d+ 2) ≤ 2dβ

ε2
(d+ d+ 2) =

4dβ

ε2
(d+ 1) < 1

imply that

dβ

ε2
(ε+ d+ 2) < 1− dβ

ε2
(ε+ d+ 2).

Hence it suffices to show that for a given element g ∈ G, one of the inequalities

|A ∩Ag| ≤ dβ

ε2
(ε+ d+ 2)|A|, |A ∩Ag| ≥

(
1− dβ

ε2
(ε+ d+ 2)

)
|A|

holds, and one of the inequalities

|A ∩A−1g| ≤ dβ

ε2
(ε+ d+ 2)|A|, |A ∩A−1g| ≥

(
1− dβ

ε2
(ε+ d+ 2)

)
|A|

holds.
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Define the subset B+ of G by B+ := A∆(Ag)c. The set Bc
+ is also equal to (A∆(Ag)c)c =

A∆Ag. Note that

|B−1
+ S∆B+| ≤

∑
s∈S
|B−1

+ s∆B+|

=
∑
s∈S
|((A∆(Ag)c)−1s)∆(A∆(Ag)c)|

=
∑
s∈S
|(A−1s∆((Ag)c)−1s)∆(A∆(Ag)c)|

=
∑
s∈S
|(A−1s∆((Ag)c)−1s)∆(Ac∆Ag)|

=
∑
s∈S
|(A−1s∆Ac)∆

(
((Ag)c)−1s∆Ag

)
|

=
∑
s∈S
|(A−1s∆Ac)∆

(
((Ag)−1)cs∆Ag

)
|

=
∑
s∈S
|(A−1s∆Ac)∆

(
(Ag)−1s∆(Ag)c

)
|

≤
∑
s∈S

(
|A−1s∆Ac|+ |(Ag)−1s∆(Ag)c|

)
≤ 2dβ

ε
(ε+ d+ 2)|A|,

and

|(Bc
+)−1S∆Bc

+| ≤
∑
s∈S
|(Bc

+)−1s∆Bc
+|

=
∑
s∈S
|((A∆Ag)−1s)∆(A∆Ag)|

=
∑
s∈S
|(A−1s∆(Ag)−1s)∆(Ac∆(Ag)c)|

=
∑
s∈S
|(A−1s∆Ac)∆((Ag)−1s∆(Ag)c)|

≤
∑
s∈S

(
|A−1s∆Ac|+ |(Ag)−1s∆(Ag)c|

)
≤ 2dβ

ε
(ε+ d+ 2)|A|

hold as a consequence of Proposition 2.8(3). We consider the following cases, viz., |B+| ≤
|G|
2 , |B+| > |G|

2 . When |B+| ≤ |G|2 holds, we obtain

ε|B+| ≤ |B−1
+ S \B+| ≤ |B−1

+ S∆B+| ≤
2dβ

ε
(ε+ d+ 2)|A|,

which yields

|B+| ≤
2dβ

ε2
(ε+ d+ 2)|A|.
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Since

|G| − |B+| = |Bc
+| = |A∆Ag| = |A| − |A ∩Ag|+ |Ag| − |A ∩Ag| = 2|A| − 2|A ∩Ag|

holds, we obtain

2|A ∩Ag| ≤ |G| − 2|A|+ 2|A ∩Ag| = |B+| ≤
2dβ

ε2
(ε+ d+ 2)|A|.

While |B+| > |G|
2 holds, we obtain

ε|Bc
+| ≤ |(Bc

+)−1S \Bc
+| ≤ |(Bc

+)−1S∆Bc
+| ≤

2dβ

ε
(ε+ d+ 2)|A|,

which yields

|Bc
+| ≤

2dβ

ε2
(ε+ d+ 2)|A|.

