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An der Tagung, welche unter der Leitung von A. Pfister (Mainz), W. Scharlau (Münster) und J.P.

Tignol (Louvain-la-Neuve) stattfand, nahmen über vierzig Mathematiker aus dreizehn verschiedenen

Ländern teil.

Im Mittelpunkt stand die klassische Theorie der quadratischen Formen über Körpern bzw. Ringen

und damit zusammenhängende Gebiete, wie zum Beispiel die Theorie der Algebren mit Involution.

Dabei wurden auch Folgerungen aus der Milnor-Vermutung dargelegt, und neuere Resultate über die

Rolle der quadratischen Formen (speziell von Pfisterformen) in der Galoiskohomologie vorgestellt.

Es gab aber auch Vorträge über Wittgruppen von Schemata und über Wittgruppen von triangulierten

Kategorien, sowie über die topologisch motivierten L-Gruppen. Auch Ergebnisse aus der relativ neuen

unverzweigten Kohomologie wurden erörtert.

Neben den Hauptvorträgen wurden, wie bei Tagungen am Forschungsinstitut in Oberwolfach üblich,

auch viele neuere Entwicklungen und Probleme aus der Theorie der quadratischen und hermiteschen

Formen in kleineren Gruppen diskutiert. Es gab also nicht nur das "offizielle" Vortragsprogramm

sondern auch eine ganze Reihe von spontan organisierten Vorträgen.

� � � � �

Vortragsauszüge

J.K. Arason

Some consequences of Voevodsky’s results for the In(K)

This talk is about some applications of the recent far reaching results of Voevodsky together with

Orlov and Vishik. These applications were gotten last year in collaboration with R. Elman.

Let K be a field, charK 6= 2. Let ! be a k-fold Pfister form over K . For every n � 1 we then

have that In+k(K)\W (K)! = I

n

(K)!. Denoting by I
!

(K) the annihilator of ! we also have that

I

n

(K) \ I

!

(K) = I

n�1

(K)I

!

(K). Using this for ! =< 1; 1 >

k it follows, for a formally real K ,
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that if ' 2 W (K) has total signature divisible by 2

n then ' 2 In(K) + I

tor

(K). It also follows that

I

n

(K) \ I

tor

(K) = I

n�1

(K)I

tor

(K).

It is also proved that for n � 2 the additive group In(K) is generated by the class [�] of n-fold Pfister

forms subject only to the relations

['] = 0 if ' = 0 in W (K)

and

[� a; b; c� 
!] + [� a; b� 
!] = [� ac; b� 
!] + [� a; c� 
!]

for any a; b 2 K� and any n� 2-fold Pfister form !.

P. Balmer

A 12-term localization exact sequence

Theorem 1 (Main theorem) Consider an exact sequence of triangulated categories with duality :

0 ���! J

j

���! K

q

���! L ���! 0

such that 1

2

2 K and such that K and L are noetherian. Then there exists a periodic exact sequence

of Witt groups :

W

3

(L)

@

3

���! W (J)

W (j)

���! W (K)

W (q)

���! W (L)

@

0

���! W

1

(J)

W

3

(q)

x

?

?

?

?

y

W

1

(j)

W

3

(K) W

1

(K)

W

3

(j)

x

?

?

?

?

y

W

1

(q)

W

3

(J)  ���

@

2

W

2

(L)  ����

W

2

(q)

W

2

(K)  ����

W

2

(j)

W

2

(J)  ���

@

1

W

1

(L)

Explanations: The Witt group of (K;#) is then simply the quotient

W (K) =W (K;#) =

isometry classes of symmetric spaces

those spaces possessing a lagrangian
:

W

n means that the duality # is replaced by T n

�#, where T is the translation functor of K . In other

words, the higher and lower Witt groups are simply Witt groups for the shifted duality : W n

(K) =

W (K;T

n

�#; (�1)

n(n+1)

2

�$). It is easy to see that W n

'W

n+4 for all n 2 Z.

