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In this snapshot we introduce configuration spaces
and explain how a mathematician studies their ‘shape’.
This will lead us to consider paths of configurations
and braid groups, and to explore how algebraic prop-
erties of these groups determine features of the spaces.

1 What is algebraic topology?

1.1 Topological spaces

Topology 1 is a branch of mathematics that formalizes how to describe shapes
that appear in nature (or are defined abstractly!) and gives us mathematical
tools to verify our intuition about them. The objects of study are called
topological spaces.

Basic examples of topological spaces are curves, surfaces and their higher
dimensional analogues, known as manifolds. An n-dimensional manifold M
is a topological space that locally 2 looks like the Euclidean space Rn. Thus
1-dimensional manifolds are just curves (like the circle or the line), and 2-
dimensional manifolds are surfaces (like balloons or doughnuts or pretzels).

In the painting in Figure 1, we can identify examples of “natural” topological
spaces. A typical example of an n-manifold is the unit sphere Sn = {x ∈ Rn+1 |

1 For interesting answers to the question “what is topology?” we recommend the series
Defining topology through interviews by R. Boyld [6].
2 Locally means if we “zoom in” to a small enough region.
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Figure 1: Topological spaces that appear in nature.

‖x‖ = 1} in Rn+1, the case n = 2 being the familiar two-dimensional sphere S2

in R3.

1.2 Equivalence of topological spaces

We will consider that two topological spaces X and Y are equivalent if they
can be deformed into each other through continuous deformations: twisting,
stretching, contracting, etc. Tearing, however, is not allowed.

We formalize this as follows:

• Two continuous functions f, g : X → Y are said to be homotopic if there
is a continuous mapping H : X × [0, 1] → Y (a homotopy) such that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. In that case we write
f ' g.

• The spacesX and Y are homotopy equivalent if there are continuous functions
f : X → Y and g : Y → X (called homotopy equivalences) such that:

g ◦ f ' idX and f ◦ g ' idY .

Here we use the notation idX for the identity function on the space X.

If there is a homeomorphism f : X → Y , which is a continuous bijection
with a continuous inverse, the spaces X and Y are said to be homeomorphic.
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Figure 2: The ‘punctured plane’ C\{0} can be continuously deformed (without
tearing) into the circle S1.

In particular, two homeomorphic spaces are homotopy equivalent (the converse
is not true).

One of the fundamental questions in topology is: what is the classification
of topological spaces up to homotopy equivalence? In other words, we are
interested in arranging topological spaces into classes where each class contains
all topological spaces that are homotopic to each other. For example, the plane
(you can think of it as R2 or C) can be continuously shrunk down to a point
and the ‘punctured plane’ C \ {0} is homotopy equivalent to a circle S1 (see
Figure 2). The plane with two punctures C\{0, 1} can be continuously retracted
to the space S1∨S1, which is homeomorphic the ‘figure-eight’ space. 3 However,
how do we know whether C \ {0, 1} is equivalent or not to C?

1.3 Algebraic topology

Algebraic topology uses tools from abstract algebra to study and classify topo-
logical spaces. The classical method of algebraic topology consists in the
construction of algebraic invariants 4 of topological spaces allowing us to
translate geometrical problems into algebraic ones, possibly easier to analize.

One of these invariants is the so called fundamental group, introduced in
1985 by Jules Henri Poincaré (1854–1912) in his attempt to classify surfaces
and manifolds up to homeomorphism. Namely, if we start with a space X and
a point x0 ∈ X, in order to identify algebraically certain ‘holes’ in the space
one can consider paths in X that start and end at the point x0, in other words,
continuous functions γ : [0, 1]→ X such that γ(0) = γ(1) = x0. We call these

3 S1 ∨ S1 denotes the wedge sum of two circles: a topological space obtained by gluing
together two circles at a single point.
4 An algebraic invariant of a space is a quantity or an algebraic object, such as a group,
that does not change under homeomorphism or homotopy equivalence.
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paths based loops and think of γ(t) as the position in X at time t.
Two loops are equivalent if we can deform continuously one to another,

keeping the point x0 fixed, and we say that the loops are homotopic. We can
think that the curves that describe the paths are made of a rubber string that
can be stretched and deformed without tearing (see for example Figure 3).
Moreover, two loops γ1 and γ2 can be combined to get a new loop γ1 ∗ γ2 by
concatenation. First, trace the path γ1 from x0 back to x0 and then trace the
loop γ2 going in both cases “twice as fast” in the time t ∈ [0, 1]. Notice that
the resulting path γ1 ∗ γ2 is a loop based at x0 and moreover γ1 ∗ γ2(1/2)=x0.

