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Applied and Computational Convexity
January 31 — February 6, 1999

The conference, organized by David Avis (McGill University, Montréal),
Peter Gritzmann (TU Munich) and Victor Klee (University of Washington,
Seattle), was attended by 32 participants, who gave a total of 25 lectures
ranging from 30 to 60 minutes.

The meeting focussed on exciting new developments in the area of Applied
and Computational Convexity. The roots of this field lie jointly in geome-
try, in mathematical programming and in computer science. Typically, the
problems are algorithmic in nature, the underlying structures are geometric
with special emphasis on convexity, and the questions are usually motivated
by practical applications in mathematical programming, computer science,
and other less obviously mathematical areas of science.

According to the concept of the conference, the participants (some of
whom work in industry) belonged to various different areas of mathematics,
computer science and other fields including convexity theory, combinatorics,
mathematical programming, numerical analysis, and image processing.

The talks dealt with various topics of the wide spectrum of subjects cov-
ered by Applied and Computational Convexity. Some lectures were devoted
to geometric aspects of combinatorics and combinatorial optimization. Var-
ious lattice point problems were studied, partly from the point of view of
integer programming, partly with a view towards questions in the geometry
of numbers. Other talks dealt with linear, semi-definite and convex opti-
mization problems, and with geometric aspects of nonlinear optimization.
Yet another group of talks focussed on the computation and optimization of
geometric functionals, on related layout problems for graphs and on the com-
plex mathematics of visualization and animation of dynamic constructions
of mechanical structures and other objects from discrete geometry.

Some of the lectures focussed mainly on theoretical aspects of the field
while others presented algorithms for tasks relevant for practical applications,
partly including experimental studies. In particular, there was a an evening
session devoted entirely to software demonstrations.
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In another evening session, some basic open problems were presented and
discussed.

The conference showed that even though the participants belonged to
different fields that have quite different tool-boxes, approaches and ideas for
solving their problems, there is a deep and close connection which is centered
around the basic concept of convexity.
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Hans Achatz
Reconstructing a Simple Polytope from its Graph

Let P be a simple polytope with dimension d and G(P) its edge graph.
It has been shown that G(P) already determines the complete face-lattice
of P. However, the constructive approach used in [Kalai, 88] requires the
computation of all orderings in |vert(P)| which is computationally prohibitive
for polytopes of even very small sizes. In this talk we propose an algorithm
which is still exponential but does work with reasonable computing time for
non-trivial simple polytopes.

(Joint work with Peter Kleinschmidt)

Imre Bdrdny
Test sets in integer programming

Test sets in integer programming provide a way of telling if a feasible solution
z € Z" is optimal or not by checking, for every h in the test set, whether
z+ h is feasible and whether it gives a better value of the objective function.
The test set of Scarf, the neighbours of the origin, are associated with a
generic m X n matrix A. The neighbours are a special case of maximal
lattice point free convex bodies that form a simplicial complex K(.A) which
is, again, associated with the matrix A. In the talk several properties of
the neighbours and of the complex K(A) will be discussed. For instance,
the body of the complex turns out to be homeomorphic to R™~!. Moreover,
matrices with the same complex K form a nice polyhedral set.

Anders Bjérner
Two variations in g-minor

I talk about two minor variations on the theme of the “g-theorem” for poly-
topal spheres and its possible generalization to all (triangulated) spheres (the
“g-conjecture”).

First, consider the Scarf complex of a generic (n + 1) X n real matrix (a
certain triangulation of R") and let f; be the number of orbits of (i + 1)-
faces under the action of Z". H. Scarf asked in 1995 whether it is true
that the numbers fo, ..., f|(n-3)/2) determine the numbers fo,..., fo_;. We
show how a positive answer (with linear relations between these numbers)
is obtained using, among other things, the g-theorem for the boundary of a
certain embedded ball.

Second, a project with F. Lutz for computerized searches among the tri-
angulations of a manifold is presented. An important motivation for starting
this project was an idea for systematically searching for counterexamples to
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the g-conjecture for 5- and 6-dimensional spheres. No such counterexamples
were found, but the program (based on bistellar flips) turned out to be use-
full for finding small (and in some cases provably minimal) triangulations
of some manifolds. For instance a 16-vertex triangulation of the Poincaré
homotopy 3-sphere was found, and it was shown that non-PL d-spheres on
d + 3 vertices exist, for all d > 5.