Theorem 2 Let X be a scheme such that 1

2

2 O

X

. Consider Db

lf

(X) to be the derived category of

bounded complexes of locally free O
X

-modules of finite type (perfect complexes). This is equipped

with an obvious duality. The natural homomorphism :

Wusual(X) �!W

�

D

b

lf

(X)

�

is an isomorphism. In other words, the usual Witt group can be computed using triangulated cate-

gories.
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Application to the Gersten complex:

Theorem 3 Let K = D

0

� D

1

� � � � � D

n

� D

n+1

= 0 be a filtration of triangulated categories

with duality such that every possible quotients are noetherian and such that 1

2

2 K . Then there is a

converging spectral sequence :

E

p;q

1

=

8

<

:

W

p+q

(D

p

=D

p+1

) if 0 � p � n

=)W

p+q

(K) :

0 otherwise

Example 4 Taking a regular separated scheme X of dimension n and filtrating Db

lf

(X) by the codi-

mension of the support of the homology, we obtain the Gersten complex as the q = 0 line in E
1

. Very

easy considerations give in particular the following new results :

Theorem 5 Let X be a separated regular integral scheme of dimension � 4, such that 1

2

2 O

X

then

there exists an exact sequence :

P

x2X

(3)

W (k(x)) ���!

P

x2X

(4)

W (k(x)) ���! W (X) ���! W (K) ���!

P

x2X

(1)

W (k(x))

where K is the field of fractions of X . In particular, Purity holds for such schemes when dimension is

lower or equal to 3.

The above theorem is a lazy use of the spectral sequence which seems to lead to even more interesting

results around the Gersten conjecture.

Application of the localization exact sequence to localization of regular schemes is also of some

interest.

E. Becker

Complexity of Hilbert‘s 17th problem

This is a report on the work of J. Schmid (Dortmund/Konstanz).

Theorem 1 Let k be a formally real field with finite Pythagors number P
2

(k) = P (k). Then there

exists a n-fold exponential bound

N = 2

2

Cnd

4

:

:

:

2

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

n�steps

where C is a constant, C � max(6; P (k)) so that every polynomial

f 2 k[X

1

; : : : ;X

n

] \

X

k(X

1

; : : : ;X

n

)

2
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of degree d has a representation of the type

g

2

f =

r

X

i=1

h

2

i

where g; h

i

2 k[X

1

; : : : ;X

n

]

and r;deg g;deg h
i

� N .

A corresponding result for the complexity of the real Nullstellensatz is also stated. The proof uses

ideas of Daykin (1961) added by quadratic form theory. At present, on the basis of publications, this

is the best known bound. Lombardi/Roy have announced a 5-fold exponential bound.

A. Ducros

Rational points over the function field of a real curve

Let R be a real closed field, let C be a smooth, projective, integral R-curve and let K denote its

function field. In my thesis, I studied the following problem: let X be a proper, smooth, integral

K-variety. If
Q

P

X(K

P

) 6= ; (here P is running through the set of closed points of C), does X have

a K-rational point (if not X is said to be a counter-example to the Hasse principle) ? The answer is

positive if X is a principal homogeneous space under a connected linear group (the general case is due

to Scheiderer); for conic bundles over P1
K

, the Hasse principle doesn’t hold, but if R is archimedean,

then the obstruction to the existence of a K-point (provided X(K

P

) is non-empty for any P ) can be

exactly described, in a cohomological as well as in a semi-algebraic geometrical way. But it fails if R

is non-archimedean, and I’m now trying to understand this situation; more precisely, I hope that, using

some suitable (non-discrete) Krull-valuation on K , the problem can be reduced to a similar question

with an archimedean ground field. I gave a positive answer to a (far more elementary) related problem:

if X is any proper, integral, smooth variety over a real closed field R without R-point, does it exist a

model of X over the ring of archimedean elements of R, whose special fibre has no rational point ? I

proved a more general result about the special fibre of a scheme over a valuation ring, using Zariski’s

description of the valuation spectrum as an inverse limit of proper models.

J. Hurrelbrink

Splitting patterns of quadratic forms

Let k be a field, char k 6= 2. Let q denote an anisotropic quadratic form over k of even dimension.

A quadratic form q is of height 1 if and only if it is similar to a Pfister form over k. In small dimensions,

we have compiled the list of splitting patterns of quadratic forms of height 2. We discussed the

conjecture on the structure of quadratic forms height 2.