Figure 3: All based loops in the plane are homotopic to the constant loop.

Definition 1. The fundamental group π1(X,x0) is the set of homotopy classes
of loops in X based at x0 with the operation of concatenation of loops.

This concatenation is well-defined on homotopy classes of loops and gives
π1(X,x0) the structure of a group 5 : the operation is associative, it has an
identity element (what happens when you concatenate with the constant loop?)
and there are inverses (the loops that go backwards!). Fundamental groups help
us when classifying topological spaces: if two spaces X and Y are homotopy
equivalent, their corresponding fundamental groups should be isomorphic groups.

Example 1. Let us provide a list of examples of fundamental groups.

• In the plane C all loops can be deformed to the constant loop since there
are no holes in the plane (see Figure 3). The fundamental group is thus the
trivial group.

5 For the basics of group theory we refer the reader to the Snapshot 005/2016 Symmetry
and characters of finite groups by Eugenio Gianelli and Jay Taylor or the Snapshot 003/2018
Computing with symmetries by Colva M. Roney-Dougal.
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(a) (b)

Figure 4: (a) In C \ {0}, the loop γ “captures” the hole in the plane and,
therefore, is not homotopic to the loop µ. (b) The based loops a and
b in C \ {0, 1} around the punctures generate the fundamental group,
each of these loops detects one of the holes of the space.

• The loop γ around the puncture in C \ {0} “detects” the hole in the plane,
since it cannot be deformed to the constant loop without crossing the
puncture; see Figure 4(a). Each time that we go around we get essentially a
different loop. In this case, the fundamental group is isomorphic to Z and
is generated by γ. Notice that the circle S1 also has fundamental group Z
since it is homotopy equivalent to C \ {0}.

• The space C \ {0, 1} has fundamental group F [a, b], a free group in two
generators a and b, each one corresponding to a loop around one of the
punctures as in C \ {0, 1}: the circles in the ‘figure-eight’ space represented
in Figure 4(b). The elements of this group are given by words on the letters
a and b (and their formal inverses a−1 and b−1) and the operation is given
by concatenation. This group is not abelian since ab 6= ba.

• Let S2 be the unit sphere in R3 and RP2 be the projective plane, namely the
space obtained form S2 after identifying antipodal points. See for example
[17]. Notice that a meridian in S2, going from the north to the south pole,
becomes a loop after projecting to RP2. This suggests that not every loop
in RP2 comes from a loop in S2, and indeed one can show that π1(S2) is
the trivial group, but π1(RP2) = Z/2. Therefore S2 and RP2 cannot be
homotopy equivalent.

• The 3-dimensional sphere S3, the group SO(3) of rotations in R3, the
product S2 × S1 of a 2-sphere and a circle, and the 3-dimensional torus
S1 × S1 × S1, are all examples of 3-dimensional manifolds. However, no two
of them are homotopy equivalent, since their fundamental groups are 0, Z/2,
Z and Z× Z× Z, respectively.

Observe that by computing fundamental groups we can distinguish different
topological spaces. For instance, we just saw that the fundamental group
distinguishes C from C \ {0} from C \ {0, 1} from RP2. Be careful! There are
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spaces that are not homotopy equivalente but have the same fundamental group.
That is the case of the sphere S2 and the plane C, which both have trivial
fundamental groups.

2 Conf igurat ion spaces

Very frequently we are faced with the problem of avoiding collisions between
objects of the same kind, like cars moving around a surface or airplanes flying
through the air. A formal way to treat this problem using topology is by
introducing configuration spaces.

Definition 2. Given a manifold M (or more generally a topological space) and
k ≥ 1, we define the configuration space of k distinct ordered points in M as
the topological space Confk(M) = {(x1, x2, . . . , xk) ∈Mk | xi 6= xj if i 6= j}.

Figure 5: A configuration of 5 vehicles in the plane corresponds to a point
(z1, z2, z3, z4, z5) in Conf5(C).