Jurgen Bokowski

Not every closed triangulated orientable 2-manifold without bound-
ary can be embedded geometrically in R3.

B. Griinbaum has formulated the conjecture that every closed triangulated
orientable 2-manifold without boundary can be embedded geometrically in
R3, i.e., with flat triangles and without selfintersections. We disprove this
conjecture by providing such a closed triangulated orientable 2-manifold of
genus 6 which cannot be embedded geometrically in R3. We use our new fast
algorithm for generating oriented matroids with prescribed properties. This
algorithm is interesting in its own right as a useful tool for investigations in
which the oriented matroid information plays a key role.

(Joint work with Anténio Guedes de Oliveira)

David Bremner
Inner diagonals of convex polytopes

An inner diagonal of a polytope P is a segment that joins two vertices of
P and that lies, except for its ends, in P’s relative interior. A tantalizing
conjecture due to von Stengel claims that among simple d-polytopes with
2d facets, the maximum number of inner diagonals is achieved by a d-cube.
In this talk I will present a characterization of the maximum and minimum
number of inner diagonals achievable in 3 dimensions for fixed numbers of
vertices or facets. I will also present partial results in higher dimensions,
including an interesting relationship to Kalai’s new proof (based on rigidity
of graphs) of the Lower Bound Theorem.

(Joint work with Victor Klee)
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Andreas Brieden

Largest simplices in bodies: Applications and efficient approxima-
tion

With focus on the case of variable j and n, we are concerned with the prob-
lem of computing the largest j-dimensional simplex (j-measure) contained
in an n-dimensional body K, a problem that is relevant for some important
applications. Since even the decision problem related to finding a largest
n-dimensional simplex in an n-dimensional V-polytope is NIP-hard, the task
is that of polynomial-time approximation. We embed the problem in the
Algorithmic Theory of Conver Bodies developed by Grdétschel, Lovdsz and
Schrijver and derive bounds for the accuracy in (oracle-) polynomial-time
approximation of largest simplices in bodies.

(Joint work with Peter Gritzmann and Victor Klee)

Komei Fukuda

On the existence of a short admissible pivot sequence for feasibility
and linear optimization problems

Recently Fukuda, Liithi and Namiki have proved the existence of a short
admissible ‘pivot sequence from an arbitrary basis to the unique optimal
basis, under the assumption that the LP problem is fully nondegenerate.
Due to the strong degeneracy assumption, this result cannot be applied to
the feasibility problem.

In this paper, for the feasibility problem, we prove the existence of a
short admissible pivot sequence from an arbitrary basis to a feasible basis.
Regarding the general LP problem, the existence of a short admissible pivot
sequence from an arbitrary basis to an optimal basis is proved without any
nondegeneracy assumptions. Our constructive proofs are based on techniques
that are used in strongly-polynomial basis identification schemes of interior
point methods.

(Joint work with Tamas Terlaky)

Martin Henk
On the computation of densest lattice packings of 3-polytopes

The lattice packing problem is the task to find a packing lattice A of a given
convex body K such that the space is covered as good as possible by the
lattice packing A + K. For dimensions d > 4 such “densest” lattice packings
are only known for space fillers, and for the unit ball B? the problem is solved
for d < 8. In the planar case several techniques exist to solve the problem,
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whereas in 3-space densest lattice packings are only known for a few convex
bodies (e.g. tetrahedron, octahedron).

Based on Minkowski’s work on critical lattices of 3-dimensional convex
bodies we develop a practical algorithm for computing the density of a densest
lattice packing of an arbitrary 3-polytope. Using this algorithm we calculate
the densities of a densest lattice packing of the regular dodecahedron, icosa-
hedron and of some of the Archimedean solids.

(Joint work with Ulrich Betke)

Fred Holt
Polytopes meeting the conjectured Hirsch bound

For a general linear system consisting of n linear inequalities on d variables,
the set of possible solutions is a d-dimensional polyhedron with n facets. If
this figure is bounded, we call it a d-polytope with n facets. -

In optimizing a linear objective function over this d-polytope, the simplex
method moves from vertex to vertex along edges, and so the maximum edge
diameter of d-polytopes with n facets provides a bound on the performance
of the simplex method under the best selection of edges to follow.

In 1957 W.M. Hirsch conjectured that every d-polytope with n facets has
edge diameter at most n — d. Recently we developed techniques to construct
polytopes which meet this bound (n — d) for some pairs (d,n) with d < 8
and for all pairs (d,n) with d > 8.

