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This conference, organized by Willi Freeden (University of Kaiserslautern), ErikW. Grafarend (University

of Stuttgart), and Leif Svensson (University of Lund), continued a sequence of Oberwolfach conferences on

mathematical methods in geodesy and brought together researchers from mathematics, geodesy, physics,

and information technology.

The conference had 35 participants from 6 countries. The program was divided into 7 sessions on

di�erent areas. The title of these sessions re
ects the variety of themes presented at the conference:

1. Gravity and Magnetic Field Determination (M. Bayer, C. Cui, J. Kusche, T. Maier, L. E. Sj

�

oberg,

M. Thalhammer)

2. Numerical Analysis (D. Potts, R. Reuter, F. Sacerdote, G. Steidl)

3. Constructive Approximation (S. Dahlke, O. Glockner, F. J. Narcowich, L. L. Schumaker)

4. Geodetic Reference Frames, Stochastic Models, Filters, etc. (A. A. Ardalan, K. Borre, R. Jurisch,

B. Richter, H. R

�

omer, V. S. Schwarze)

5. Geodynamical Problems (A. M. Abolghasem, S. Beth, E. Groten, D. Wolf)

6. Inverse Problems (V. Michel, M. Z. Nashed, E. Schock)

7. Boundary-Value Problems (G. Anger, P. Holota)

The topics addressed were given as block of talks followed by a lively discussion and a useful exchange

of ideas. One additional afternoon discussion was organized on inverse problems in physical geodesy and

the current status of earth's gravitational potential determination. The research summaries posted close

to the main lecture hall were extremely helpful to initialize an interdisciplinary exchange of ideas.

All participiants are grateful to the sta� of the Oberwolfach institute for making their stay pleasant.
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First Results of an Attempt to Apply a Numerical Method in Earth Deformation Analysis

Amir M. Abolghasem

In order to investigate the deformations of the earth under the application of a force �eld, di�erent

analytical methods have been set forth. Applications of analytical models are restricted by circumstances

which may be avoided by numerical techniques. For example, lateral heterogenities have been neglected

by perhaps every analytical solution, although they may have profound e�ects in displacement �eld of

sources such as earthquakes. A numerical model in conjunction with a proper numerical solution technique

can overcome this problem.

We have recently started to test the abilities of a numerical technique, i.e. �nite element method, in

order to compute the earth deformations.

The analysis began with the simplest spherical model, a non gravitational homogeneous isotropic

elastic sphere, with the purpose of going step by step towards a self gravitational layered isotropic visco-

elastic spherical model. Our solution, although including not more than 1000 tetrahedral elements yet,

shows an encouraging agreement with the analytical solutions.

So far deformations of both non-self gravitational and self gravitational isotropic elastic spheres have

been solved. On account of the fact that the time-space domain integration is considerably slower and

computationally more expensive than the frequency domain analysis, we also investigate the possibility

of numerical extraction of normal modes of the sphere. If this method turns out to have good results, it

brings the important advantage of fast computation of the displacement �eld under the application of

any force �eld, as soon as enough natural frequencies are extracted.

Possible further steps:

� Increasing the number of elements.

� Numerical extraction of normal modes.

� Layering of the spherical model.

� Studying the response of a laterally heterogeneous model.

� Possibility of introducing internal discontinuities.

� Possibility of replacing the spherical model by an ellipsoidal model in order to apply geodetic (e.g.

GPS) observations as boundary conditions.

The Structure of the Gravitational Field and other Physical Fields: Uncertainties in

Inverse Problems

Gottfried Anger

1. Basic physical laws

Newton's law of gravitation (electromagnetic forces)
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For these considerations the physical meaning of gravitation is not necessary.

2. Newtonian potential

Let
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be the Newtonian kernel. The Newtonian potential is de�ned by
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Special measures are d�(y) = �(y)dy, dy volume element, and d�(y) = �(y)dS(y), dS(y) surface element.

From Green's formula (1828) it follows that
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for su�ciently smooth test functions '. If x =2 supp' from (5) it follows that
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Such densities are called non-radiating densites or ghosts or phantoms or artifacts (no real world solu-

tions). Similar formulas hold for other physical �elds and for nuclear magnetic resonance tomography

[3].

Further ghosts (phantoms) arise in discretizing the Riemann integral
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If one adds a function ' vanishing at the points y

j

we get

A

N

f = A

N

(f + '): (8)

The functiuon f +' is also a solution (ghost) of the discretized equation. Such relations also hold in R

n

.

Without additional conditions on f , for instance, jf < M , one cannot determine a uniquely determined

solution of the discretized equation [3], [4], [5].

If one does not know the physical �eld on the masses (charges) - right-hand side of a di�erential

equation - then the masses are not uniquely determined [1].

A Main Problem in Geodesy (Geophysics)

The gradient of the gravitational �eld can be measured along the orbit of a satellite or on the surface

of the Earth. One has to determine the downward continuation of this �eld. Similar problems hold in

geophysics relative to the magnetic �eld (see these Proceedings).
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3. Basic Results on Inverse Source Problems
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This set is a convex and weakly compact set of the dual space C

�

(
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) of C(

�


). Of special interest are

the extremal elements of B(�) [1].

4. Inverse Problems

In inverse theory one has to solve equations of the �rst kind

Af = g; f 2 X; g 2 Y; X; Y Banach spaces or metric spaces: (10)

If A and f are known, the calculation of Af is called a direct problem, if A and g are known the

determination of f is called an inverse problem of the �rst kind, if A and f are to be determined

and g is known, the inverse problem is called an inverse problem of the second kind [2], [4], [5].

Most results in analysis are results to equations of the second kind

Af + �f = g; (11)

which completely di�er from equations of the �rst kind, if A has good mathematical properties (compact

operator).

5. Well-Posed Problems

De�nition. Following J. Hadamard (1923) the equation Af = g describing the corresponding inverse

problem is called well-posed, if

1. For every g 2 Y there exists at least one f satisfying the equation Af = g (existence).

2. The element f satsfying Af = g is uniquely determined (uniqueness).

3. The solution f depends continuously on g (stability).

If one of these three de�nitions is not full�lled, the problem is called improperly posed or not well-posed

or ill-posed [1], [3], [5].

If the inverse f = A

�1

g is discontinuous, one has the regularize the equation Af = g, i.e to replace

A by a family of operators A

�

for which the inverses A

�1

�

are continuous and to consider the limit of

A

�1

�

g for �! 0 [3], [5]. Following A. G. Yagola (1999) not every ill-posed problem can be regularized.

In medical imaging there are very important inverse problems, such as, computed tomography, im-

pedance computed tomography and magnetic resonance tomography. Relative to these inverse problems

ghosts exist [3], [4].

6. Medical Diagnosis

The followers of Hippocrates (460 - 377 B.C.) contend that the history of individual illnesses can be

precisely studied only by carefully and precisely registering all symptoms: according to them, the illness

as such is beyond our reach. This result holds for every (complex) system on the Earth, since no ma-

thematical systems theory is possible for such complex systems [3], [6].

