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Complex Analysis is a lively �eld worldwide. There have been important develop-

ments during the last 10 years, in particular, due to the applications of deep methods

originally coming from real analysis and geometry. Modern Complex Analysis is a

�eld of interaction of many parts of mathematics. This also was re
ected by the con-

ference at the Mathematische Forschungsinstitut Oberwolfach dedicated to

Complex Analysis with emphasis on methods from the theory of partial di�erential

equations. It was organized by K. Diederich, Wuppertal, T. Ohsawa, Nagoya,

and by E.L. Stout, Seattle. It has found a large interest and was attended by 49

mathematicians from 8 countries. In �fty minute lectures 21 researchers reported on

their recent work, and there were many additional informal activities with lectures and

discussion groups. The topics covered belonged to the following areas:

Hulls of holomorphy, foliations, the @-Neumann problem, complex dynamics, CR-

geometry, the Cauchy-Riemann equations, the tangential Cauchy-Riemann equation,

the Bergman kernel, pluripotential theory, Serre duality, the Levi problem on complex

manifolds, the Oka principle, the Michael problem, K3-surfaces, singularities, Paley-

Wiener theory, and uniformization theory.
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Abstracts

David E. Barrett

Di�usion and Analytic Continuation

In the talk I began with a discussion of Brian Birger's result that the space M

of smooth Jordan curves in the Riemann sphere has a unique conformally invariant

symmetric a�ne connection r.

The Levi form of a surface

�

f

= f(z; w) : z 2 �; w 2 f(z)g

obtained from a map f : � �! M may be written as

�f � 2J [J

@f

@x

;J

@f

@y

] ;

where �f is the harmonic mapping Laplacian and

@f

@x

;

@f

@y

are understood as vector

�elds normal to the curve f(z).

The heat 
ow attached to this operator performs a type of analytic continuation.

Examples of the heat 
ow were discussed, and it was conjectured that a modi�cation

of this heat 
ow could be used to provide a new proof of a recent analytic continuation

result of Chirka.

Eric Bedford

Quasi-Expansion in Polynomial Di�eomorphism of C

2

We let

f(x; y) = (y; p(y) � ax);

where a 2 C n f0g, and p(y) = y

d

+ ::: is a polynomial of degree d � 2. Let S denote

the set of saddle points of f . If p is a saddle point, then

Df

n

p

=

 

�

+

0

0 �

�

!

; j�

�

j < 1 < j�

+

j; f

n

p = p:

We uniformize the unstable manifold W

n

(p) as  : C �! W

n

(p) � C

2

. It follows that

 (�

+

�) = f

n

 (�). Let

G

+

(x; y) = lim

n!1

1

d

n

log

+

jf

n

(x; y)j:
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We may use G

+

to specify  (almost) uniquely:  (0) = p, and

max

j�j�1

G

+

�  (�) = 1:

The mapping f will be called "quasi-expanding" if the normalized uniformizations

f 

p

: C �! C

2

: p 2 Sg are a normal family. In this case, (i.e. when f is quasi-

expanding) the sets  (C), (where  is any subsequential limit:  

p

j

�!  ) play the

role of unstable manifolds.

In joint work with John Smillie we are trying to develop a theory of quasi-hyperbolic

mappings which will allow tools that are analogous to those in the (uniformly) hyper-

bolic theory to be applied to more general contexts. This, among other things, should

allow us to understand what happens, in certain cases, when hyperbolicity breaks

down.

Bo Berndtsson

L

2

-estimates for @

In the talk we discussed some variations on the theme of H�ormander's L

2

-estimates

with an eye on possibilities to extend part of these L

2

-estimates to uniform norms.