Since

|Bc
+| = |A∆Ag| = |A| − |A ∩Ag|+ |Ag| − |A ∩Ag| = 2|A| − 2|A ∩Ag|

holds, we obtain

|A ∩Ag| ≥ |A| − dβ

ε2
(ε+ d+ 2)|A| =

(
1− dβ

ε2
(ε+ d+ 2)

)
|A|.

Considering the subset B− of G defined by B− := A∆(A−1g)c, and using Proposition 2.8(5)
and similar arguments as above, we obtain that

|A ∩A−1g| ≤ dβ

ε2
(ε+ d+ 2)|A|.

or

|A ∩A−1g| ≥
(

1− dβ

ε2
(ε+ d+ 2)

)
|A|.

holds according as |B−| ≤ |G|2 or |B−| > |G|
2 . �

Theorem 2.10. Suppose CΣ(G,S) is an ε-vertex expander for some ε > 0. Assume that
this graph is not bipartite. Then the eigenvalues of the normalised adjacency matrix of this
graph are greater than −1 + `ε,d with

`ε,d =
ε4

29d8
.

Proof. On the contrary, let us assume that an eigenvalue of the normalised adjacency matrix
of the graph CΣ(G,S) lies in the interval [−1,−1 + `ε,d]. Since CΣ(G,S) is non-bipartite, it
follows that −1 is not an eigenvalue of its normalised adjacency matrix. Hence an eigenvalue
of the normalised adjacency matrix of the graph CΣ(G,S) lies in the interval (−1,−1+`ε,d].
Set

τ = d2
√

2`ε,d(2− `ε,d),

r = 1− dτ

ε2
(ε+ d+ 2).

Since `ε,d = ε4

29d8 , we have

τ = d2
√

2`ε,d(2− `ε,d) < d2
√

4`ε,d 6
ε2

8
√

2d2
.
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1− r =
dτ

ε2
(ε+ d+ 2) <

1

8
√

2d
(ε+ d+ 2) ≤ 1

8
√

2d
(d− 1 + d+ 2) ≤ 3

8
√

2
<

1

3
.

Consequently,

(2.4) `ε,d ≤
ε2

4d4
, τ <

ε2

4d(d+ 1)
and r >

2

3
.

Define the subsets H+, H− of G by

H+ := {g ∈ G : |A ∩Ag| ≥ r|A|},
H− := {g ∈ G : |A ∩A−1g| ≥ r|A|}.

Note that H+ contains the identity element of G. By the triangle inequality,

|A \Agh| ≤ |A \Ah|+ |Ah \Agh|
= |A \Ah|+ |A \Ag|
= |A| − |A ∩Ah|+ |A| − |A ∩Ag|
≤ 2|A| − 2r|A|.

Consequently,

|A ∩Agh| = |A| − |A \Agh| ≥ |A| − 2|A|+ 2r|A| = (2r − 1)|A|.
If |A ∩Agh| ≤ (1− r)|A|, then we obtain

(1− r)|A| ≥ |A ∩Agh| ≥ (2r − 1)|A|,
which implies r ≤ 2

3 . Since r > 2
3 , by Proposition 2.9(1), it follows that H+ contains gh. So

H+ is a subgroup of G. Note that H+ is not equal to G, otherwise, we will obtain

|A| · |G|
2
≥ |A|2 =

∑
g∈G
|A ∩Ag| ≥ |G| · r|A|,

which yields r ≤ 1
2 .

The following estimate

|A|2 =
∑
g∈G
|A ∩Ag| ≤ |H+||A|+

dτ

ε2
(ε+ d+ 2)|A||G \H+|

implies

|A| ≤ |H+|+
dτ

ε2
(ε+ d+ 2)(|G| − |H+|).

Using Proposition 2.8(1), we obtain(
1

2 + τ + dτ
ε

)
|G| − dτ

ε2
(ε+ d+ 2)|G| ≤

(
1− dτ

ε2
(ε+ d+ 2)

)
|H+|.