7. Final Remarks

Problems in technology are reversible, in biology all problems are irreversible and no mathematical

approach exists for biological problems. In mechanics the sum of the internal forces is zero, a similar fact

holds in electrodynamics. Therefore far reaching results exist in these areas. In medicine similar results

are not possible. The book of Parker [9] is correct from the mathematical point of view. But his method

can be applied only to problems, which can uniquely be solved. But in geophysics almost mathematical

problems have in�nitely many solutions, which is a consequence of very weak measuring data [1], [2], [3],

[4]. Following During [8] and Anger [3] a large part of sciences has to be reorganized in favour of practical

experience - praxis cum theoia.
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World Geodetic Datum 2000

Alireza Ardalan, Erik W. Grafarend

Based on the current best estimates of fundamental geodetic parameters fW

0

; GM; J

2

; 
g the form

parameters of the Somigliana-Pizetti level ellipsoid, namely the semi-major axis a and semi-minor axis b

(or equivalently the linear eccentricity " :=

p

a

2

� b

2

) are computed. There are six parameters namely

the four fundamental geodetic parameters fW

0

; GM; J

2

; 
g and the two form parameters fa; bg or

fa; "g, which determine the ellipsoidal reference gravity �eld of Somigliana-Pizetti type constraint to two

nonlinear condition equations. Their iterative solution leads to best estimates a = (6 378 136:572 �

0:053)m, b = (6 356 751:920 � 0:052)m; " = (521 853:580 � 0:013)m for the tide-free geoid of reference

and a = (6 378 136:602 � 0:053)m, b = (6 356 751:860 � 0:052)m, " = (521 854:674 � 0:015)m for

the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-

Pizetti level ellipsoid, fa; bg, di�er signi�cantly by �0:398m, �0:454m, respectively, from the data of the

Geodetic Reference System 1980.

A 2

nd

Generation Wavelet Approach to Approximating Vector Fields and Its'

Applications to Geomagnetic Satellite Data

Michael Bayer

In the geosciences the model of Fourier series' (i.e. the expansion into scalar spherical harmonics) is

commonly used. It has proved a useful and comprehensive tool whenever scalar data on a spherical

geometry such as an idealized earth have to be approximated. An important example is the modelling

of the geomagnetic �eld by a geomagnetic potential in terms of spherical harmonics, which has been

used since Gau�, who obtained a model up to degree and order four. Quite similar to the methods of

geomagnetism are those used for the determination of the geopotential in physical geodesy. There it is

important to know about so-called rotationally invariant operators applied to the potential, e.g. how the

potential behaves in di�erent altitudes, how its (normal) derivatives may be computed etc. The e�ect

of these operators can be displayed very easily in a scheme named after the famous geodesist Meissl.

In particular, the Meissl scheme allows a very comprehensive interpretation when we work with scalar

spherical harmonics as basis functions. Since in geomagnetism we also deal with normal and tangential

derivatives of a scalar potential modelled by spherical harmonics, there is a bridge between geomagnetism

and the Meissl scheme.

However, the disadvantages of this technique are obvious, as there are global support and serious

oscillations of higher degrees. Moreover, many available measurements are not of scalar but of vectorial

type (as the geomagnetic measurements of the satellite CHAMP). Although there exists a vectorial
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analogue to scalar spherical harmonics, namely vector spherical harmonics, these functions exhibit the

same drawbacks as their scalar counterparts, but in addition become singular at the poles as a consequence

of their dependence on polar coordinates.

Therefore, we propose basis functions that overcome these di�culties and still allow an interpretation

by the extended Meissl scheme, which includes also tangential (i.e. vectorial) components. Further, we use

these functions in a multiscale setting, i.e. we de�ne spherical vector wavelets, such that a representation

adapted to the number and local structure of the data at hand becomes possible.

As in the one-dimensional case it is possible to de�ne wavelets that can be obtained by dilation

and rotation of one single mother wavelet (see (M.Bayer, S.Beth, W.Freeden (1998))). These 1

st

generation wavelets rely heavily on Fourier techniques as a theoretical tool. An application to geomagnetic

data can be found in (Maier, T., Bayer, M.(1998)).

Here we introduce further so-called 2

nd

generation spherical vector wavelets following the ideas in

Sweldens, W. (1995). They are not dilated and rotated copies of one function but rely on a more

general multiresolution of the underlying space and a biorthogonal basis construction.

Both approaches can be incorporated into the extended Meissl scheme. As one consequence, it is pos-

sible to decompose geomagnetic satellite data of vectorial type (as delivered by MAGSAT or CHAMP)

into its' physically relevant parts and to approximate the underlying scalar quantities.

References:

[1] Bayer, M., Beth, S., Freeden, W. (1998): Geophysical Field Modelling by Multiresolution Ana-
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Unser (eds.), pp. 68-79, 1995

A Method for Solving the Incompressible Navier{Stokes Equations with Spherical Vector

Wavelets

Stefan Beth

The treatment of the incompressible Navier{Stokes equations includes a variety of di�erent techniques like

�nite element methods, spectral decomposition etc.. In particular, Temam and his co-workers proposed a

Nonlinear Galerkin Scheme, which separates the solution and the di�erential equation in a low frequency

and high frequency part. Taking a su�cient large bandwidth for the low frequency part, the terms of the

Navier{Stokes equations involving only high frequencies can be simpli�ed, such that one observes two

systems of di�erential equations, which are coupled by the nonlinear term in the Navier{Stokes equations.

The idea behind this procedure is seen from numerical point of view: Although the high frequencies have

no e�ect on the momentary solution they in
uence it over a longer time period. Thus they can not be

neglected completely, but every simpli�cation saves computational time.

The Nonlinear Galerkin Scheme also applies to the spherical case, where the corresponding basis

functions are the vector spherical harmonics of kind 3. Unfortunately, they are hard to handle, such that

as alternative spherical vector wavelets were chosen, which showed �rst success in applications concerning

geophysical �eld modelling.

The low frequency part can be represented by a single bandlimited mother kernel, while the high

frequency part may consist of wavelet basis functions of di�erent scale. The loss of orthogonality has to

be paid with the solution of few linear systems, which can be done in advance. Their number depends

on the chosen time discretization. The advantage of this approach lies in the simple structure of the new

basis functions, as they are generated by only few mother functions, which in addition are localizing in

space and frequency. A special choice of wavelets basis functions even allows to install a pyramid scheme

in order to examine the structure of the high frequency part of the solution.
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Unsolved Problems Connected With Kalman Filtering of GPS Observations

Kai Borre

Real-time applications of the Global Positioning System (GPS) for positioning rely on linear �lter theory.

Although the Kalman �lter is nearly forty years old it appears that some issues are still unsolved.

We present the basics for processing GPS data and at the same time point to our problems. Per

de�nition the ionospheric delay is a positive scalar but �ltering often estimates it as a negative number.

How to introduce a constraint that changes the model?

Sometimes correlation hurts you, sometimes it helps you. We mention examples of both cases. When

modeling the covariance matrices we expect stationary observations and autocorrelation functions of

simple form. However practice tells us something di�erent and it would be nice to be able to subtract

and model unwanted e�ects.

Is there a way to recover the residuals after a �ltering process|without storing all observations?

Suppose that you have no a priori knowledge about the variance of an observation. How can you tell

if the initial observation is to be accepted or rejected? After a few updates the median or mean value

help you. But what to do initially?

On the Gradient Tensors of First and Second Order in the Three-Dimensional Space

Chunfang Cui

A set of general expressions of the components of the gradient-tensor of second order with respect to

an arbitrary orthogonal curvilinear co-ordinate system has been derived directly using the co-variant

derivatives of a co-variant tensor of �rst rank and using the orthogonality condition.

These expressions should be called the \Borg-formulas\ because they have already been, in a rather

di�erent form, given by Borg over 30 years ago [1] (It seems, however, the Borg-formulas remain still

unknown in the �eld of Geodesy).