The following theorems were discussed:

Theorem 1. Let D = f� < 0g �� C, where �� � 1. Let ' be subharmonic in D,

and let u be the L

2

(e

�'

)-minimal solution to the equation @u = f . Then

sup

@D

juje

�'=2

j@�j

� 2 sup

D

jf je

�'=2

(��)�'+ 2

:

Theorem 2. Let D be pseudoconvex in C

n

, and (�w); ', and  plurisubharmonic

functions on D. Suppose that  satis�es the Donnelly-Fe�erman condition

@ ^ @ � @@ :

Let u be the L

2

(e

�'

)-minimal solution to the equation @u = f , where f is a @-closed

(0; 1)-form. Then, for any 0 � r < 1 we have

(1� r)

Z

D

juj

2

we

r �'

�

Z

D

jf j

2

@@'

we

r �'

:

We also stated the
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Conjecture: If f is a @-closed (0; 1)-form in the unit ball IB in C

n

, such that

sup

IB

�

jf j

2

!

+ j@f j

!

�

� 1;

for some Kaehler metric ! with bounded potential then there exists a solution u to the

equation @u = f with sup

IB

juj � C.

Ewgeni Chirka

Holomorphic motion and simultaneous uniformization

A holomorphic family of Riemann surfaces is a triple (M;p;B), where M;B are

complex manifolds and p : M �! B is a holomorphic surjective mapping with the

one-dimensional �bres M

z

= p

�1

(z). We assume further that rank (p) = dim

C

(B) and

the M

z

are connected.

The general problem is, assuming that M

z

are conformally equivalent to a domain

in the Riemann sphere, to �nd a meromorphic function in M which gives holomorphic

coordinates (with values on

b

C) on each �bre M

z

.

Simple examples show that some pseudoconvexity conditions must be assumed, so

we assume that M is Stein. The problem is still open even in the case when the base

B and the �bre M

z

are conformally the unit disc ID in C.

For M

z

� C (conformally equivalent) it was solved by T. Nishino in 1969 with the

(essentially necessary) assumption that there exists a holomorphic section of p over ID.

We discussed the methods in the problem related with the notion of holomorphic

motion and the tools from quasiconformal theory developed for its study. The crucial

thing is the following result (essentially proved by Z. Slodkowski (Math. Ann. (1997)):

If p : M �! B (the base B is arbitrary) is traced by a holomorphic motion, then

there is a holomorphic embedding f : M �! 
 into a domain 
 � B � C, such that

p

st

� f = p (here p

st

: B � C �! B is the standard projection).

With a natural normalization the map is uniquely de�ned by p : M �! B, and it

gives a possibility of the analytic continuation of � (canonical) along paths in B. For

the normalization, what one needs is two disjoint global sections of p over B, so we

have the following:

Let p : M �! B be a (regular) family of Riemann surfaces which is locally (over

the elements of some covering B = [

�

B

�

) traced by a holomorphic motion, and which

admits two disjoint holomorphic sections over B. Then there exists a holomorphic

embedding f : M �! 
 � B � C commuting with the projections, assuming that

some M

a

is conformally equivalent to a domain in C.
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Bert Fischer

Hoelder Estimates on convex domains of �nite type

There is already a long history in Hoelder estimates for the @-equation on weakly

pseudoconvex domains in C

n

. Besides many other results there are two interesting

special ones. In 1976 Range proved Hoelder-

1

m

-estimates for complex ellipsoids of type

m, and in 1986 Diederich-Fornaess-Wiegerinck proved Hoelder-

1

m

-estimates for real

ellipsoids of type m. The main di�erence between these two results is, that in the case

of a real ellipsoid there might be in any complex line real lines with higher order of

contact with the boundary. This is particularly bad for the estimates. So the main

task is to �nd a support function which corrects this order of contact.

In 1998 Diederich - Fornaess constructed a "good" support function on arbitrary

convex domains of �nite type m in C

n

and proved certain estimates for the real part

of this function. It turned out that this support function can be used to construct

a solution operator for the Cauchy-Riemann equation that satis�es the best possible,

namely Hoelder-

1

m

-estimates.