(Joint work with Vic Klee (U. of Washington) and Kerstin Fritzsche (TU
Berlin))

Michael Joswig
POLYMAKE

There are many tools available which allow for the treatment of polytopes
on a computer. Among these are Avis’ LRS, Fukuda’s CDD, Loebel’s and
Christof’s PORTA, The Geometry Center’'s GEOMVIEW, and more. POLY-
MAKE is a software package which combines the features of these (and other)
programs and goes beyond.

The overall concept of POLYMAKE is as follows. Each polytope is rep-
resented as a file. This polytope file is divided into several sections reflecting
various properties of the polytope. The user defines a polytope by producing
a file containing at least one section. Typically, the polytope is defined in
terms of points or inequalities. Then the user can ask about properties of this
polytope. Properties which can be deduced from the specification are com-
puted by applying a suitable sequence of rules. The final result is displayed.
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Josef Stoer
The complexity of high-order predictor-corrector methods for solv-
ing sufficient complementarity problems

Recently, the author and M. Wechs [2] described a class of infeasible-interior-
point methods for solving linear complementarity problems (LCP) Pz+Qy =
q,(z,y) > 0,27y = 0 (P,Q : n x n-matrices), that are sufficient in the sense
of Cottle et al. [1]. It was shown that these methods converge superlinearly
with an arbitrarily high-order even for degenerate problems with more than
one solution or without strictly complementary solution. The complexity
of these methods is investigated and it is shown that all these methods, if
started appropriately, need at most 0((1 + k)?n|loge|) predictor-corrector
steps to find an e-solution, and only 0((1+ k)y/n|loge|) steps, if the problem
has strictly feasible points. Here, & is the sufficiency parameter of the com-
plementarity problem (Viliaho [3]).

Literature: [1] P.W. Cottle, I.-S. Vang, V. Venkateswaran: Sufficient matrices and
the linear complementarity problem. Lin. Algebra Appl. 114/115, 231-249 (1989)
[2] J. Stoer, M. Wechs, S. Mizuno: High-order infeasible-interior-point methods
for solving sufficient complementarity problems. Math. of Oper. Res. 23, 832-862
(1998)

[3] H. Valiaho: P-matrices are just sufficient. Linear Alg. Appl. 239, 103-108
(1996)

Giinter Ziegler
Neighborly Cubical Polytopes

Neighborly cubical polytopes exist: for every n > d > 2r + 2, there is a
cubical d-polytope C? whose r-skeleton is combinatorially equivalent to that
of an n-dimensional cube. We construct the polytopes C7 as projections of
(suitably deformed) n-dimensional cubes.

This construction solves a problem of Billera, Babson & Chan. The spe-
cial case d = 2 was first established by Goldfarb and Murty. In the special
case n = d + 1, the polytope Cj“ exists, and is combinatorially unique for
even d, by a classification by Blind & Blind. However, a 4-polytope with the
graph of the 5-cube need not necessarily be cubical.

(Joint work with Michael Joswig, TU Berlin)
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and then going to the polar polytope. Instead, we carefully select the shape
of a 4-sided face to ensure that an equilibrium on the interior vertices can be
extended to the whole graph. In all remaining cases, the polytope must con-
tain a 5-sided face. So far, we have not been able to overcome the technical
difficulties that are associated with extending our approach to 5-sided faces.

The question whether the bound C' can be improved to a polynomial is
open.

Uriel G. Rothblum
Matrix Scaling: Existence and Computation

A scaling of a matrix A is a matrix of the form X AY where X and Y are non-
negative diagonal matrices with positive diagonal elements. Scaling problems
concern the identification of scalings of given matrices which have prescribed
properties. Results about existence, characterization and computation of a
variety of scaling problems will be discussed, with emphasis on complexity
analysis of the computation of approximate solutions.

Miklds Simonowvits
Computation of Diameter and related questions

A convex body is given in a high dimensional space (Euclidean (¢2) or o)
and we wish to get estimates on the basic geometric characteristics of K, like
volume, diameter, width, radius of circumscribed ball, etc. K is given by a
weak separation oracle. Since the results of Elekes, Barany and Fiiredi we
know that this is a difficult problem if we restrict ourselves to deterministic
algorithms. On the other hand, as Dyer, Frieze and Kannan proved, the
volume can be well approximated by randomized algorithms.