Applying to the gravity potential, then the gradient-tensor of �rst order describes the gravitational

force and that of second order describes the spatial variation of the force (gravity gradiometer tensor).

For the research of the gravitation �eld of the earth we give two sets of special expressions of the gravity

gradiometer tensor with respect

1. to a 3-dimensional elliptical co-ordinate system and

2. to the Gaussian orbital co-ordinate system.

The �rst set can be used for a series expansion of the geopotential which gives, as known, a better �t

then the series expansion over the spherical functions [2].

By the second set, the components of the gravity gradiometer tensor are related directly with the

orbital variables of a satellite. They provide observation equations for the satellite gravity gradiometer

measurement.

References:

[1] Borg, S. F., 1963: \Matrix-Tensor Methods in Continuum Mechanics\, A. Van Nostraud Comp.,

Princeton

[2] Heiskanen, W. A. and Moritz, H., 1967: \Physical Geodesy\,W. H. Freeman, San Francisco

Adaptive Wavelet Schemes for Elliptic Operator Equations: Analysis and Recent Results

Stefan Dahlke

We are concerned with the numerical treatment of operator equations Au = F; where A is a boundedly

invertible linear operator. Especially, we are interested in adaptive numerical schemes based on wavelets.

7



It is well{known that the order of convergence that can be achieved by such adaptive methods depends

on the regularity of the exact solution u in the speci�c scale B

s

�

(L

�

(
)); 1=� = s=d+1=p; of Besov spaces.

Therefore we �rst present some regularity results for some classical model problems. It turns out that

the Besov regularity is indeed high enough to justify the use of adaptive schemes. Then we discuss the

practical realization of adaptive algorithms. We derive reliable and e�cient a posteriori error estimators

based on stable multiscale bases. These error estimators lead to adaptive space re�nement techniques

which are guaranteed to converge in a wide range of cases, including operators of negative order. We also

present some numerical experiments, especially for the Poisson equation in an L{shaped domain.

Multiscale Modelling of Geopotentials by Harmonic Wavelets Using Tree Algorithms and

Fast Summation Methods

Oliver Glockner

Nowadays, measurements of the earth's gravitational potential are acquired at di�erent altitudes (e.g.

terrestrial, air-borne, space-borne) and are of di�erent type (e.g. satellite altimetry, satellite-to-satellite

tracking, satellite gravity gradiometry). Since a huge amount of data is available one has to think about

the development of powerful numerical algorithms for processing and interpreting the data. In this context

it is very helpful to assume the class of approximating functions to constitute a (Sobolev-like) Hilbert

space consisting of functions that are harmonic in the space outside an internal (Bjerhammar) sphere 


R

and therefore in the outer space of the earth's surface �, too. In the framework of the Sobolev space H

each observable can be considered as a bounded linear functional of the object function, i.e. the earth's

gravitational potential.

Obviously approximate formulae have to be formulated in dependence of the required spatial reso-

lution, since increasing space localization demands increasing data material. A multiscale technique like

harmonic wavelet approximation automatically adapts the basis functions from level to level to the re-

quired resolution in space domain (zooming in e�ect). We are led to the discretization of H-convolutions.

It turns out that it is possible to obtain coe�cients which provide us with an approximation of such

convolutions, from coe�cients of the �nest level, by recursion (pyramid scheme) without going back to

the original signal. Such pyramid schemata can be formulated as an exact bandlimited variant and as

non-bandlimited variant. The recursion steps as well as the computations of the approximations lead to

linear combinations in terms of the kernel functions. In order to increase the performance of the pyramid

scheme, especially in the seriously space localizing non-bandlimited case fast summation methods are ef-

�ciently applicable. Due to the space localizing character of the kernel functions we propose to explicitly

calculate the most in
uencing part, i.e. the contribution of the vicinity of the target point (near-�eld),

whereas to use a fast approximation for the remaining part (far-�eld).

Geodetic Problems in Geodynamic Applications

Erwin Groten

Repeat GPS measurements have been used together wity repeat levelling data over an intervall of about

4 years at a large viaduct close to Istanbul in order to investigate the stability of the bridge system.

Results of [mm]-accuracy have been obtained. This example has been used to explain, in general, the

geodetic problem inherent in modern geodynamics where globally, regionally and locally deformation

at the earth's surface are being investigated. One fundamental, partially still unresolved, question is

the Datum problem which is particularly in
uential in case of relative observations as usually applied

in geodesy. Related problems of observations (associated precise and speci�c reference system) as well

as of data processing (di�erent types of adjustments in terms of free, classical etc. LQ-techniques) are

considered. Also data combination when referred to celestial (GPS etc.) and terrestial reference frames,

taken over longer intervals of time, is crucial in geodynamics and still deserve further consideration in

view of increased accuracy of modern geodetic techniques.
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Application of Variational Methods to Geodetic Boundary Value Problem

Petr Holota

The purpose of this paper is to discuss the use of variational methods in the solution of the fundamtental

geodetic boundary value problem associated with the determination of the external gravity �eld and

�gure of the Earth. For illustration the famous Stokes problem was approached �rst and at the same time

some apriori estimates were obtained for the disturbing potential and the total horizontal component of

its gradient. Then the non-spherical case represented by an oblique derivative boundary value problem

was treated. The paper contains a detailed discussion, related to the construction of the bilinear form

connected with the problem under consideration and subsequently gives an interpretation of the method

in terms of function bases. In paricular the elements of the matrix of the respective Galerkin system were

computed and also the accuracy of their approximate representation was estimated.

Reference:

P. Holota: Variational Methods in Geoid Determination and Function Bases, Phys. Chem. Earth (A),

Vol. 24, No. 1 pp. 3-14, 1999

A Geometric Analysis of the Linear Gau�-Markov-Model via Pl

�

ucker-Coordinates

Ronald Jurisch, Georg Kampmann

From a mathematical point of view the problem is the construction of orthogonal projection onto a

subspace of R

n

. The projections can be constructed, if we choose a base in the subspace. And so there

arises the question, what is the \best\ base? In our sense, the best \base\ should have the following

properties:

1. The geometry of the subspace and its orthogonal complement in R

n

should be classi�ed at the same

time.

2. The construction of the projection should be able in a simple and obviously way.

In the literature there are various possibilities to choose a base in a special way, for instance the Q-R-

decomposition (orthonormal base). But they don't ful�ll both properties at the same time. The answer

can be found in the �eld of algebraic geometry. There are studied so-called Pl

�

ucker-coordinates. These

are homogeneous coordinates, which represent the subspace and also the orthogonal complement in an

unique way. A geometric analysis for these subspaces can be done in an excellent way. The projections

can be constructed as rational function of the Pl

�

ucker-coordinates.