The same support function can also be used to construct solution operators with

good estimates in L

p

-spaces. The result is a bounded linear operator

T : L

p

0;r+1

�! L

q

0;r

for 1 < p < mn + 2, where q satis�es

1

q

=

1

p

�

1

mn+ 2

:

Franc Forstneric

Oka's Principle for Holomorphic Submersions with Sprays

In the talk I presented the outline of proof of the following result which was an-

nounced by M. Gromov in 1989 [J. Amer. Math. Soc. 2, 851 - 897 (1989)]:

Theorem: Let X be a Stein manifold and h : Z �! X a holomorphic submersion

such that for each point x 2 X there is an open neighborhood x 2 U � X with the

property that Zj

U

= h

�1

(U) admits a �ber-dominating spray. Then the sections f :

X �! Z of h satisfy the homotopy principle in the sense that each continuous section

can be homotopically deformed to a holomorphic section, and any two holomorphic

sections which are homotopic through continuous sections are also homotopic through

holomorphic sections.
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I discussed some special cases and applications.

Josip Globevnik

Discs in Stein manifolds

In the talk I presented an outline of the proof of the following

Theorem: Let M be a Stein manifold, dim M � 2. Given a point p 2 M and a

vector X tangent to M at p, there is a proper holomorphic map f from the open unit

disc in C to M such that f(0) = p and f

0

(0) = �X for some � > 0.

Gregor Herbort

On the pluricomplex Green function on smooth bounded pseudoconvex

domains

The subject of my talk was the boundary behavior of the pluricomplex Green

function

G

D

(z; w) := supfu(z) : u < 0; plurisubharmonic on D;

� 7�! u(�) � log j� � wj is bounded from above near wg

under approach of w towards the boundary of the pseudoconvex bounded domain

D � C

n

. This has useful applications in the theory of the Bergman kernel function, as

results of Ohsawa (Nagoya Math. J. 129, 43-52 (1993) ) and more recently B locki-P
ug

(Nagoya Math. J. 151, 221 - 225 (1998) ) (resp. Herbort ) show. I gave sketches of the

proofs of the following two theorems which resulted from joint work with K. Diederich

:

Theorem 1. Assume that @D 2 C

2

and � : D �! [�1; 0) is a plurisubharmonic

exhaustion function satisfying j�j � �

�

D

, were 0 < � < 1 and �

D

denotes the boundary

distance function on D. Then, given an arbitrarily small number t > 0, there exists a

constant C

t

� 1 such that

sup

z2K

jG

D

(z; w)j � C

t

 

(

�

D

(w)

1�t

�

D

(K)

)

�=n

+ �

D

(w)

t�

!

holds for any compact subset K � D and all w 2 D nK such that �

D

(w) < C

�1

t

�

D

(K).
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Theorem 2. (Application to the Bergman metric) Let D be as in theorem 1. If

additionally any q 2 @D is a plurisubharmonic peak point, then for every w

0

2 @D,

and any X 2 C

n

with jXj = 1, we have for the Bergman di�erential metric B

D

of D:

B

D

(w;X) �! +1; when w �! w

0

:

Finally an outlook to a possible generalization of the pluricomplex Green function

was given.
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Kengo Hirachi

Local Sobolev - Bergman kernels of strictly pseudoconvex domains

One of the most important properties of the Bergman kernel is its transformation

law under biholomorphic maps. In this talk I de�ned Sobolev - Bergman kernels as

an analogy to the Bergman kernel so that they satisfy a biholomorphic transformation

law.

The main tool is Kashiwara's microlocal analysis of the Bergman kernel. Using his

theory I constructed, for strictly pseudoconvex domains 
 = fr > 0g � C

n

, a kernel

function K

m




, satisfying the following properties (for m = 0; 1; :::; n):

(SB 1). If � : 


1

�! 