In classical mechanics, the configuration space of a physical system is the
space of possible positions of the system. In the field of topology, configuration
spaces were studied in 1962 by Ralph Hartzler Fox (1913–1973) and Lee Neuwirth
[13] in connection with Artin’s braid group [3]. They showed that this group is
nothing but the fundamental group of the configuration space of distinct points
in the plane, as will be observed in Section 3. 6 Since then, their topology has
been intensively studied mainly because of their relation to braid groups [5],
spaces of functions [9] and more recently to diverse problems in robotics [1, 14].

In some sense, the labelling of the points in any specific ordered configura-
tion is “artificial”. Therefore we say that two configurations (x1, . . . , xk) and
(y1, . . . , yk) are equivalent if there is a permutation σ (that is an element of the
symmetric group Sk on k letters) such that yi = xσ(i) for all i = 1, . . . , k.

6 As Hans Heinrich Wilhelm Magnus (1907–1990) pointed out in [15], braid groups and
their interpretation as fundamental groups of configuration spaces were already implicit in
the work of Adolf Hurwitz (1859–1919) on monodromy from 1891.
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Definition 3. The set of equivalence classes UConfk(M) := Confk(M)/Sk is
the unordered configuration space. The space UConfk(M) can be thought as
the space of subsets {x1, . . . , xk} of M of cardinality k.

Example 2. Some examples of configuration spaces are the following.

• For any topological space M and k = 1, the space Conf1(M) is just M . For
k = 2, the space Conf2(M) is the set of points in M ×M that do not lie in
the diagonal ∆ = {(x, x) | x ∈M}, that is:

Conf2(M) = {(x, y) ∈M ×M | x 6= y} = (M ×M) \∆.

• When M is the real line R and k ≥ 2 the configuration space Confk(R) is
disconnected, which means that it has several pieces. For instance, for k = 2
the set ∆ is the diagonal line y = x in the the Cartesian plane R2 with
coordinates (x, y). The configuration space Conf2(R) consists of the two
halves in the plane that are left after removing the diagonal line y = x.

• The particular case when M is the complex plane C is already interesting
and it is related to the theory of hyperplane arrangements. A hyperplane
is a subspace whose dimension is one less than that of its ambient space.
For 1 ≤ i < j ≤ k, let Hi,j = {(z1, z2, . . . , zk) ∈ Ck | zi = zj}. Then the
space Confk(C) is nothing but the complement of the union of all these
hyperplanes Hi,j in Ck:

Confk(C) = Ck \

⋃
i<j

Hi,j

 .

The theory of hyperplane arrangements studies geometrical, topological
and combinatorial properties of the set that remains when a finite set of
hyperplanes is removed from the ambient space. This theory is interesting
in its own right as it combines ideas from combinatorics, algebraic topology
and algebraic geometry. A nice introduction to the subject can be found in
[11].

• The space Conf2(C) is the complement of ∆ = {(z, z) | z ∈ C} (note that ∆
coincides with H1,2) which is a complex line in C2. In other words, Conf2(C)
is the complement of a 2-dimensional plane in real 4-dimensional space. By
subtracting one dimension, this space can be deformed onto the complement
of a line in R3 and eventually, onto the complement of a point in R2 (a
punctured plane!), which is homotopy equivalent to S1. Another way to see
this is to notice the space Conf2(C) is homeomorphic to C× (C \ {0}), one
such homeomorphism is given by (z, w) 7→ (z, w − z).

• If M = G is a topological group (a topological space with a continuous
operation that makes it into a group), the space Confk(G) is homeomorphic
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to the product G× Confk−1(G \ {e}) where e is the identity element if G.
A homeomorphism

Confk(G) ≈−−→ G× Confk−1(G \ {e})

is given by the formula

(g1, g2, . . . , gk) 7−→ (g1)× (g−1
1 · g2, . . . , g

−1
1 · gk).

• We can consider C as a topological group with the sum of complex numbers.
In this case:

Conf3(C) ≈ C× Conf2(C \ {0}).

Notice that C\{0} is again a topological group under the product of complex
numbers and the identity element is 1. Thus we have:

Conf3(C) ≈ C× (C \ {0})× (C \ {0, 1}),

which is in turn homotopy equivalent to S1 × (S1 ∨ S1), the product of
the unit circle with a ‘figure-eight’ space. Thus, the fundamental group of
Conf3(C) is Z× F [a, b] which is not even abelian!