Regional Gravity Field Recovery from future SST/SGG{Missions using Multi{Scale

Approximation

J

�

urgen Kusche

Description of the problem

The task of the envisaged SST/SGG{missions like CHAMP, SAGE, GRACE, and GOCE is the compu-

tation of a global gravitational �eld with high resolution and precision and { if possible { with repetition

in time. Global approaches are aimed at the recovery of spherical harmonic coe�cients. The spherical

harmonics provide a natural decomposition of the �eld, but they do not possess any localizing properties

in space. Therefore it is not possible to focuse the analysis of satellite mission data to regions of special

interest, i.e. for the study of time-dependent phenomena or of the polar regions. On the other hand,

regional approaches have been developed to recover gravity anomalies, point masses or spherical spline

coe�ents. They provide good space-localization, but lack in scale decomposition properties. This means,

phenomena on di�erent length scales are not clearly separable.
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Approach under investigation

To overcome these di�culties, wavelet and �ltering techniques have been proposed recently. Earlier ap-

proaches deal with multiple layers of point masses, buried at di�erent depth. In the approach under

investigation, wavelet and �ltered copies of base functions are combined to form a multi-scale version of

the classical least{squares approximation in a Hilbert space. SST and SGG data are considered as a func-

tion in time (time{wise approach), and the original observation equations are solved. Special emphasis is

laid on the topic of regularization, which is always a crucial point in regional approaches. It is expected

that di�erent regularization parameters on di�erent scales may be intruduced with bene�t.

Open questions and special topics

Some open questions are related to the following topics (among many other unsolved problems):

� How to \design\ a base function system suitable to di�erent SST{ and/or SGG{missions

� Interrelation between the various regularizing steps in the analysis: Presmoothing of the data,

projection onto subspace, Tykhonov{regularization.

� Choice of multiple regularization parameters

� How to extend the technique on large areas and for global application

Applications and linked projects

At Geod

�

atische Woche 98, �rst results from a simulation experiment on regional gravity �eld recovery

were presented. A two-scale approximation scheme was constructed suitable to a low{low SST gravity

�eld mission and a simulation run using GRACE mission parameters was performed { orbit and data

simulation, noise generation, recovery of approximation coe�cients and computation of mean gravity

anomalies.

It is planned to test the chosen strategy also for polar gravity �eld determination from non{polar

satellite gradiometry. The author is involved in Workpackage 5: Polar Gap Problem of the ESA GOCE

study From E

�

otv

�

os to mGal, which is currently under preparation by eight european research institutions

and managed by the TU Graz. Finally it is worth to mention that scienti�c work at the approach under

consideration is funded by the Deutsche Forschungsgemeinschaft.
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An Application of Spherical Vectorial Wavelets to the Extraction of Poloidal and Toroidal

Vector Fields From MAGSAT Data

Thorsten Maier

The standard technique of geomagnetic �eld modelling is known as Gauss-Representation, i.e. the

spherical harmonic expansion of a scalar geomagnetic potential. The expansion coe�cients are chosen

in a way, that the gradient of the potential �ts - in the sense of the L

2

-metric - the given vectorial

data as good as possible. To guarantee the existence of such a geomagnetic potential, one assumes the

corresponding magnetic �eld to be curl-free which, in connection with Maxwell's equations, means that

no electric current densities must be present at the place where the measurements are taken. For Earth-

bound or low-atmosphere surveys this is valid, but satellite missions, like MAGSAT or the upcoming

CHAMP, acquire their data in the ionosphere where signi�cant electric current densities can be found.
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Therefore, the magnetic �eld, as measured by satellites, cannot be considered to be a gradient �eld

anymore but also contains magnetic contributions from currents on the satellite's track.

From a theoretical point of view, this problem can be resolved by using the so-calledMie-representation,

i.e. by splitting the magnetic �eld into poloidal and toroidal parts. The poloidal �elds can be shown to

be due to purely tangential current densities, while the toroidal �eld is created by radial current densities

crossing the satellite's orbit. Those radial currents, usually referred to as �eld-aligned currents, and the

corresponding magnetic e�ects are more and more subject of recent geophysical research.

There remains the question of how to numerically obtain the Mie-representation of a given set of

vectorial data. [3] introduced a method based on the spherical harmonic analysis of scalar functions

which are closely related to the poloidal and toroidal vector �elds. This technique, however, involves the

evaluation of spherical harmonics which, due to the polynomial character of the harmonics, is numerically

disadvantageous. We will present here so-called spherical vectorial wavelets (e.g. [1]) which, completely

circumventing the computation of spherical harmonics, enable us to directly model a given vectorial data

set and immediately yield a decomposition into the poloidal as well as the toroidal �eld contributions

(see e.g. [2]). Imbedded into a vectorial multi-resolution background, the wavelets show - in contrast to

the spherical harmonics - strong localization properties in the space domain and therefore additionally

give us the possibility of local reconstructions as well as e�cient data compression.
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Theoretical and Numerical Aspects of a Multiscale Method for the Gravimetry Problem

Volker Michel

Let B

int

:= fx 2 Rj jxj � �g be the inner space and B

R

ext

:= fx 2 Rj � � jxj � Rg be a bounded outer

space of a sphere with radius �. On L

2

�

B

int

�

and L

2

�

B

R

ext

�

we use the inner harmonics

�

H

int

n;j

(�;�)

	

n2N

j=1;:::;2n+1

and the outer harmonics

�

H

ext

�n�1;j

(�;�)

	

n2N

j=1;:::;2n+1

, respectively, as bases for the corresponding subsets

of harmonic functions.

The central theme of the talk is the class of Fredholm integral equations of �rst kind

TF :=

Z

B

int

k(x; �)F (x) dx = P (12)

with harmonic kernel, i.e.

k(x; y) =

1

X

n=0

k

^

(n)

2n+1

X

j=1

H

int

n;j

(�;x)H

ext

�n�1;j

(�;y); x 2 B

int

; y 2 B

R

ext

: (13)

In particular, we are interested in the case k(x; y) = 1=jx � yj, where TF is Newton's gravitational

potential of a density distribution F . Thus the inversion of T o�ers a possibility to determine the earth's

density distribution from given gravitational data. Unfortunately, this inverse problem is ill-posed for

several reasons:

� If P is non-harmonic, no solution exists. Hence, errors is measurements can cause an unsolvable

problem. An exact criterion for the solvability is given in the talk.

� The solution is not unique. More precisely, only the harmonic part of the solution can be uniquely

reconstructed. The elements of the L

2

�

B

int

�

-orthogonal space of Harm

�

B

int

�

, the so{called anhar-

monic functions, form the null space of T . The dilemma is, that for every function in Harm

�

B

int

�
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there exists an in�nite{dimensional set of di�erent density distributions, which cause exactly the sa-

me potential. Only one among these functions is the real solution. Every other function su�ers from

the ghost phenomenon, that is also known in computer tomography. Moreover, it has been proved

in [2] that a pure harmonic reconstruction of a radially symmetric density distribution results in a

constant value for the whole earth.

� Finally, if T is restricted to Harm

�

B

int

�

, it is invertible. However, the inverse operator is not

continuous. Hence, the solution is not stable, such that small errors in gravitational measurements

can cause a completely di�erent solution of (12).

The talk discusses the concept introduced in [1] and [2] for the solution of the integral equation. It consists

of two parts: At �rst, the harmonic solution is reconstructed from gravitational data. Then an appropriate

anharmonic part is determined from non-gravitational a priori informations.

Harmonic Solution: For the determination of the harmonic density bandlimited and non-bandlimited

kernels are constructed, such that scaling functions and their corresponding scale spaces yield a multire-

solution: The sets form a continuously increasing sequence of subsets of Harm

�

B

int

�

such that the union

of all scale spaces is dense in Harm

�

B

int

�

.

Wavelets and detail spaces allow transfers between di�erent scales. This method enables a reconstruc-

tion of the harmonic projection of the solution with di�erent space and momentum localization. At low

scales a determination of the pure boundaries of the continents is possible. The higher the scale is the

more local is the added information, such that �nally the Amazonas area, Ayer's Rock and a series of

small islands can be detected in the density anomalies of the earth's surface.