2

is biholomorphic, then

K

m




1

= K

m




2

� � � j det �

0

j

2(n+1�m)=n+1

(SB 2) The following asymptotic expansion holds:

K

m




=

(

�

m

r

m�n�1

+  

m

log r for m < n+ 1

�

m

r

m

log r for m � n+ 1

with functions �

m

;  

m

, that are smooth up to the boundary,

(SB 3) If @
 is in normal form

2Re z

n

= jz

0

j

2

+

X

A

l

�

�

�

z

0

�

z

0

�

(Im z

n

)

l

;

then

K

m




(0; t) �

t&0

�1

X

j=�1

P

j

(A) +

1

X

j=0

P

j

(A)t

j

log t

where P

j

(A) are polynomials in A = (A

l

�

�

�

).

I also showed that ifm 2 Znf0; 1; :::; n+1g, there is no non-trivial domain functional

K

m

= (K

m




)


 strictly pseudoconvex

satisfying (SB 1), (SB 2), and (SB 3).

Burglind J

�

oricke

Local polynomial hulls of discs near isolated parabolic points

Let � be a C

2

-disc imbedded into C

2

with an isolated parabolic point. The problem

was considered whether su�ciently small closed neighbourhoods of this point on the

disc are polynomially convex. This problem remained open after a classical paper of

E. Bishop. Generically the index of the parabolic point is zero and the answer is "yes".
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However, there is an explicit example for the index zero case, where the answer is "no",

in contrast to what one would like to expect. In such a case for any small enough closed

disc K on � containing the parabolic point, the set

K

tr

:= K \ (

c

K nK)

has the structure of an "onion". The "coates" of the onion bound analytic discs. Here

c

K denotes the polynomial hull of K. Methods of dynamical systems are applied. The

dynamical system uses the characteristic vector �eld obtained from imbedding the disc

into a strictly pseudoconvex boundary.

Joachim Michel

C

1

-regularity for @

b

on pseudoconvex domains of Levi 
at submanifolds

of C

n

(Joint work with Mei Chi Shaw, University of Notre Dame)

Let 
 �� C

n

be a pseudoconvex domain with a piecewise smooth boundary. Let L

be a real hypersurface de�ned in a neighborhood of 
 which divides 
 into two parts




+

and 


�

. We shall call L admissible with respect to 
 if there exist two smoothly

bounded pseudoconvex domainsD

+

and D

�

, each on one side of L such that 


+

� D

+

and 


�

� D

�

. In this case the part of L which is in 
 is Levi 
at.

We set M

1

= L \ 
. From previous results of Michel and Michel-Shaw it follows

that we can solve the @-equation @u = f with u 2 C

1

0;q�1

(X), if f 2 C

1

0;q

(X), q � 1,

and @f = 0, for X = 
;


+

;


�

.

We proved that we can then solve @

b

u = f , if f 2 C

1

0;q

(M

1

), q � 1, @

b

f = 0, with

u 2 C

1

0;q�1

(M

1

).

Now suppose that we are given k hypersurfaces L

1

; :::; L

k

which are admissible with

respect to 
. We set

M

k

:= 
 \ L

1

\ ::: \ L

k

and assume that M

k

is a Cauchy-Riemann manifold. Furthermore we assume that the

L

i

intersect transversally with the other L

j

's and with the boundary of 
. Under the

following working hypothesis which is not completely proved by the authors but which

is true if the L

i

intersect complex transversally we showed the main theorem by an

induction argument.

Working hypothesis: Let f 2 C

1

0;q

(M

k

) be a @

b

-closed form with q � 1. Then there

exists an extension of f , denoted by

e

f , with

�)

e

f 2 C

1

0;q

(C

n

),

and
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� @

b

e

f vanishes on M

k

to in�nitely high order.

Main Theorem. Let M

k

be as de�ned above and f 2 C

1

0;q

(M

k

) a @

b

-closed form,

with q � 1. Then there exists u 2 C

1

0;q�1

(M

k

) with

@

b

u = f:

Remark. In contrast to many other situations in this context there is no top degree

q for solving the @

b

-equation.