What can we say about the shape of other configuration spaces? That is
in general a hard question: the space M where the configurations lie may be
already a complicated space and one would expect that dealing with larger
configurations (say k = 1, 000, 000) will make Confk(M) harder to visualize and
understand.

In what follows we explore more about the shape of Confk(C), the configura-
tion spaces of points in C. So far we have seen what happens when we have
configurations with few points by giving concrete homotopy equivalences. When
an algebraic topologist is not able to come up with explicit homeomorphisms or
homotopy equivalences to spaces that are already known and understood, the
strategy is to study algebraic invariants like the fundamental group.

3 Braid groups

In this section we introduce braid groups and explore their connections with
the topology of configurations spaces of points in the plane.

3.1 Loops of conf igurat ions and braids

In order to study the fundamental group of the configuration space Confk(C)
we would like to get a sense of what the based loops of configurations in the
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plane look like. As before we take a starting point x0 ∈ Confk(C), which is
an ordered configuration (p1, p2, . . . , pk) of points pi ∈ C. Given a based loop
γ : [0, 1]→ Confk(C), at each time t ∈ [0, 1] we have that γ(t) is a new ordered
configuration of k points in the plane. We can think of it as the trajectories

Figure 6: A loop of configurations in Conf5(C).

γi : [0, 1] → C of k particles moving in the plane C that are not allowed to
collide, starting and ending at the ordered configuration x0 = (p1, p2 . . . , pk):

γ(t) = (γ1(t), γ2(t), . . . , γk(t)) for t ∈ [0, 1], with γ(0) = γ(1) = x0.

Hence, one can visualize (see Figure 6) a loop of configurations in Confk(C) as
k strands going around each other: a braid!

Definition 4. The fundamental group of the ordered configuration space
Confk(C), often denoted as Pn, is called the pure braid group. Braid groups
can be defined abstractly, independently of configuration spaces. Consider the
planes z = 0 and z = 1 in R3, which will be denoted by P and Q, respectively.
Choose k distinct points p1, p2, . . . , pk ∈ P and let q1, q2, . . . , qk ∈ Q be the
corresponding orthogonal projections in Q. By an arc in R3 we will understand
a continuous function A : [0, 1]→ R3 which is a homeomorphism onto its image
(no self-intersections are allowed).

Definition 5. A (geometric) braid β on k strands is a collection A1, . . . ,Ak of
disjoint arcs (the strands) in R3 such that:

1. There exists a permutation σ ∈ Sk such that Ai connects the point pi with
the point qσ(i).

9



2. Every arc Ai intersects all parallel planes between P and Q in exactly one
point.

We will say that two braids β1 and β2 are equivalent if either one can be
deformed continuously into the other, that is, if the the corresponding systems
of arcs are isotopic.

Definition 6. The set of equivalence classes of braids on k strands is denoted
by Bk and is equipped with a natural product which makes it a group (see
Figure 7) which is known as Artin’s braid group.

Figure 7: The product β1 ∗ β2 of two geometric braids β1 and β2 corresponds
to the concatenation of two loops of configurations.

Notice that a geometric braid can be regarded as a based loop in the unordered
configuration space UConfk(C) and two such braids are isotopic if and only if
the corresponding loops are homotopic. Therefore, the group Bk is precisely
the fundamental group of the space UConfk(C).

The braid groups Bk were introduced explicitly by Emil Artin in 1925 [3].
It is a classical result of Artin’s that Bk admits the following presentation in
terms of generators and relations:

Bk ∼=
〈
σ1, σ2, . . . , σk−1

∣∣∣∣ σiσj = σjσi if |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1

〉
(1)

That is to say, an element of Bk can be specified as a product of the σi and
of their inverses, and two such products or ‘words’ define the same element
if one can be transformed into the other using the relations among the σi.
Geometrically, the generator σi can be interpreted as the elementary braid that
interchanges the i-th and the (i+ 1)-th strands so that the i-th strand passes
over the (i + 1)-th one. Thus, for instance, the word σ2

1σ3σ
−3
4 σ2

2σ3σ
−1
2 σ−1

4
represents the braid shown in Figure 8.
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Figure 8: A braid in Bk written in terms of the generators σi.