The harmonic concept disposes the problems of ill-posedness. The solution is not only unique, as only

harmonic functions are considered, but a regularization, developed for arbitrary kernels (13), also enables

a stable reconstruction of an arbitrarily good (unique) approximation to the harmonic part of the whole

solution.

Anharmonic Solution: As Anharm

�

B

int

�

is the null space of T , non-gravitational data, generally

represented by linear and continuous functionals F

n

, have to be used. For this purpose a categorization

of the ghosts is given, such that a series of di�erent polynomial basis systems for Anharm

�

B

int

�

can be

derived. One of theses bases is the fundament for the construction of a new Hilbert space of continuous

anharmonic functions. The reproducing kernel of the Hilbert space and the functionals F

n

are used to

de�ne spline spaces and spline bases, such that an anharmonic spline satisfying the a priori conditions can

be determined. Of course, this spline has the usual best approximating properties in its corresponding

topology.

The anharmonic method also enables a well-posed reconstruction of an approximation to one compo-

nent of the solution. Bandlimited and non-bandlimited kernels are available.

One of the fundamental results of [2] is that numerical methods and solution theories, that only use

harmonic functions for the determination of the earth's density distribution, are worthless.
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Scattered-Data Quadrature Formulas for Spheres

Francis J. Narcowich

Often we wish to approximate integrals of the form

Z

S

q

f(p)d�(p);
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given only values of f 2 C(S

q

) on a set of scattered points C = f� 2 S

q

g on the q-sphere S

q

. To do this,

we seek a quadrature formula of the form

Q[f ] =

X

�2C

w

�

f(�);

where w

�

is a weight corresponding to the point �. Let H

L

denote the spherical harmonics of degree L

or less. We want Q to satisfy these properties:

P1. Q is exact for H

L

.

P2. The weights w

�

are nonnegative.

P3. The number of points required from the scattered sites in C is comparable to the dimension of H

L

.

If Q satis�es P1, then, by standard arguments, the error we make in using Q is

�

�

�

�

Z

S

q

f(p)d�(p)�Q[f ]

�

�

�

�

�

�

�(S

q

) +

X

�2C

jw

�

j

�

dist

L

1

(f;H

L

) :

If in addition Q satis�es P2, so that

P

�2C

jw

�

j =

P

w

�

= Q[1] = �(S

q

), then

�

�

�

�

Z

S

q

f(p)d�(p)�Q[f ]

�

�

�

�

� 2�(S

q

) dist

L

1

(f;H

L

) :

The point is that if some of the weights are negative, then

P

�2C

jw

�

j > Q[1] = �(S

q

), and the sum

P

jw

�

j

must be controlled separately to ensure stability. Finally, counting equations and parameters, the number

of weights is at least the dimension of H

L

. Thus P3 amounts to requiring a nearly optimal number of

weights.

Recent work dealing with quadrature formulas for spheres has been done by several reseachers: Driscoll

& Healy [Adv. in Appl. Math., 15 (1994), 202-250]; Jetter, St

�

ockler & Ward [pp. 237-245 in \Computa-

tional Mathematics," (Chen, Li, C. Micchelli, Y. Xu, eds.), Marcel Decker, New York, 1998]; Petrushev

[SIAM J. Math. Anal., 30 (1998), 155-189]; and Potts, Steidl & Tasche [Math. Comp., 67 (1998), 1577-

1590].

The quadrature formulas developed in the papers listed above either put restrictions on C, so that

the sites are not truly scattered, or use weights that are of uncertain sign. In this talk, we will discuss

quadrature formulas that satisfy P1-P3. These formulas were recently developed by Mhaskar, Narcowich

& Ward [\Quadrature Formulas on Spheres Using Scattered Data," Center for Approximation Theory

Report # 393, Department of Mathematics, Texas A & M University, 1998].

Variational Inequalities, Bounded Variation Regularization and Inverse Source Problems

M. Zuhair Nashed

We �rst provide several examples of nonlinear ill-posed problems with smooth and nonsmooth operators,

and sketch an overview of various approaches to the regularization-approximation of such problems.

The main part of the talk (which is based on joint work with Otmar Scherzer) is to discuss results

for bounded variation solutions of nondi�erentiable ill-posed problems. A general method is described

for obtaining stable approximate solutions for a class of minimization problems for which approximate

minimizers can be characterized as solutions of variational inequalities. The functional to be minimized

is not assumed to be di�erentiable, and the minimizers need not satisfy a variational inequality. An

application to inverse source problems is considered in detail; convergence and stability are established

as a special realization of the theory developed for the general method.

We also consider least-squares regularization methods for ill-posed problems Af = g, where A is an

operator from a real Banach space into a real Hilbert space using nondi�erentiable penalty functionals

(as in the case of bounded variation regularization). We show that our results provide a framework for a
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rigorous analysis of numerical methods based on appropriate Euler-Lagrange equations. This justi�es ma-

ny of the numerical implementation schemes of bounded variation regularization that have been recently

proposed in the literature (see [1] and [2] for details of the results and precise formulation of the general

setting). Reference [3] is not related to our talk but it deals with regularization of ill-posed variational

inequalities for inverse-monotone nonlinear operators.
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Preconditioners for Ill{conditioned Toeplitz Systems Constructed from Positive Kernels

Daniel Potts

We are concerned with the iterative solution of \mildly" ill{conditioned Toeplitz systems

A

N

x = b ;

where A

N

2 C

N;N

are positive de�nite Hermitian Toeplitz matrices arising from a continuous non{

negative generating function f which has only a �nite number of zeros. Often these systems are obtained

by discretization of a continuous problem (partial di�erential equation, integral equation with weakly

singular kernel) and the dimension N is related to the grid parameter of the discretization.

Iterative solution methods for Toeplitz systems, in particular the conjugate gradient method (CG{

method), have attained much attention during the last years. The reason for this is that the essential

computational e�ort per iteration step, namely the multiplication of a vector with the Toeplitz matrixA

N

,

can be reduced to O(N logN) arithmetical operations by fast Fourier transforms (FFT). However, the

number of iteration steps depends on the distribution of the eigenvalues of A

N

. If we allow the generating

function f to have zeros, then the related Toeplitz matrices are asymptotically ill{conditioned for N !1

and the CG{method converges very slow. Therefore, the really task consists in the construction of suitable

preconditionersM

N

of A

N

.

In literature three kinds of preconditioners were mainly exploited, namely band Toeplitz precondi-

tioners, preconditioners based on multigrid methods and preconditioners arising from a matrix algebra

A

O

N

:= f

�

O

0

N

(diagd)O

N

: d 2 C

N

g, where O

N

denotes a unitary matrix.

For band Toeplitz preconditioners it was proved that the corresponding PCG{methods converge in

a number of iteration steps independent of N [1, 2]. Moreover, it is possible to construct superlinear

preconditioners. However, there is the signi�cant constraint that the cost per iteration of the proposed

procedure should be upper-bounded by O(N logN). This implies some conditions on the growth of the

bandwidth of the band Toeplitz preconditioners.

The above constraint is trivially ful�lled if we chose preconditioners from matrix algebras, where the

unitary matrix O

N

has to allow an e�cient multiplication with a vector in O(N logN) arithmetical

operations. Up to now, the only preconditioners of the matrix algebra class which ensure the desired

convergence of the corresponding PCG{method are the preconditioners proposed in [3, 4]. Unfortunately,

the construction of these preconditioners requires the explicit knowledge of the generating function f .