O.T. Izhboldin

Quadratic Form with Maximal Splitting
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Let � be an anisotropic quadratic form over a field F . The first Witt index of � is defined as i
1

(�) :=

i

W

(�

F (�)

) where i
W

is the (usual) Witt index. Let us write dim� in the form dim� = 2

n

+ m,

where 1 � m � 2

n. In [1] Hoffmann proved that i
1

(�) � m. We say that � has maximal splitting if

i

1

(�) = m. All Pfister neighbors and all forms of dimension 2

n

+ 1 have maximal splitting. These

examples present exhaustive list of forms with maximal splitting of dimension � 16 except for the

case dim� = 10. The cases where dim� = 10 or dim� > 16 are much more complicated. We

discuss the following conjectures

Conjecture 1 Let � be an anisotropic 10-dimensional. Then � has maximal splitting only in the

following cases: (i) � is a Pfister neighbor; (ii) � is divisible by a binary form.

Conjecture 2 Let n � 4 be an integer and � be an anisotropic form over F such that 2n�1+2

n�3

<

dim� � 2

n. Then � has maximal splitting if and only if ker(Hn

(F )! H

n

(F (�))) 6= 0.

Applying [2] and [3], we prove these conjectures for all fields F of characteristic zero satisfying con-

dition
p

�1 2 F .

[1] Hoffmann, D. W. Isotropy of quadratic forms over the function field of a quadric. Math. Z. 220

(1995), 461–476.

[2] Vishik, A. Integral motives of quadrics. Max Planck Institut Für Mathematik, Bonn, preprint

MPI-1998-13, 1–82.

[3] Orlov, D., Vishik, A., Voevodsky, V. Motivic cohomology of Pfister quadrics and Milnor’s con-

jecture on quadratic forms, preprint.

P.Jaworski

On the strong Hasse principle for fields of quotients of power series rings in two variables

Let k be an algebraically closed field of characteristic different from 2 and K = k((x; y)) the field of

quotients of the ring of formal power series over k.

In my talk I sketched the proof of the Strong Hasse Principle for this field, i.e. of the following

property:

a quadratic form over K which is isotropic over completions of K with respect to every discrete

valuation, is isotropic over K .

The crucial point of the proof is to show that:

For every quadratic extension K
d

of K there exists a regular scheme Z such that:

�K

d

is the function field of Z ,

� every 2-fold Pfister form which belongs to the kernels of second residue homomorphisms induced

by all prime divisors of Z is hyperbolic.

B.Kahn
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Unramified cohomology of quadrics: the methods

This talk gave the methods behind the results explained in Sujatha’s talk. They involve etale motivic

cohomology of a quadric: the coniveau (or Bloch-Ogus) spectral sequence and a "weight" spectral

sequence. For some results we use Voevodskys motivic Steenrod operations.

N.A. Karpenko

On anisotropy of orthogonal involutions

Let F be a field (of any characteristic), D a central division F -algebra of degree a power of a prime

p, X the Severi-Brauer variety of D, and n the dimension of X .

For any element � of the Chow group CH

n

(X �X), the integer d
1

(�) is defined by the equality (cf.

[1], Example 16.1.4) (pr
1

)

�(�)

= d

1

(�) � [X] ; where (pr
1

)

�

is the push-forward with respect to the

projection pr

1

of the product X �X onto the first factor. Using the second projection pr

2

instead of

pr

1

, one defines the integer d
2

(�).

Proposition 1 For any � 2 CH

n

(X �X), there is a congruence

d

1

(�) � d

2

(�) (mod p) :

The proof of Proposition ?? is based on the following

Lemma 2 ([2], Prop 2.1.1) There exists a field extension E=F such that for any � 2 CH

i

(X) with

i > 0 the element �
E

2 CH

i

(X

E

) is divisible by p.

Now we assume that p = 2, that charF 6= 2, and that D is supplied with an orthogonal involution �.

Theorem 3 The involution �
F (X)

of the split F (X)-algebra D
F (X)

is anisotropic.

Proof Let Y be the involution variety of � ([3]). We recall that Y is a closed subvariety of X of

codimension 1.

Suppose that the involution �
F (X)

is isotropic. Then there is a rational morphism f : X ! Y . Let �

be the element of CHn

(X �X) given by the closure of the graph of f . We have d
1

(�) = 1. Since f

is not dominant, we have d
2

(�) = 0, a contradiction with Proposition ??. �

[1] W. Fulton. Intersection Theory., Springer-Verlag, 1984

[2] N. A. Karpenko. Grothendieck’s Chow motives of Severi-Brauer varieties, St. Petersburg Math.