J

�

urgen Leiterer

On Serre duality with support conditions

(Joint work with Chr. Laurent-Thiebaut)

It is known (Serre (1955) et al.) that, for any complex manifold X and for all p; q,

such that 0 � p; q � n =dim

C

(X), the following two conditions are equivalent:

(i) H

p;q

c

(X) is separated;

(ii) H

n�p;n�q+1

(X) is separated;

In the paper of the authors "On Serre duality" (To appear in Bull. Sci. Math.)

it is proved that these two conditions can be completed by the following equivalent

condition

(iii) For any compact set K � X the space D

p;q

K

(X) \ @D

p;q�1

K

(X) is closed.

Using this new equivalence (i)() (iii) one can prove some new separation theorems

for the Dolbeault cohomology.

Furtheron generalizations to more general families of supports were discussed. To

get more insight, answers to the following two problems would be extremely interesting:

Problem 1: Let A :

e

E �! E be a continuous linear operator between two strict

LF -spaces such that Im (A) is topologically closed. Is it true that then the operator

A :

e

E �! Im(A) is "weakly open" in the following sense: For all weakly open sets

e

U

in

e

E with Ker A �

e

U , the set A(

e

U) is open in Im (A) (with the topology induced from

E) ?

Problem 2: LetE be a strict LF -space with the de�ning sequenceE

1

� E

2

� ::: � E

of Fr�echet spaces (E

k

)

k2IN

, and let L � E be a linear subspace such that L \ E

k

is

topologically closed for all k. Is it true that then L is topologically closed ?

Any answers (positive or negative) are welcome.

10



Joel Merker

Algebraicity of holomorphic mappings and analyticity of formal CR map-

pings

In the talk I presented two main theorems about regularity of formal or holomorphic

mappings between CR manifolds:

Theorem 1. LetM � C

n

; M

0

� C

n

0

be connected generic real algebraicmanifolds;

let p 2 M , let U 3 p be a small polydisc. Assume that M is minimal in the sense of

Tumanov. Let f 2 O(U;C

n

0

) be of constant rank, with f(U \M) �M

0

. Let k be the

transcendence degree of f . Finally, let �

00

be the minimal (for inclusion) real algebraic

set with f(M \ U) � �

00

� M

0

. Then �

00

is at least k-algebraically degenerate.

In other words, �

00

is 
at in the CR - geometric sense, i.e.

�

00

� �

00

��

k

is foliated by k-dimensional polydiscs around a generic point.

Theorem 2. Let n = n

0

and M;M

0

� C

n

be real analytic CR manifolds. Let

p 2 M; p

0

2 M

0

; let h : (M;p) �! (M

0

; p

0

) be a formal invertible CR holomorphic

map. If M is minimal and holomorphically non-degenerate, then h converges.

Two main tools are used: Artin's approximation theorem and propagation along

the Segre foliations.

Sergey Pinchuk

Analytic continuation of holomorphic and CR mappings

The talk was focused on principle problems in this area. Here are some of them:

1. Holomorphic continuation of proper holomorphic maps

LetD;D

0

� C

n

be domains with real-analytic boundaries and f : D �! D

0

a proper

holomorphic map. Does this imply that f extends holomorphically to a neighborhood

of D ?

2. Continuation of CR mappings�

Let �;�

0

be real-analytic hypersurfaces in C

n

of �nite type and f : � �! �

0

a

continuous CR map. Is f analytic ?

3. Propagations of CR (holomorphic) maps

Let �;�

0

be real-analytic hypersurfaces in C

n

, �

0

be compact and

p

f : � �! �

0

be a

germ of a holomorphic (CR) map in a point p 2 �. When does

p

f extend analytically

along any path in � ?
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Some partial results about the above the problems were discussed.