In this paper, we combine our approach in [4] with the approximation of f by its convolution with a

reproducing kernel K

N

. The kernel approach was originally given in [5] for positive generating functions.

The advantage of the kernel approach is that it does not require the explicit knowledge of the generating

function. We restrict our attention to positive kernels. This ensures that our preconditioners are positive

de�nite. Suppose that f has only zeros of even order � 2s. Then we prove that the condition

�

Z

��

t

2k

K

N

(t) dt � CN

�2k

(k = 1; : : : ; s)
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on the kernels K

N

is necessary and su�cient to ensure that the eigenvalues ofM

�1

N

A

N

are contained in

some interval [a; b] (0 < a � b <1) except for a �xed number (independent of N) of eigenvalues falling

into [b;1) such that the number of PCG{steps to achieve a �xed precision is independent of N . Typical

kernels fulfulling the above property for arbitrary N 2N are R. Chan's B{spline kernels and generalized

Jackson kernels.
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Accuracy vs Speed

Richard Reuter

Solving challenging problems in the area of geosciences very often leads to computer programs which are

very time consuming, where a considerable amount of time is spent in the evaluation of intrinsic functions

like sin, cos, exp, and so on. In order to speedup those programs all parts have to be investigated for

performance improvements. This leads to the question if the standard intrinsic functions library can

be replaced by an alternative one which performs faster. But what is the price to pay for that? How

much is lost in accuracy? In my presentation the accuracy and speed of the double precision (64 bits)

functions of the standard intrinsics library \libm\ of the IBM AIX compiler family (xlf, xlc, ...) for the

RS/6000 workstations is compared to corresponding functions in the alternative libraries \lmass\ and

\lmassv\. \lmass\ is ment for scalar arguments, whereas \lmassv\ accepts vector arguments. MASS is

an abbreviation for \Mathematical Acceleration SubSystem\. It turns out that most of the functions in

\libm\ return the correctly rounded results and that the functions of \lmass/lmassv\ are considerably

faster (up to a factor of 9 for the exp-function on a RS/6000 Mod. 590 workstation) and they are loosing

in general at most 1 bit in accuracy. The technique of investigating the accuracy is based on the ulp-

concept in [1].
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Synthetic Modelling of Earth Rotation

Burghard Richter

In the synthetic approach of describing the rotation of the earth, we do not try to solve the dynamical

Euler/Liouville di�erential equation, but we start directly from the rotation matrix which connects an

earth-�xed reference system with a space-�xed one and which can be modelled in such a way that the

resulting rotation vector behaves as expected. The diurnal rotation matrix about the celestial ephemeris

pole through the Greenwich sidereal time is extended to one side by the polar motion matrix and to the

other side by the precession and the nutation matrices. These matrices, which have only long-periodic

variations, describe the direction of the celestial ephemeris pole with respect to both reference systems.

The rotation vector can be obtained in both systems by di�erentiating the rotation matrix with respect

to time. By multiplying it with the earth's tensor of inertia and adding the earth's angular momentum
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with respect to the earth-�xed system, which both are fairly well known in the earth-�xed system, one

gets the angular momentum with respect to the space-�xed system. Its time derivative in the space-�xed

system is eventually the torque, which can be compared with the actual torque exerted upon the earth by

the moon and the sun. By variation of the diurnal rotation, the polar motion, the precession and nutation

matrices, of the inertia tensor, the angular momentum of the earth with respect to the earth-�xed system

and of the external torque, one can investigate the interdependences of these factors.

Assuming a rigid and axially symmetric earth, simple examples are presented for a rotation model with

a free regular polar motion, for a rotation model with a forced regular precession, and for a combination

of these two models.

Conformally and Weyl Invariant Field Theorie

Hartmann R

�

omer

Die Vorstellung der Umskalierung des Raum-Zeitma�stabes l

�

asst sich in zweifacher Weise formalisie-

ren: erstens als Weyltransformationen der Metrik oder als konforme Transformationen auf der (pseudo)

riemannschen Raum-Zeitmannigfaltigkeit. In dem (auf Englisch gehaltenen) Vortrag wurden folgende

Themen behandelt:

I. Konforme Transformationen und Weyl-Transformationen

1. Di�eomorphismen

2. Weyl-Transformationen, Isometrien, konforme Transformationen

3. (Konforme) Killingvektorfelder

4. Konforme Gruppe des 
achen Raumes f

�

ur Dimension D > 2 und D = 2

5. Konforme Kompakti�zierung

II. Konform- und Weyl-invariante Feldtheorien

1. D = 4: Teilchenphysik

2. D = 2: Statische Mechanik thermodynamischer Systeme am kritischen Punkt in zwei Dimen-

sionen

III. Gravitationstheorie und Weyl-Invarianz

1. Weyl-Tensor

2. '"Dilatonen\

3. Stringtheorie

The Use of Slepian Functions for Local Geodetic Computations

Fausto Sacerdote

The procedure used by D. Slepian to maximize the energy of band-limited functions in a bounded interval

has been generalized to a spherical surface by A. Albertella et al., in order to analyze a geodetic boundary-

value problem with data lacking on polar caps.

Given a subset B of the unit sphere S, the problem of maximizing the ratio

R

B

f

2

d�

R

S

f

2

d�

=

P

L

f

i

f

j

R

B

Y

i

Y

j

d�

P

L

f

2

i

where f is a L

2

(S) band-limited function (up to degree L), fY

i

g is an orthonormal basis (typically,

spherical harmonics, here, for simplicity, labelled with only one index), is reduced to the determination
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of eigenvalues and eigenvectors of the matrix A

ij

=

R

B

Y

i

Y

j

d�. The functions obtained as combinations

of the original basis functions Y

i

, using as coe�cients the components of the normalized eigenvectors are

orthonormal on S, and, in addition, are orthogonal on B, with squared norm equal to the corresponding

eigenvalue.

What happens in practice is that, if B is a spherical belt, so that the integration with respect to

longitude is over an interval with amplitude 2�, the problem can be solved separately order by order,

and, for a given maximum degree L and for arbitrary order, one �nds a number of eigenvalues very close

to 1 and a number very close to 0, roughly proportional respectively to the amplitude of the belt and of

its complement. Only few eigenvalues have intermediate values. Therefore, it is possible to choose a set

of functions which span a subspace whose power is essentially 0 on the belt (or outside it) and can be

disregarded if only data in the corresponding region are available.

If B is a spherical rectangle with amplitude 2�=n in longitude, it is possible to extend periodically

the function to the whole belt, so that only orders multiple of n are involved.

Consequently, a function de�ned on a rectangular region can be represented in terms of a number of

basis functions that is roughly proportional to the extension of the region. Furthermore, the basis functi-

ons are de�ned in terms of spherical harmonics, so that harmonic extensions and, more generally, geodetic

operators, can be easily applied. Yet, apparently there is no simple relation between functions correspon-

ding to di�erent maximum degrees, so that apparently it is not possible to obtain higher resolutions with

simple procedures, similar to the ones introduced in multiresolution analysis for wavelets.

Error Estimates for Band-Limited Spherical Regularization Wavelets in an Inverse

Problem of Satellite Geodesy

Eberhard Schock, Sergei Pereverzev

We consider the integral equation

Af(x) =

1

4�R

Z




R

d

2

dr

2

(

r

2

�R

2

jx� yj

3

)f(y)d!