J. 7 (1996), no. 4, 649–661

[3] D. Tao. A variety associated to an algebra with involution, J. Algebra 168 (1994), no. 2, 479–520

M. Knebusch
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Specialization and generic splitting in the presence of characteristic 2

Let � : K �! L [ 1 be a place, o its valuation ring, k its residue class field. We call quadratic

o-module M = (M; q) non degenerate, if M has finite rank, the bilinearform B

q

associated with q is

nondegenerate on M=QL(M), and every primitiv vector x of QL(M) has value q(x) in o�. Based

on this notion we define "good reduction" (GR) and "fair reduction" (FR) of nondegenerate quadratic

forms ' over K with respect to �.

We say a form ' over K has GR if ' ' (E; q) with E ' K 


o

M , M nondegenerate over o, and has

FR if M 

o

k is nondegenerate over k, and in both cases put

�

�

(') = the form corresponding to L


o;�

M :

The general principles of generic splitting theory can be established in a satisfactory way using GR,

but FR is needed to lift nondegenerate forms over a field of char 2 to a field of char 0. Happily generic

splitting also works with FR.

D. Lewis

Classification theorems for central simple algebras with involution

The involutions in this paper are algebra anti-automorphisms of period two. Involutions on endo-

morphism algebras of finite-dimensional vector spaces are adjoint to symmetric or skew-symmetric

bilinear forms, or to hermitian forms. Analogues of the classical invariants of quadratic forms (dis-

criminant, Clifford algebra, signature) have been defined for arbitrary central simple algebras with

involution. In this paper it is shown that over certain fields these invariants are sufficient to classify

involutions up to conjugation. For algebras of low degree a classification is obtained over an arbitrary

field.

J. Minac

Field theory and the cohomology of some Galois groups

Let F be a field whose characteristic is not 2. We write F (2) for the field obtained by adjoining all of

the square roots of the elements of F . Now let F f3g

= (F

(2)

)

(2) and G
(2)

F

= Gal(F

(2)

=F ). Recall

that F (3) is the extension of F (2) obtained by adjoining the square roots of the elements � 2 F (2) such

that F (2)

(

p

�) is Galois over F (2). F (3) is a Galois extension of F and we recall that the w-group

of F is the Galois group g

F

= Gal(F

(3)

=F ). Using the surjectivity part of Merkurjev‘s theorem

k

2

(F ) ' H

2

(F ) we show that F (3)

= F

f3g iff F is a C-field.

Set J = (F

(2)

)

�

=((F

(2)

)

�

)

2, and

J

1

= J

G

(2)

F

; : : : ; (J=J

i

)

G

(2)

F

= J

i+1

=J

i

; : : : ;

so that 0 � J

1

� J

2

� : : : � J . In this talk I discussed a result reminiscent of Hilbert‘s theorem 90

which gives a description of the G
(2)

F

-module J
2

depending on the knowledge of g
F

. This talk was a

report on part of my current joint work with A. Adem, W. Gao and D. Karaguenzian.
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J.P. Monnier

Signature Map and Unramified Cohomology

Let X be a variety of dimension d over a real closed field R. The total signature homomorphism

� : W (X) ! Cont(X(R);Z) is defined on the Witt ring of X with values in the set of continuous

functions from the real points of X to Z. Parimala and Mahé asked the question whether the exponent

of the cokernel of � is bounded by 2

d+1, for smooth varieties of dimension d over R. We prove that

this is true when d � 4 and more generally in any dimension if the Witt group of X satisfies a purity

theorem. Moreover, for smooth surfaces we prove that 4:Cont(X(R);Z) � Im� if and only if the

graded Witt ring is isomorphic to the graded unramified cohomology ring. For real rational surfaces,

we show that the previous condition is fulfilled and we describe completely the image of �.

J.F. Morales

Lie algebras and quadratic forms

We show that the Hasse-Witt invariant of the Killing form of a semisimple Lie-algebra L of inner type

is essentially given by the Tits invariant of the irreducible representation of L with highest weight

one-half of the sum of the positive roots. For Lie algebras of external type the Hasse-Witt invariant

of the Killing form depends also on cohomological invariants attached to a two-fold extension of the

symmetry group of the Dynkin diagram of L. Specializing L suitably one can derive from these

general results known formulae for trace forms of étale algebras, central simple algebras and central

simple algebras with involution.