Jean Pierre Rosay

Non-linear Paley-Wiener Theory

We discussed the following

Theorem: Let K � C

n

and let 	 be an analytic functional in C

n

. The following

are equivalent:

(1) 	 is carried by K,

(2) For every d 2 IN and every neighborhood V of K in C

n

there exists C

V;d

such

that for every polynomial P of degree � d

jh	; e

P

ij � C

V;d

sup

V

je

P

j:

(In the convex case it is enough to take polynomials P of degree 1 (Martineau) )

This theorem is an immediate consequence of a dual statement on the span of the

exponentials e

P

, which is obtained by easy computation in the polydisc case, and by

using Oka extension in the general case.

It has applications to study the carrier of analytic families of analytic functionals.

Nessim Sibony

Dynamics of polynomial automorphisms of C

k

Let f be a polynomial automorphism of C

k

and f the extension to IP

k

as a birational

map. Let I

+

denote the indeterminacy set of f and I

�

the indeterminacy set of f

�1

.

Then we make the

De�nition: f 2 Aut

d

(C

k

) is regular if I

+

\ I

�

= ;.

One has the following theorems:

Theorem 1. Let f 2 Aut

d

(C

k

) be a regular automorphism of C

k

. Let ! be the

Kaehler form on IP

k

. The following limit exists and de�nes a positive closed current

of bidegree (1; 1):

T

+

= lim

n!1

1

d

n

(f

n

)

�

�

!

T

+

does not give mass to algebraic varieties. T

+

is an extremal current in the cone of

positive closed currents.
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Theorem 2. Let f be a regular automorphism of C

k

. Assume that dim I

�

= l�1.

Then

� := T

l

+

^ T

k�l

�

is an invariant probability measure supported on

K = fz : ff

n

(z) : n 2 Zg is boundedg:

Theorem 3. Let f be a regular automorphism of C

3

. Then the measure � is

mixing.
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Berit Stens�nes

The Michael problem

In this talk some ideas of the proof of the following theorem were presented:

Theorem. There exists a sequence (�

j

)

j

of entire maps �

j

: C

3

�! C

3

, such that

1

\

j=1

�

1

� ::: � �

j

(C

3

) = ;:

Further more it was proved that this gives a positive answer to the

Michael Problem: Let A be a Fr�echet algebra and let � : A �! C be a multi-

plicative linear functional. Does it follow that � is continuous ?

The proof of this connection is due to Dixon and Esterle.

Emil J. Straube

Compactness of the @-Neumann problem on convex domains

In this talk, I discussed joint work with Siqi Fu concerning compactness of the

@-Neumann problem on convex domains. This compactness is an analytic condition.

There are two other conditions, one geometric and one potential theoretic that bear on

this question. The geometric condition is the absence or presence of analytic varieties

in the boundary, the potential theoretic one is the existence of a family of functions

with suitable Hessians. On convex domains, these conditions match perfectly:

Theorem: Let 
 be a bounded convex domain in C

n

, and 1 � q � n. The

following are equivalent:

(i) @
 satis�es condition (P

q

),

(ii) @
 contains no analytic variety of dimension greater than or equal to q,

(iii) The Neumann operator N

q

(at the level of (0; q)-forms ) is compact

Here, the condition (P

q

) means the following:

(P

q

): For all M > 0 there exists a C

2

-function � in a neighborhood U of @
, such

that 0 � � � 1, and the sum of any q eigenvalues of

H

�

(z) :=

 

@

2

�

@z

i

@z

j

(z)

!

n

j;k=1

is greater than or equal to M , for any z 2 U .
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It is known that no such characterization holds on general pseudoconvex domains.