R

(y) = g(x)

for computing the gravitational potential f at the surface of the earth 


R

from a measured function g at

satellite amplitude r.

This problem is exponentially ill-posed. In the thesis of F. Schneider (Kaiserslautern) there are devello-

ped numerical algorithms based on band-limited spherical wavelets. We present results on the asymptotic

behaviour of the error. We show the connection between analytic properties of the solution, the rate of

convergence and the choice of the regularization parameters and the parameter of band-limitation with

respect to the error in the measured data.

Splines on Spherical Triangulations

Larry L. Schumaker

This talk presents an overview of the recent development of a theory of spline functions de�ned on the

sphere. Such splines have a variety of applications in CAGD, surface approximation, scattered data �tting,

and �nite element solution of PDE's.

We begin with a natural way to de�ne spherical barycentric coordinates, and introduce direct analogs

of the classical Bernstein-B�ezier polynomials de�ned on triangles (here de�ned on spherical triangles). We

discuss a variety of properties of such SBB-polynomials, including a deCasteljau algorithm, subdivision,

degree raising, smoothness conditions between spherical patches, etc. We also present several results from

the constructive theory of spherical splines, including a dimension result. Finally, several practical data

�tting and interpolation methods are discussed along with numerical results for some test problems.
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Coordinate Systems and Observation Frames in Curved Space-Time

Volker S. Schwarze

Modern geodetic space-techniques have to be modeled within a consistent physical framework. The ap-

propriate physical framework is the general relativity.

Starting with the space-time metric up to �rst post-Newtonian order a set of local charts is presented

which is suitable for astronomic and geodetic use. Based on the Gram-Schmidt pseudo-orthonormalization

technique it is shown how a four-leg is constructed which is pseudo-orthonormal with respect to some

given metric. This is the starting point to give explicit expressions for the coordinate transformations

between the charts under use as well as for deriving geodetic observation equations being consistent up

to required order with general relativity.

On the Topographic E�ects by Gravimetric Geoid and Quasi Geoid Determinations

Lars E. Sj

�

oberg

Stokes integral formula is the basis for gravimetric geoid determination. It requires that 1) there are no

topographic masses () direct topographic e�ect) and 2) the gravity anomaly be downward continued

from the Earth's surface to the sea-level () e�ect of downward continuation). Finally, 3) after Stokes

Formula has been employed, the topography is restored, yielding the so-called indirect e�ect on the geoid.

Traditionally geodesists are using very appropriate estimates of the above e�ects. Based on the as-

sumption of constant topographic density we present surface integrals for the direct and indirect e�ects as

functions of topographic elevation. Comparison with curvent planar approximation reveal errors reaching

as much as 0:5m in the highest mountains, showing that traditional methods for geoid determination

must be improved to reach the goal of the 10cm geoid or even better. In this respect we consider also

the routines for determining the e�ect 3) above, where the basic problem is the solution of the Poisson's

integral equation for the gravity anomaly without (complete) removal of topographic masses. The impro-

ved formulas are con�rmed from comparisons with GPS derived geoidal modulations.
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Fast Fourier Transforms for Nonequispaced Data

Gabriele Steidl

Let �

d

:= [�
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2 C, we are interested in the fast and robust computation of the discrete

Fourier transform for nonequispaced data (NDFT)
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For arbitrary nodes, the direct evaluation of the above sums takes O(N

d

M

d

) arithmetical operations,

too much for practical purposes. For equispaced nodes x

k

:=

k

N

(k 2 I

N

) and v

j

:= j (j 2 I

N

), the

values f(v

j

) can be computed by the well-known fast Fourier transform (FFT) with only O(N

d

logN)

arithmetical operations. However, the FFT requires sampling on an equally spaced grid, which repres-

ents a signi�cant limitation for many applications. For example, most geographical data are sampled at

individual observation points or by fast moving measuring devises along lines. Using the ACT method
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(adaptive weight, conjugate gradient acceleration, Toeplitz matrices) introduced by Feichtinger et al.

for the approximation of functions from scattered data , one has to solve a system of linear equations

with a block Toeplitz matrix as system matrix. The entries of this Toeplitz matrix are of the above form

and should be computed by e�cient NDFT algorithms. Further applications of the NDFT range from

frequency analysis of astronomical data to modelling and imaging.

We give a uni�ed approximative approach for the fast computation of NDFT and estimate the ap-

proximation error for various window functions.. Further, we prove another advantage of our NDFT

algorithm, namely its robustness with respect to roundo� errors, a feature which is well-known from the

classical FFT. Numerical tests con�rm our theoretical expectations.

Future Satellite Gravity Missions and their Impact on Studying the Earth's Interior

Markus Thalhammer

1. Motivation

As soon as one of the currently planned satellite gravity missions (GRACE, GOCE) will have successfully

been realized a gravity �eld model becomes available that reveals unprecedented features with respect to

accuracy, resolution and homogeneity.

Among other topics this will enable the geophysical community to get ahead in the recovery of the

internal structure and composition of the earth. Because of the basic nonuniqueness of this problem gravity

�eld data have to be combined with other geophysical information. Especially the progress in seismic

tomography which led to global, highly resolved datasets of seismic parameters promises a signi�cant

step towards this aim.

For a correspondingly accurate interpretation of the new data one has to develop a theory of the

inverse gravity problem that allows to introduce such additional geophysical information in a 
exible

manner.

2. Inverse gravitational problem (IGP)

The new data will describe the gravitational potential V in the exterior C
 of the earth 
 in terms of

its spherical harmonics expansion up to a certain degree and order : L : V

ext

=

P

L

l;m

�

lm

Y

lm

. The aim

of the IGP is to infer the generating mass distribution � 2 L

2

, supp � = 
 � R

3

; � � 0, which is linearly

related to that observable by the Newton-operator P , V

ext

(x) = G

R




�(y)l

�1

(x; y)d
(y) =: P�, as a

special solution of the underlying Poisson-di�erential equation, �V (x) = �4�G�(x).

It is well known that this integral equation of the �rst kind is ill posed because of nonuniqueness

which can generally be shown by Green's theorem. The Newton operator P leads to an orthogonal

decomposition, L

2

(
) = N(P ) �N(P )

?

, where N(P )

?

covers the so-called harmonic densities �

h

and

N(P ) the anharmonic densities �

a

. This orthogonal decomposition of � with respect to P , � = �

h

+ �

a

,

leads to the fact that �

h

is uniquely determined by the given potential coe�cients �

lm

whereas the

anharmonic part �

a

remains completely hidden to V

ext

or any measured functional thereof.

If one restricts to a spherical shape of the boundary, �

R

, that completely includes 
, then a three-

dimensional orthonormal basis for � 2 L

2

(�

R
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P
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(k = 0) are then given to �
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density of the earth) which then leads to the harmonic series representation
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�
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:

Thereof the harmonic densities of currently existing gravity models such as OSUxx, EGM96, etc can

simply be calculated, but such a density distribution is purely arti�cial, i.e. has no immediate physical

meaning. If one works on a global basis in this spectral domain the information content of external

gravity about the internal mass distribution has been completely exploited. Any information about the

anharmonic part �

a

must arise from other geophysical observables.