R. Parimala

Hasse principle for classical groups over function fields of curves over p-adic number fields

(Joint work with R. Preeti)

Let k be a number field, 
 a set places, � = Gal(k=k), �
v

= Gal(k

v

=k

v

), v 2 


k

. Let G be a

semisimple simply connected linear algebraic group defined over k. We prove that the kernel of the

map

H

1

(�; G) �!

Y

v2


k

H

1

(�

v

; G)

is trivial in the following cases:

1. G is of type B
n

; C

n

;D

n

; G

2

; F

4

.

2. G is of type A
n

and is of the form SU(h), h a hermitian form over a divison algebra of prime

degree with an involution of second kind.

If k = k(X) is a rational function field in one variable, for G any semisimple simply connected linear

algebraic group defined over k, the corresponding Hasse kernel is trivial.
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A. Ranicki

Algebraic transversality

TheL-groups Ln(A) (n 2 Z) of a ring with involution A are the cobordism groups ofA-module chain

complexes C with an n-dimensional Poincaré duality Hn��

(C)

�

=

H

�

(C). The 0th L-group L0

(A) is

just the Witt group of A. ‘Algebraic transversality’ is an algebraic analogue for chain complexes with

Poincaré duality of the geometric transversality of manifolds, generalizing the Higman linearization

trick for matrices. Among other things, algebraic transversality can be used to prove a Künneth

formula for the L-groups of a Laurent polynomial extension A[z; z

�1

] (with involution z = z

�1) of

the type

L

n

(A[z; z

�1

]) = L

n

(A)� L

n�1

(A)

and a Mayer-Vietoris exact sequence for the L-groups of an amalgamated free product A = A

1

�

B

A

2

of the type

� � � ! L

n

(B)! L

n

(A

1

)� L

n

(A

2

)! L

n

(A)! L

n�1

(B)! : : : :

Results of this kind were first proved geometrically for group rings, using surgery theory.

References:

1. "Exact sequences in the algebraic theory of surgery", Mathematical Notes 26, Princeton (1982)

2. "Algebraic L-theory and topological manifolds", Tracts in Mathematics 102, Cambridge (1992)

3. "On the Novikov conjecture", Proc. 1993 Oberwolfach Conference on the Novikov Conjectures,

Rigidity and Index Theorems, Vol. 1, LMS Lecture Notes 226, 272–337, Cambridge (1995)

4. "High-dimensional knot theory", Springer Monograph in Mathematics (1998)

U. Rehmann

Galois cohomological characterization of certain anisotropic orthogonal groups

For orthogonal groups of excellent quadratic forms a natural definition of Galois cohomological in-

variants in all dimensions can be given, which allows to characterize, modulo Milnor‘s conjecture,

these groups up to isomorphy. These examples contain anisotropic groups of arbitrarily high dimen-

sions.

J.P. Serre

The role of Pfister forms in Galois cohomology

Several examples of Pfister forms associated with H1

(k;G) were given for:

G = PGL

2

; G

2

; F

4

; PGL

4

; Spin

7

; Spin

8

andE
8

:

Unpublished results of Rost, and of Rost-Serre-Tignol, were discussed, in connection with the recent

study of "essential dimension" by Reichenstein-Youssin (to appear).

R. Sujatha
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Unramified cohomology of quadrics : Results

References: B. Kahn, M. Rost, R. Sujatha, Unramified Cohomology of quadrics, American Journal

of Math. 120 (1998), 841-891.

B. Kahn, R. Sujatha, Unramified cohomology of quadrics II, III, preprints.

Let F be a field (charF 6= 2), q a quadratic form over F ,X
q

the associated smooth projective quadric,

and F (X
q

) the function field. We list the results proved on ker �

i

; coker �

i

; �

i

(i � 4) where these

are the maps:

�

i

: H

i

(F;Q=Z(i � 1)) �! H

i

nr

(F (X

q

);Q=Z(i � 1))

and

�

i

: I

i

(F ) �! I

i

nr

(F (X

q

)) :

We prove that these maps are surjections for anisotropic Pfister quadrics. The results are joint work

with Kahn-Rost, and some others with B. Kahn, who reported the methods used to prove the results.