Right now the fastest volume approximation uses O*(n®) oracle calls
(weak separation oracle, Kannan, Lovdsz, Simonovits) and - as a byprod-
uct — it brings K into nearly isotropic position.

The situation is completely different with the diameter. The diameter
cannot be approximated with o(+/n/ log n) relative error in oracle-polynomial
time.

For analogous £,-results see the FOCS 98 paper of A. Brieden, P. Gritz-
mann, R. Kannan, V. Klee, L. Lovdsz and M. Simonovits, and its full version
to be published.
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Moreover, the final result as well as interesting intermediate results are saved
in the polytope file. Thus, asking for a previously computed property does
not need a recomputation. It is asserted that the data of the sections within
one file is consistent.

POLYMAKE comes with a C++ template class library which can be used
to extend and customize the system.

Among POLYMAKE’s applications so far are the following: construction
of neighborly cubical polytopes, search for and examination of polytopes
whose vertex-edge graph diameter attains the known Hirsch bound, investi-
gations about the flag vectors of 4-polytopes.

POLYMAKE is free software. You can download the most recent version
from the Internet at URL

http://www.math.tu-berlin.de/diskregeom/polymake/

(Joint work with Ewgenij Gawrilow (TU Berlin))

Volker Kaibel
Simple 0/1-Polytopes

Special classes of 0/1-polytopes (i.e., polytopes with 0/1 vertex coordinates)
have been extensively studied within the field of polyhedral combinatorics.
On the other hand, only a few results are known on the structure of 0/1-
polytopes in general. For investigations of general polytopes it is well-known
that the class of simple polytopes (i.e., d-dimensional polytopes, where every
vertex lies in precisely d facets) is very important. In particular, several
extremal questions (as the one for the maximal number of vertices for a given
number of facets or the one for the worst-case running time of the simplex-
algorithm) reduce to the corresponding ones for simple polytopes. Thus,
the question arises if simplicity plays a similar role for the investigation of
0/1-polytopes. In this talk, we show, however, that simple 0/1-polytopes are
precisely those 0/1-polytopes that are Cartesian products of 0/1-simplices.
In particular, they definitely do not play as an important role in investigating
0/1-polytopes as they do for general polytopes. Some other consequences are
that the graphs of simple 0/1-polytopes have cutset expansion one (i.e., every
cut in these graphs has at least as many edges as the cardinality of the smaller
of the two shores is) and that every polar of a simple 0/1-polytope can be
realized as a 0/1-polytope again.



Jean Michel Kantor

Universal counting of lattice points in polytopes

Given a lattice polytope P (with underlying lattice L), the universal counting
function Up(L') = |PNL'| is defined on all lattices I’ containing L. Motivated

by questions concerning lattice polytopes and the Ehrhart polynomial, we
study the equation Up = Ug. In particular, we claim:

Theorem: Assume P, are L-polytopes with identical universal counting
function. Then, for every primitive z € L*,

rvol P(z) + rvol P(—z) = rvol Q(z) + rvol Q(—z)

Corollary: Assume P is an L-polytope. Then, apart from lattice translates,
there are only finitely many L-polytopes with the same universal counting
functions as P.

Also

Theorem: Suppose P and @) are L-polygons. Then Up = Ug if and only if
the following two conditions are satisfied.

(i) Area (P)=Area (Q)

(ii) There exist L-polygons X,Y such that P = X 4+ Y and Q + X - Y
(Minkowski Sums).

The higher dimensional case is still work in progress.
(Joint work with Imre Barany)

Gyula Kdrolyi
New results related to the Erd6s-Szekeres theorem

A set of points, in general position in d-space, is called convex if it is the vertex
set of a convex polytope. Let, for n > d > 2, f(n,d) denote the smallest
integer such that any set of at least f(n,d) points, in general position in E¢,
contains a convex set of size n. The existence of f(n,d), n > d > 2, follows
from the Erd6s-Szekeres theorem. As for lower bounds, we prove that, for
every d > 2, there exists a constant ¢ = ¢(d) > 1 such that, if n > d, then

fn,d) = Q") .

If we are given f(k,d) points, in general position in E?, we can separate a
convex set of size k. Repeating this process, eventually we obtain a partition
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sequence with the same base points. In this talk we prove that a corre-
sponding reachability problem that asks for deciding whether one can move
continuously from one instance of a construction sequence to another is a
hard problem.