3. A solution strategy of the combined IGP in terms of extremal measures
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As the pure IGP leaves one with the total ignorance of the nullspace N(P ), it would be desirable to �nd

a proper description of this space that allows to introduce any further (geophysical) information and to

calculate the resulting change of its structure. The concept of measure seems to be a well-suited tool to

approach this goal. For the spaceM

+

(
) of non-negative RADON-measures � one has to investigate the

set B(�) = f� 2 M

+

(
) :

R

h(x)d�(x) =

R

h(x)d�(x);8h harmonic in 
g. B(�) is a weakly compact

convex set and according to a theorem of Krein & Mil'man each measure � 2 B(�) can be composed as

a linear (convex) combination of extremal elements of B(�), exB(�).

For the most simple case of radialsymmetric density distributions, i.e. only �

00

be given, a general

construction scheme can be developed, which allows to include any preliminary information about � = �(r)

and to map this knowledge into the spectral domain, i.e. into the coe�cients �

lmk

; k 6= 0, as well.

4. Sensitivity analysis and preliminary inversion results

From a practical point of view any numerical solution of the IGP has to take into account the quality

of the data, i.e. its accuracy and resolution. For the gravity data these informations can be taken from

simulation results of the aforementioned satellite missions in terms of the maximum degree L of the

expansion together with the accuracies of the series coe�cients, �(�

lm

).

Therefore a forward computation scheme has been developed that calculates the spherical harmonics

expansion, i.e. coe�cients ��

lm

, of a prescribed mass distribution ��(r; #; �) inside the earth. A comparison

with the accuracy spectrum �(�

lm

) then allows to separate the spectrum ��

lm

into a part ��

lm

the satellite

measurements are sensitive to and its complement that cannot be recovered at all.

If applied to single mass anomalies of various extensions, depths and density contrasts these calcula-

tions give valuable hints to a proper choice of the discretization in the following inversion procedure.

Additionally it is also possible to separate these anomalous masses into their harmonic and anharmonic

parts. This has also been performed for more complicated mass con�gurations, e.g. various isostasy models

and subduction scenarios.

As to the numerical solution of the combined IGP itself a simulation software has been developed

that uses a modi�cation of classical linear programming for the inversion step. The current version uses

a simpli�ed parametrization in the space domain (volumetric spherical blocks) where any additional geo-

physical information is simulated as knowledge of the density within such a block together with a certain

accuracy measure (variance).
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Viscoelastic Models of Deformation and Gravity Change

Detlef Wolf, Guoying Li, Zden�ek Martinec and Malte Thoma

Overview

The causal description of long-period deformations of the earth is commonly based on the �eld theory of

gravito-viscoelastodynamics . In Section 1.4: System Theory and Modelling of the GeoForschungsZentrum

Potsdam, one research group applies this theory to study deformations and gravity changes caused by

glacial loading. Besides the interpretation of data related to glacial{isostatic adjustment, the research

group is also concerned with the derivation of new solutions to the incremental �eld equations of gravito-

viscoelastodynamics for more realistic earth models. Problems of current interest are here

� Deriving analytical solutions for initially hydrostatic compressible earth models

� Deriving analytical/numerical solutions for laterally heterogeneous incompressible earth models
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Compressibility

The incremental �eld equations of gravito-viscoelastodynamics (e.g. Wolf, 1991a, 1997) used to describe

long-period deformations of the earth are conventionally solved in a simpli�ed form valid on the assump-

tions of Maxwell viscoelasticity and incompressibility (e.g. Wolf, 1991b; Amelung & Wolf, 1994). Whereas

the generalization of the solutions for arbitrary types of linear viscoelasticity does not pose serious pro-

blems (e.g. Wolf, 1994, 1997; R

�

umpker & Wolf, 1996; Wieczerkowski, 1999), the derivation of solutions

for compressible viscoelasticity is an area of current theoretical research.

Previous analytical approaches to compressible viscoelasticity have generally assumed that the earth is

composed of a sequence of radially symmetric homogeneous shells. Analytical solutions to the incremental

�eld equations for this type of viscoelastic earth models have been given by Wu & Peltier (1982), Wolf

(1985), Vermeersen et al. (1996), Hanyk et al. (1999) and Wieczerkowski (1999). Corresponding solutions

for elastic earth models were �rst derived by Love (1911) and later in more general form by Gilbert &

Backus (1968) and Martinec (1984).

The physical stability of compressible elastic earth models consisting of homogeneous spherical shells

has already been questioned by Love (1911); the studies by Plag & J

�

uttner (1995), Hanyk et al. (1999)

and Wieczerkowski (1999) have extended the investigations of stability to viscoelastic earth models. The

results of these studies show that, for particular parameter values and deformation wavelengths, the

solutions for both elastic and viscoelastic earth models become singular. Physically, these singularities

are related to the assumption of shells of homogeneous density: Since the radial distribution of the

density in the hydrostatic initial state must be consistent with the assumption of compressibility, a shell

of homogeneous density implies that, with the e�ect of self-compression removed, the density of the

material decreases with depth, which, in turn, means that the initial state is inherently unstable.

In order to model the in
uence of compressibility on viscoelastic perturbations correctly, the following

is required:

� Calculation of the radial distributions of density, pressure and gravity for a hydrostatic initial state

in consistency with the assumption of compressibility

� Consideration of this hydrostatic initial state when deriving solutions for the compressible incre-

mental state

The problem has �rst been solved in simpli�ed form for a gravitationally decoupled and compositionally

homogeneous plane earth model (Wolf & Kaufmann, 1999). More recently, the analytic solution has been

derived for a gravitationally coupled spherical earth model consisting of a compositionally homogeneous

viscoelastic mantle and a 
uid core (Li & Wolf, 1999). At present, this solution is extended to a spherical

earth model consisting of an arbitrary number of compositionally homogeneous viscoelastic shells. The

generalized solution is based on the propagator-matrix method and provides analytic expressions for the

matrix elements (Thoma, in preparation).

Lateral heterogeneity

The derivation of solutions to the �eld equations of gravito-viscoelastodynamics for laterally heteroge-

neous earth models is complicated by the fact that variations of viscosity in the lateral direction may

reach two orders of magnitude. If the variations are assumed to be restricted to a factor of, say, �ve at

the most, �rst-order perturbation theory may be used to obtain analytical expressions. This approach

has been employed to obtain computational results for a gravitationally decoupled and compositionally

homogeneous plane earth model (Kaufmann & Wolf, 1999).

In the general case of arbitrarily large variations of viscosity in the lateral direction, nearly all results

obtained so far have been based on commercial �nite-element codes (e.g. Kaufmann et al., 1997). These

codes were originally developed for engineering applications and, as such, usually assume gravitational

decoupling, plane geometry and a stress-free initial state. The consequence of the last assumption is that

�nite-element earth models are unstable with respect to surface loading. In order to avoid these instabili-

ties, the �nite-element codes must be adapted to the case of a hydrostatic initial state. This modi�cation

introduces buoyancy forces into the viscoelastic incremental state, which stabilize the response. The sta-

bilization is usually achieved by ad hoc modi�cations of the boundary conditions, an approach which is

strictly justi�ed only under special circumstances.

A more promising approach is the derivation of solutions for laterally heterogeneous earth models

which are gravitationally coupled, spherical and in a hydrostatic initial state. In order to test the accu-

racy of these solutions, the exact solutions for simple types of lateral heterogeneity are required. For this

purpose, the semi-analytical solution for a simple 2-D spherical earth model consisting of two eccentrically
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nested spheres has recently been derived (Martinec & Wolf, 1999). As the next step, the development of

general codes based on the spectral �nite-di�erence scheme and valid for arbitrary 2-D or 3-D spherical

earth models is being initiated.
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