M. Szyjewski

Symmetric bilinear forms over schemes, applications of e0 and perspectives for e1

For a line bundle L over a scheme X there is exact (co)functor ^
 L:

A^
 L = Hom

O

X

(A;L)

on the exact category of vector bundles on X . One defines a Witt group W (X;L) of symmetric

bilinear forms with values in L as a factor of free abelian group of isomorphism classes of pairs

(A; a), where a : A! A^
 L is an isomorphism such that a^
 L = a, modulo metabolic ones. In

the particular case of trivial bundle L = O

X

this is the "usual" Witt ring of a scheme X , defined by

Knebusch: W (X;O

X

) =W (X). Forgetting a yields the homomorphism

e

0

L

: W (X;L) �!

^

H

0

(1; ^ 
 L ; K

0

(X))

which generalizes the dimension index e

0

: W (F ) ! Z=2Z. In the most important case of trivial

bundle L we abbreviate notation to e0. The map e0 is a ring homomorphism, which in many cases

is surjective. If X is a projective smooth curve over an algebraically closed field, then e

0 is an

isomorphism. In many cases the groups

E

(�1)

i

(X;L) =

^

H

i

(1; ^ 
 L ; K

0

(X))

may be explicitly computed. Such a computations for even-dimensional quadrics of maximal index,

or projective line over a suitable ring together with surjectivity of e0 yield existence of non-extended

Witt classes. An exact sequence of E-groups for a variety, closed subvariety and its open complement

(which shows importance of groups E�1 and values in a line bundle) yields estimation of orders of

E-groups of Grassmann varieties. For grassmannian of planes e0 is surjective and there exist non-

extended Witt classes.

On the level of classifying spaces seems clear how to define in analogous manner a homomorphism

e

1 from the kernel of e0 to suitably subfactor of K
1

(X).
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K. Szymiczek

Witt equivalence of number fields and p-ranks of class groups

Two fields K and L are Witt equivalent when their Witt rings of symmetric bilinear forms are isomor-

phic. For global fields we have the following local-global principle.

Two global fields are Witt equivalent if and only if their places can be paired so that corresponding

completions are Witt equivalent.

See R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland, Matching Witts with global fields. Con-

temp. Math. 155 (1994), 365–387.

The following theorem was presented.

For each prime factor p of n, each infinite class of Witt equivalent number fields of degree n contains

a field with arbitrarily large p�rank of ideal class group.

The Theorem admits a reformulation in terms of Hilbert class fields:

For each prime factor p of n, each infinite class of Witt equivalent number fields of degree n contains

a field with infinite Hilbert p�class field tower.

J. van Geel

The u-invariant of function fields of curves over p-adic fields

Let k be a p-adic field, p 6= 2, and letK = k(C) be the function field of a smooth projective curve over

k. In [3] David Saltman showed that the index of elements in the 2-component of the Brauer group of

K is bounded by 4. In [1] this result is used to prove that an anisotropic quadratic form over K has

dimension � 22, in other terms the u-invariant u(K) � 22. Parimala and Suresh (cf. [2]) showed that

u(K) � 10 (the u-invariant is expected to be 8). In order to obtain this better bound they improved

Saltman’s result by giving more precise information on the biquadratic splitting fields for elements

in the 2-component of Br(K) and they extend Saltman’s results to H3

(K;Z=2Z). They obtain the

following important result: If �
i

2 H

3

(K;Z=2Z), 1 � i � n, then there exist elements f; g; h
i

2 K

�

such that �
i

= (g) [ (g) [ (h

i

). In particular every element in H

3

(K;Z=2Z) is a symbol. In the

talk we showed how Saltman’s result is used to bound the u-invariant of K . We gave some of the

ideas behind Saltman’s result. (A gap in Saltman’s proof was found by Gabber who also corrected

it, cf. the review of [3] in the Zentralblatt). And we gave a survey of the results of Parimala and Suresh.

[1] Hoffmann, D., Van Geel, J., Zeros and Norm Groups of Quadratic forms over Function Fields in

One variable over a Local Non-Dyadic Field, J. Ramanujan Math. Soc. 13 (2), (1998), 85-110.

[2] Parimala, R., Suresh, V., Isotropy of quadratic forms over function fields of curves over p-adic

fields, to appear IHES.

[3] Saltman, D., Division Algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1), (1997),

25-47. (cf. review Zentralblatt für Math. 902.16021)
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