By forgetting the crossings of the strands, each braid determines a permuta-
tion in the symmetric group Sk and clearly every permutation can be attained
in this way. More precisely, there is a natural surjection

π : Bk → Sk given by σi 7→ (i i+ 1),

at the level of generators, which sends σi to the transposition (i i+1). Moreover,
this function is compatible with the product in both groups in the sense that
π(β1 · β2) = π(β1) · π(β2),that is, π is a group homomorphism. For example,
the function π sends the braid shown in Figure 8 to the permutation (2 3 4 5).

A braid β ∈ Bk which induces the identity permutation in Sk is known as
a pure braid. For instance, the squares of the generators σ2

1 , σ
2
2 , . . . , σ

2
k−1 are

pure braids. The set of all pure braids Pk = π−1(1) is a subgroup of Bk which
is precisely the pure braid group from Definition 4 above. The pure braid σ2

i

corresponds to the loop of configurations that makes the i-th point pi in the
based configuration x0 = (p1, p2, . . . , pk) loop around the (i+ 1)-th point pi+1
and fixes all the other pj .

This topological reinterpretation of the groups Pk and Bk as the fundamental
groups of the configuration spaces Confk(C) and UConfk(C), respectively, was
given in 1962 by Ralph Hartzler Fox and Lee Neuwirth [13].

3.2 Braid groups and platonic sol ids

It is not difficult to show that Pk is the normal 7 subgroup 〈〈σ2
i 〉〉 of Bk generated

by the squares of the generators. Therefore, the following quotient group 8 is

7 A subgroup H of a group G is normal in G if gH = Hg for all g ∈ G. The notation 〈〈S〉〉
is used to denote the normal subgroup generated by S.
8 If H is a normal subgroup pf G the set G/H = {gH : g ∈ G} is actually a group. In a
quotient group we ‘clump’ together ‘equivalent members’ of a group, in such a way that we
get a smaller group (in this case the symmetric group Sk).
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isomorphic to the symmetric group:

Bk/〈〈σ2
i 〉〉 = Bk/Pk ∼= Sk.

An interesting variation is obtained by replacing the pure braid group by

〈〈σni | i = 1, . . . , k − 1〉〉,

the normal subgroup of Bk generated by the n-th powers of the generators.
Thus, for k, n ≥ 2 we define the quotient group

Bk(n) = Bk/〈〈σni 〉〉.

For n = 2 and k arbitrary we have Bk(2) ∼= Sk. On the other hand, when
k = 2 it is clear that Bk ∼= Z (it is generated by σ1 with no relations). It follows
that the quotient B2(n) is isomorphic to Z/n, the cyclic group of order n. Then,
the following question arises naturally: for which other values of k and n is
Bk(n) a finite group? The answer is surprising and it was given by Harold Scott
MacDonald Coxeter in 1957, see [10].

Theorem 1 (Coxeter). For k, n ≥ 3, the group Bk(n) is finite if and only if
(k, n) = (3, 3), (3, 4), (4, 3), (3, 5), (5, 3).

Figure 9: The five platonic solids.

In other words, the group Bk(n) is a finite group if and only if (k, n) is the
type of one of the five platonic solids. Recall that in a regular polyhedron all
the faces are congruent regular polygons. Such a polyhedron is said to be of
type (k, n) if k is the number of edges of each face and n is the number of faces
meeting at each vertex. It is well known that there are only five convex regular
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polyhedra, also known as the platonic solids: the tetrahedron (3, 3), the cube
(4, 3), the octahedron (3, 4), the dodecahedron (5, 3), and the icosahedron (3, 5).

The original proof by Coxeter uses groups of hyperbolic isometries. Nowadays
there are proofs of this result that only use basic tools from the representation
theory of finite groups, see [4].

Another relation between the groups Bk(n) and the platonic solids is a nice
formula for the order of these groups. Namely, if Bk(n) is finite and f is the
number of faces of the corresponding solid of type (k, n), then:

|Bk(n)| =
(
f

2

)k−1
k! (see [16]).