Theorem: Let A and B be two instances of a construction sequence that
has only “Join”, “Meet”, and “Angular Bisector” as primitive operations.
It is PSPACE-hard to decide whether A can be continuously transferred to
B by moving the base elements in the real projective plane (on a path that
avoids singular situations).

Giinter Rote
Realizations of 3-polytopes with integral vertices

By a theorem of Ernst Steinitz (1922), every 3-connected planar graph with
n vertices can be realized as a convex polytope. Richter-Gebert (1996) has
shown that this can be done with integer vertex coordinates between —C
and C, where C = 43" if the graph contains a triangle, and C' = 2137 for
general graphs. We extend the case where a linear number of bits is sufficient
from graphs with a triangle to graphs containing a quadrilateral face, with a
bound of C = 212,

Previously, Das and Goodrich (1995) have given an algorithm that works
for triangulated 3-polytopes and selects rational vertex-coordinates with poly-
nomially many bits for the numerator and the denominator, i.e., C = n?®,
However, their algorithm has the advantage that it takes only a linear number
of steps (including arithmetic operations on numbers of size at most C).

The approach of Das and Goodrich is more closely related to the original
proof of Steinitz, who builds up the polytope from simpler polytopes by
making local changes. (Steinitz’s original proof yields a doubly-exponential
bound for C.)

The approach of Richter-Gebert exploits the connection between 3-poly-
topes and stresses on the edges of a plane projection of a polytope, which goes
back to Maxwell (1864). We fix a triangular face as exterior face, interpret all
remaining edges as springs with elasticity 1, and compute the equilibrium of
this mechanical system. This amounts to solving a system of linear equations,
and leads to vertex coordinates of size at most 42”. The same procedure was
also used by Tutte (1960) for obtaining a nice drawing of a planar graph.

The next step calculates the polytope which projects onto this drawing.
We can do this directly by exploiting the geometric significance of the edge
weights.

Finally, in the case that the graph contains no triangles, but a quadrilat-
eral face, we depart from the traditional approach of realizing the dual graph
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ous optimization problem

min f(z) +pd i, zi(l — ;)
st.g(z)<0,0<z;<1,i=1,...,n

for some u > pg. Can you compute u?
5. Consider the following quadratic problem

min f(z) = c'z + 127Qz
st.z >0

where @ is an n X n symmetric matrix, and ¢ € R*. The complexity
of finding (or proving existence) of Kuhn-Tucker points for the above
quadratic problem is NP-hard.

Consider the related problem

min f(z) = Tz + L27Qz

where @ is negative definite, i.e., the function f(z) is concave. What
is the complexity of the problem of computing a local minimum?

References:

[1] P.M. PArRDALOs (Editor), Complezity in Numerical Optimization, World
Scientific (1993).

[2] R. HORST, P.M. PARDALOS AND V. THOAL, Introduction to Global Optimiza-
tion, Kluwer Academic Publishers (1995).

Jirgen Richter-Gebert
Reachability Problems in Dynamic Geometry

Geometric (ruler and compass) constructions play a central role in geometry.
While static aspects of these constructions have been widely explored (which
configurations are constructable with a given set of tools), dynamic aspects
have been hardly investigated.

Usually a geometric construction consists of a set of freely chosen base
objects (say some points in the plane) and a sequence of construction steps.
A natural notion of “continuity” in the configuration space of a construction
arises when one moves the base objects and traces the paths of the dependent
objects. However, intrinsic ambiguities in certain construction steps arise (a
line and a circle have two intersections, two lines have two angular bisec-
tors), which produce distinct geometric instances for the same construction
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into convex k-sets, and a remaining set of size < f(k,d). However, one can
do it better. In fact, it is not too difficult to prove that if d > 3 and n is
large enough, then any set of kn points, in general position in E¢, can be
partitioned into n convex subsets of size k. This is not true, however, in the
planar case, even if £ = 4. Answering a problem due to Joe Mitchell, we
design a fast algorithm which decides if a given set of 4n points in the plane
can be partitioned into n convex quadrilaterals.