Shigeharu Takayama

The Levi problem and the structure theorem for non-negatively curved

complete Kaehler manifolds

We discussed the Levi problem on complex manifolds and a related problem. It is

well-known that, if a complex manifold X is holomorphically convex, then there exists

a C

1

-smooth plurisubharmonic exhaustion function � : X �! IR. Such manifolds

are said to be "weakly 1-complete" after Nakano. We also consider manifolds with

a continuous plurisubharmonic exhaustion function. Such manifolds are said to be

"pseudoconvex". Then the Levi problem in our case asks whether a weakly 1-complete

or pseudoconvex manifold is holomorphically convex, or not.

One of our main results is as follows:

Theorem: Let X be a pseudoconvex manifold with negative canonical bundle.

Then X is holomorphically convex.

Structure Theorem: Every complete Kaehler manifold with non-negative sec-

tional curvature and positive Ricci curvature is holomorphically convex. Moreover

the Remmert reduction gives a structure of a holomorphic �ber bundle over a Stein

manifold with a compact Hermitian symmetric manifold as the typical �bre.

This gives the complete a�rmative answer to a conjecture of Greene-Wu.

Jean-Marie Tr

�

epreau

Conic re
ection and the classi�cation of germs of resonant di�eomor-

phisms of (C; 0)

1) We showed how the following questions are related with the classi�cation of

resonant di�eomorphisms by Ecalle and Voronin (1981) and the classi�cation of generic

pairs of involutions by Voronin (1981).

Problem 1. An anlytic cusp in C � IR

2

is a germ of a real-analytic singular curve,

which is real analytically equivalent to

S = fz = x + iy : x

2

= y

3

g

near 0.

15



It happens that any two cusps S

1

; S

2

are formally complex equivalent, i.e. there

exists a formal power series f(z) = az+: : :, with a 6= 0, such that f(S

1

) = S

2

. Actually,

f is unique.

Question. Give " geometric " examples of cusps which are not complex equivalent,

i.e. such that f is not convergent.

Problem 2. Classify the pairs consisting of an arc of a smooth analytic curve and a

tangent.

Question. In a formal class, give examples of non-conformal pairs, using geometric

arguments.

2) As an example it was proved that there exists no local biholomorphism near

0 2 C which transforms

Fig. 1

tangent tangent

f

arc of circle
arc of ellipse

This is proved by introducing (Schwarz)- re
ection through an ellipse.

Fig.2

C

T

γ


 is the inverse of T for the circle C.

16



Fig. 3

Cε

T

γ


 is the inverse of T for an ellipse C

"

with small excentricity, and foci at ";�".

The two pictures are not quite the same.

Ken-ichi Yoshikawa

Analytic Torsion and Automorphic Forms on the Moduli Spaces

Let (X; �) be a pair of aK3 surface and an anti-symplectic involution ( an involution

which reverses the holomorphic symplectic form). We call such a pair a 2-elementary

K3 surface. A family of 2-elementary K3 surfaces is parametrized by the invariant

lattice

H

2

+

(X;Z) = fl 2 H

2

(X; Z) : �

�

l = lg:

We call (X; �) to be of type S, if H

2

(X; Z) is isometric to S � L

K3

. It is known that

S is a primitive hyperbolic 2-elementary lattice in L

K3

, the K3-lattice.

We introduce an invariant of 2-elementary K3 surfaces via analytic torsion. For a

2-elementary K3 surface (X; �) of type S, we de�ne

�

S

(X; �; �) := �(X=�; �)

14�r

8

(�(X

�

; �j

X

�

)vol(X

�

; �j

X

�

))

1=2

;

where � is an �-invariant Ricci-
at Kaehler metric and X

�

is the �xed curve of �.

(r = rk

Z

S).

Theorem 1. �

S

is independent of � and becomes a smooth function on the moduli

space which is an arithmetic quotient of a bounded symmetric domain of type IV. �

S

can be identi�ed with an automorphic form on the moduli space.

17



Theorem 2. If S = U(2) � E

8

(�2); U � E

8

(�2), and S

?

= U(2) � I

k

(2), (0 �

k � 8), then �

S

is represented by an automorphic form with in�nite product.

Reported by Gregor Herbort
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