We claim that H+ is a subgroup of G of index two. To prove this claim, it suffices to show
that

(2.5)
1

3

(
1− dτ

ε2
(ε+ d+ 2)

)
<

(
1

2 + τ + dτ
ε

)
− dτ

ε2
(ε+ d+ 2),

i.e., (
2 + τ +

dτ

ε

)(
1 +

2dτ

ε2
(ε+ d+ 2)

)
< 3,
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which is equivalent to

(2.6)

(
τ +

dτ

ε

)
+

2dτ

ε2
(ε+ d+ 2)

(
2 + τ +

dτ

ε

)
< 1.

Let R =
(
τ + dτ

ε

)
. From Equation (2.1), we obtain

τ <
1

8
√

2

(
1− 1

d

)2

,
dτ

ε
<

1

8
√

2

(
1− 1

d

)
and R <

1

8
√

2

(
2− 3

d
+

1

d2

)
.

From Equation (2.6), it suffices to show that

R+
1

4
√

2

(
2 +

1

d

)
(2 +R) < 1.

i.e., it suffices to show that

1

8
√

2

(
2− 3

d
+

1

d2

)
+

1

4
√

2

(
2 +

1

d

)(
2 +

1

8
√

2

(
2− 3

d
+

1

d2

))
< 1.

Collecting the terms, it suffices to show that,(
5

4
√

2
+

1

16

)
+

(
1

8
√

2
− 1

16

)
1

d
+

(
1

8
√

2
− 1

64

)
1

d2
+

1

64

1

d3
< 1,

which reduces to

(60− 40
√

2)d3 − 4(
√

2− 1)d2 − (4
√

2− 1)d− 1 > 0.

The above cubic polynomial in d is positive for d > 2 and hence the claim that H+ is a
subgroup of G of index two follows.

By Proposition 2.8(2), H− does not intersect the set S. Similar to as before, the following
estimate

|A|2 =
∑
g∈G
|A ∩A−1g| ≤ |H−||A|+

dτ

ε2
(ε+ d+ 2)|A||G \H−|

implies

|A| ≤ |H−|+
dτ

ε2
(ε+ d+ 2)(|G| − |H−|).

This inequality combined with Proposition 2.8(1) yields(
1

2 + τ + dτ
ε

)
|G| − dτ

ε2
(ε+ d+ 2)|G| ≤

(
1− dτ

ε2
(ε+ d+ 2)

)
|H−|.

The inequality in Equation (2.5) (which has been established) implies that

|H−| >
|G|
3
,

and consequently, H− is nonempty. Note that for h− ∈ H−, h+ ∈ H+, the triangle inequality
implies

|A \A−1h−h+| ≤ |A \Ah+|+ |Ah+ \A−1h−h+|
= |A \Ah+|+ |A \A−1h−|
= |A| − |A ∩Ah+|+ |A| − |A ∩A−1h−|
≤ 2|A| − 2r|A|,
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which yields

|A ∩A−1h−h+| = |A| − |A \A−1h−h+| ≥ |A| − 2|A|+ 2r|A| = (2r − 1)|A|.
If |A ∩A−1h−h+| ≤ (1− r)|A|, then we will obtain

(1− r)|A| ≥ |A ∩A−1h−h+| ≥ (2r − 1)|A|,
which in turn implies r ≤ 2

3 . Since r > 2
3 , using Proposition 2.9(2), we conclude that

|A ∩ A−1h−h+| ≥ r|A|, i.e., H− contains h−h+. Thus, H−H+ is contained in H−. Since
H− is nonempty, it follows that H− is equal to H+ or H− is equal to the non-trivial coset
of H+ in G, i.e., G \H+. If H− is not equal to H+, then the index two subgroup H+ of G
will contain S (since H− ∩ S = ∅), which contradicts the fact that S generates G. So H−
is equal to H+. Consequently, H+ is a subgroup of G of index two avoiding S. Thus, the
graph CΣ(G,S) is bipartite by Lemma 2.5. We are done. �

Proof of Theorem 1.3. Since CΣ(G,S) is connected, its vertex Cheeger constant hΣ(G) is
positive. Thus CΣ(G,S) is an hΣ(G)-expander with hΣ(G) > 0. So Theorem 1.3 follows
from Theorem 2.10. �

Proof of Corollary 1.4. From Theorem 1.3, it follows that for any k ≥ 1, the eigenvalues

of the normalised adjacency matrix of CΣ(Gk, Sk) of are greater than −1 + ε4

29d8 , which is
depends on ε, d, but not on k. Hence the corollary. �

As a consequence of the proof of Theorem 2.10, we obtain the following refinement of the
bound provided in [Bis19, Theorem 1.4].

Theorem 2.11. Let C(G,S) denote the Cayley graph of G with respect to the symmetric
generating set S with |S| = d and h(G) denote its vertex Cheeger constant. Suppose S does
not contain the identity element. If this graph is non-bipartite, then the largest eigenvalue
of the normalised Laplacian matrix is less than

2− h(G)4

29d8
.

Proof. Let us first consider the case when G contains three elements. Let g be a nontrivial
element of G, and write G = {1, g, g2}. Note that S is equal to {g, g2}. With respect to the
above ordering of the vertices of C(G,S), its normalized adjacency matrix is equal to0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

 ,

whose eigenvalues are equal to −1
2 ,−

1
2 , 1. So the eigenvalues of the normalized Laplacian of

C(G,S) are 0, 3
2 ,

3
2 . In order to prove the result when |G| = 3, we need to show that

3

2
< 2− h(G)4

29d8
,

which follows from h(G) 6 d and d > 1. Thus it remains to consider the case |G| 6= 3, which
we assume from now on.

Suppose C(G,S) is an ε-vertex expander with ε > 0 and it is non-bipartite. We claim
that the largest eigenvalue of the normalised Laplacian matrix is less than

2− ε4

29d8
.
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The bound on this eigenvalue given by [Bis19, Theorem 1.4] is

2− ε4

29d6(d+ 1)2
.

Note that the proof of this result as in loc.cit. crucially relies on the last inequality in [Bis19,
p.306], i.e., the inequality

(2.7)

(
β +

dβ

ε

)
+

2dβ

ε2
(ε+ d+ 2)

(
2 + β +

dβ

ε

)
< 1

where β = d2
√

2ζ(2− ζ). This inequality has been established using ε ≤ d and the hypoth-

esis that ζ = ε4

29d6(d+1)2 . The analogue of Equation (2.7) in the context of Cayley sum graph

is the inequality (
τ +

dτ

ε

)
+

2dτ

ε2
(ε+ d+ 2)

(
2 + τ +

dτ

ε

)
< 1

in Equation (2.6) where τ = d2
√

2`ε,d(2− `ε,d). The above inequality has been established

using ε ≤ d − 1 and `ε,d = ε4

29d8 . Hence Equation (2.7) will follow for ζ = ε4

29d8 if ε ≤ d − 1
holds, which is true by Lemma 2.12 below. So the claim follows. Noting that C(G,S) is
an h(G)-vertex expander, and h(G) > 0 (since the graph C(G,S) is connected), the result
follows from the claim. �

Lemma 2.12. Suppose C(G,S) is an ε-expander, and it is non-bipartite. If |G| 6= 3, then
ε 6 d− 1.

Proof. Since C(G,S) is an ε-expander,

ε|X| 6 |SX \X|,∀∅ 6= X ⊆ G such that |X| 6 |G|
2
.

Let |G| > 5 and S contains an element s such that s 6= s−1. Let X = {1, s, s−1}. Then

3ε = ε|X| 6 |S{1, s, s−1} \ {1, s, s−1}| 6 3|S| − 4⇒ ε 6 d− 4

3
< (d− 1).