Finally, we give an account on a recent progress concerning the existence of
large empty convex subsets.
(Joint work with Janos Pach and Géza Té6th)

Leonid Khachiyan
Integer Optimization on convex semi-algebraic sets

Let Y be a convex set in R* defined by polynomial inequalities and equations
of degree at most d > 2 with integer coefficients of binary length at most
[. We show that if the set of optimal solutions of the integer programming
problem min{yxly = (y1,...,%) € Y N Z*} is not empty then the prob-
lem has an optimal solution y* € ¥ N ZF of binary length {d°*"). For fixed
k, our bound implies a polynomial-time algorithm for computing an opti-
mal integral solution y*. In particular, we extend Lenstra’s theorem on the
polynomial-time solvability of linear integer programming in fixed dimension
to semidefinite integer programming. We also give a linear-time algorithm for
real semidefinite optimization in fixed dimension for the real number model
of computation.

(Joint work with Lorant Porkolab)

James Lawrence
Valuations and Uniform Oriented Matroids

Associated with each n-point oriented matroid is a valuation on the lattice
of subcomplexes of the boundary of the n-dimensional cross-polytope. The
valuation determines the structure of the oriented matroid. There exists a
characterization of the valuations associated with uniform oriented matroids
which involves only linear equations, linear inequalities, and integrality. Thus
the n-point, rank r, uniform oriented matroids are characterized as the set
of points having coordinates in Z which lie in a certain polytope.

There is a finite set of vectors in the space of valuations such that muta-
tions of the uniform oriented matroids correspond to translations by vectors
in this set.



Jesus de Loera
Computing minimal and maximal triangulations of convex poly-
topes

In this talk we discuss the problem of finding triangulations that minimize or
maximize the number of top dimensional simplices. A classical case of study
has been the n-cube, but here we discuss the problem for arbitrary convex
polytopes.

New results include that fast recognition of stacked polytopes, heuristics
for finding minimal triangulations of 3-polytopes, NP-hardness of minimizing
over a subset of the simplices, #P-hardness of finding maximal regular trian-
gulations in arbitrary dimension and the structure of minimal triangulations
for archimidean solids.

Shmuel Onn
Partitions: Optimization and Structure

We develop a framework for partition problems that provides broad expres-
sive power and efficient solution of a variety of optimization problems. In
this talk I will describe some of the outcomes of our work, in particular:

e A hierarchy of polytime algorithms for partition problems with con-
vex objectives, parameterized by the number of criteria and number of
parts.

o The asymptotics of the maximum number of separable partitions in
Euclidean and VC spaces, and DS-sequence based tight lower and upper
bounds on the complexity of the corresponding enumeration problem.

e An algorithm for constructing universal Grébner bases for vanishing
ideals of point configurations, polytime in fixed number of variables,
and the structure and asymptotical properties of corner cut polyhedra.

References:

e A polynomial time algorithm for shaped partition problems (with F. Hwang
and U. Rothblum), STAM J. Opt., to appear.

e Separable partitions (with N. Alon), Disc. App. Math. 91:39-51, 1999.

e Cutting Corners (with B. Sturmfels), Adv. App. Math., to appear.
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Jdnos Pach
Drawing graphs — Does convexity make a difference?

Let G be a planar graph of n vertices, vi,...,Un, and let {p1,-.-,pn} be
a set of n points in the plane. We present an algorithm for constructing in
O(n?) time a planar embedding of G, where vertex v; is represented by point
p; and each edge is represented by a polygonal curve with O(n) bends.

This bound is asymptotically optimal in the worst case. In fact, if G
is a planar graph containing at least m pairwise independent edges and the
vertices of G are randomly assigned to points in convex position, then, almost
surely, every planar embedding of G mapping vertices to their assigned points
and edges to polygonal curves has at least m,/20 edges represented by curves
with at least m/40% bends. Does this remain true if the vertices of G are
randomly assigned to the elements of any fixed set of n points in the plane,
not necessarily in convex position?

(Joint work with R. Wenger)

Panos Pardalos
Some open questions in convexity and combinatorial optimization

In this talk we discuss the following problems and related open questions:

1. How difficult is it to check convexity of a function (or a set)? In partic-
ular what is the complexity of the problem of checking convexity of a
multivariable polynomial of degree at least 47 We conjecture that this
is NP-hard.

V]

. It is well known that many classes of functions that appear in opti-
mization can be expressed as the difference of two convex functions (dc
representation). What is the “best” dc representation of a function?

3. Is there an efficient computational procedure to check if a set of spheres
centered at selected vertices of a polytope cover the polytope? This
problem appears in space covering techniques for global optimization
problems.

4. The general integer programming problem

min f(z)
s.t.g(z) <0, z € {0,1}"

can be formulated (under certain conditions) as an equivalent continu-
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