The following table gives the orders of all of the groups Bk(n):

Group Bk(n) order
B3(3) 24
B3(4) 96
B3(5) 600
B4(3) 648
B5(3) 155520

3.3 Braid groups and the topology of conf igurat ions spaces

Since the groups Pk and Bk are the fundamental groups of the configuration
spaces Confk(C) and UConfk(C), the topology of these spaces determines the
algebraic structure of the corresponding braid groups. For instance, we have
already seen that

P2 = π1 (Conf2(C),x0) = π1(S1) = Z, and
P3 = π1 (Conf3(C),x0) = π1

(
S1 × (S1 ∨ S1)

)
= Z× F [a, b].

Another example is the fact that the groups Pk and Bk are torsion-free, which
means that there are no elements of finite order 9 . A proof of this result uses
the fact that the configuration spaces of C are finite dimensional aspherical 10

manifolds. But the converse is also true, namely the structure of the groups
Pk and Bk determines in some sense the topology of the configuration spaces.
For example, it can be shown that the abelianzation 11 of Pk is isomorphic to

9 An element g of a group G is of finite order if there exists a positive integer n such that
gn is the identity element of the group.
10 An aspherical space is a topological space with all homotopy groups πn(X) equal to 0
when n > 1.
11 The abelianization of a group it is obtained by adding relations that make every product
commutative.
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Z
k(k−1)

2 . Therefore, if k 6= k′ the groups Pk and Pk′ cannot be isomorphic and
thus, the configuration spaces Confk(C) and Confk′(C) cannot be homeomorphic
(or even have the same homotopy type).

4 More points = more compl icated?

In the discussion above we have been actually dealing with families of configura-
tions spaces {UConfk(C)}k≥1 and {Confk(C)}k≥1, parametrized by the number
k of points in a configuration. A natural question to ask in this context is:

Does the ‘shape’ of the configuration spaces UConfk(C) and Confk(C) get
more complicated as the number k of points in a configuration increases?

In a way the answer to this question is yes. The dimension of the configuration
spaces UConfk(C) and Confk(C) is 2k and gets larger as the number k of points
in a configuration increases. And so it happens with the number of generators
and relations of the braid groups Bk in Artin’s presentation (1) which depends
on k.

But surprisingly there are features of the spaces UConfk(C) that do not
get more complicated. The abelianization of Bk is the algebraic invariant
H1(UConfk(C)) (the first homology group) and it captures information about
the number of certain ‘holes’ in the space UConfk(C). Vladimir I. Arnold
and Fred Cohen proved that H1(UConfk(C)) is a group that is eventually
independent of k and, as a consequence, the number of those types of ‘holes’
in the spaces UConfk(C) does not increase as the number k gets larger. More
generally, Arnold and Cohen showed ([2], [8]) that the ith homology group of
the spaces UConfk(C) satisfies:

Hi(UConfk(C)) ∼= Hi(UConfk+1(C)) when the number of points k ≥ 2i.

The family {UConfk(C)}k≥1 of unordered configuration spaces is said to satisfy
homological stability: the algebraic invariants of the spaces (homology groups
Hi(UConfk(C))) stabilize when the parameter k is large enough. Several natural
families of unordered configuration spaces and moduli spaces have this type of
behavior.

In contrast, known computations show that the family of ordered configura-
tion spaces {Confk(C)}k≥1 does not satisfy this type of stability. For instance,
the first homology H1(Confk(C)) is the abelianization of Pk and it is isomorphic
to Z

k(k−1)
2 , which clearly depends on the number of points k of the configuration.

Thomas Church and Benson Farb first noticed [7] that this dependance on k
could be explained if we take into account the natural symmetries that the
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spaces Confk(C) have: the points in an ordered configuration can be permuted
to obtain a new ordered configuration in Confk(C).

In recent years it has been observed that the importation of representation
theory into the study of homological stability makes it possible to extend classical
theorems of homological stability to a much broader variety of examples. This
new notion has been called representation stability and it is satisfied by the family
{Confk(C)}k≥1: the algebraic invariants (homology or cohomology groups) do
get more complicated as k increases, but they stabilize up to the symmetries
of the spaces. Families of configuration spaces, hyperplane arrangements and
related topological spaces equipped with symmetries, as well as several ‘relatives’
of the pure braid groups have been shown to have this behavoir. We refer the
interested reader to the survey paper [12] by Benson Farb.

The study of these stability phenomena is a way to better understand shapes
of natural families of spaces that appear in mathematics and it is an active area
of research, as was witnessed in the Oberwolfach workshop that inspired this
snapshot.
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