If |G| ≥ 4 and all elements of S have order 2 and then choose X = {1, s} for some s ∈ S.
Proceeding as above, it is clear in this case that 2ε 6 2d−2 or ε 6 (d−1). In the remaining
cases, the inequality follows by a case by case analysis on the size of G. This proves the
Lemma. �

3. Sharper estimates

Lemma 3.1. Suppose the Cayley sum graph CΣ(G,S) is non-bipartite and no symmetric
set T satisfying ∅ 6= T ( S generates G. If CΣ(G,S) is ε-vertex expander with ε > 0, then
ε ≤ 2.

Proof. Note that S contains at least two elements. Otherwise, it contains only one element,
and it is of order two (since S is symmetric), in which case CΣ(G,S) is bipartite by Lemma
2.5. If S contains only two elements, then ε ≤ d− 1 = 1 < 2.

Suppose S contains at least three elements. Let s be an element of S. Note that S\{s, s−1}
is a nonempty symmetric subset of S. Let H denote the subgroup of G generated by the

S \ {s, s−1}. Since |H| ≤ |G|2 , we obtain

ε|H| ≤ |H−1S \H| = |HS \H| ≤ |H · {s, s−1}|,
which yields ε ≤ 2. �
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κ d0

477 3
330 4
257 5
214 6
187 7
167 8
153 9
142 10

Table 1. Comparison of the absolute constant κ and the lower bound d0 of
the degree d in the context of Theorem 3.2.

Theorem 3.2. Suppose CΣ(G,S) is an ε-vertex expander for some ε > 0. Assume that this
graph is not bipartite, and no symmetric set T satisfying ∅ 6= T ( S generates G. Set

(3.1) `ε,d =
ε4

κd8
.

If d ≥ d0, then the eigenvalues of the normalised adjacency matrix of this graph are greater
than −1 + `ε,d whenever κ and d0 take the values as in Table 1.

Proof. Note that the proof of Theorem 2.10 depends on `ε,d through Equation (2.4) and
(2.6). Hence it suffices to prove that these two equations hold for the redefined `ε,d as in
Equation (3.1). If κ ≥ 144, then the inequality

τ < 2d2
√
`ε,d =

2√
κ

ε2

d2
,

implies that Equation (2.4) holds. By Lemma 3.1, we obtain ε ≤ 2. Using this estimate, it
turns out that

τ +
dτ

ε
+

2dτ

ε2
(ε+ d+ 2)

(
2 + τ +

dτ

ε

)
=
τ

ε
(ε+ d) +

2dτ

ε2
(ε+ d+ 2)

(
2 +

τ

ε
(ε+ d)

)
=
τ

ε

(
ε+ d+

4d(ε+ d+ 2)

ε

)
+

2dτ2

ε3
(ε+ d)(ε+ d+ 2)

=
τ

ε2
(ε(ε+ d) + 4d(ε+ d+ 2)) +

2dετ2

ε4
(ε+ d)(ε+ d+ 2)

≤ τ

ε2
(2(d+ 2) + 4d(d+ 4)) +

4dτ2

ε4
(d+ 2)(d+ 4)

=
τ

ε2

(
4d2 + 18d+ 4

)
+

4dτ2

ε4
(d+ 2)(d+ 4)

<
2√
κd2

(
4d2 + 18d+ 4

)
+

16

κd3
(d+ 2)(d+ 4)

=
2
√
κd(4d2 + 18d+ 4) + 16(d+ 2)(d+ 4)

κd3
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is less than 1, i.e., the inequality in Equation (2.6) holds whenever d ≥ d0, and κ and d0 take
the prescribed values. Hence the conclusion of Theorem 2.10 holds when `ε,d is redefined as
above, and κ and d satisfy the given conditions. �

Note that Lemma 3.1 holds when CΣ(G,S) is replaced by C(G,S). Hence Theorem 3.2
remains valid even when the Cayley sum graph CΣ(G,S) is replaced by the Cayley graph
C(G,S).
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