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Di�erentialgeometrie im Gro�en

06.06.{12.06.1999

Die Tagung fand unter der Leitung von Werner Ballmann (Bonn), Jean-Pierre Bourgui-

gnon (Bures-sur-Yvette) und Wolfgang Ziller (Philadelphia) statt. Den

�

uber f

�

unfzig aus

vielen Teilen der Welt angereisten Teilnehmern bot sich ein interessantes, gut organisiertes

Vortragsprogramm mit neuesten Forschungsergebnissen.

Jeder Morgen war einem bestimmten Gebiet der Di�erentialgeometrie gewidmet, zu dem

es einen

�

Ubersichtsvortrag und zwei speziellere Vortr

�

age gab. Nachmittags wurden jeweils

zwei Vortr

�

age gehalten, in denen unterschiedliche Einzelresultate dargestellt wurden. Am

Mittwoch fand der traditionelle Spaziergang nach Sankt Roman statt.

Die zentralen Themen der Tagung lagen in den Bereichen

"

nicht-negative/positive Kr

�

ummung\

(neue Konstruktionen, Injektivit

�

atsradiusschranken unter Pinchingbedingungen),

"

nicht-

positive/negative Kr

�

ummung\ (idealer Rand, Starrheitsresultate, Einbettbarkeitsresulta-

te),

"

Einstein-Metriken\ (neue Konstruktionen, scharfe Kr

�

ummungsschranken),

"

symplek-

tische Geometrie\ (symplektische 4-Mannigfaltigkeiten, symplektische Faltung) und

"

iso-

spektrale Mannigfaltigkeiten\ (neue Beispiele und Konstruktionstechniken).

Es bot sich viel Gelegenheit zu angeregten Diskussionen, die allen Teilnehmern neue ma-

thematische Impulse gaben.

Vortragsausz

�

uge (chronologisch geordnet):

Karsten Grove

Recent Developments in Nonnegative Curvature

(joint work with Wolfgang Ziller)

The two main obstructions on a manifoldM to have positive sectional curvature, secM �

0, are (1) the Cheeger{Gromoll soul theorem and (2) Gromov's Betti number theorem.

Additional obstructions on the fundamental group are derived from Toponogov's splitting

theorem and the work by Fukaya and Yamaguchi on manifolds of almost nonnegative

curvature. The only other known obstructions come from obstructions to positive scalar

curvature on spin manifolds by Lichnerovicz and Hitchin.

The basic constructions of manifolds M with secM � 0 arise from taking products and

quotients. The principal building blocks for this purpose are compact Lie groups.

In recent joint work with W. Ziller, we have extended the building blocks to include coho-

mogenity one manifolds with singular orbits of codimension 2. When this is combined with
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the above constructions, and a construction of principal bundles within the framework of

cohomogenity one manifolds, the following are consequences:

Theorem A. All four homotopy RP

5

admit metrics of nonnegative curvature.

Theorem B. All 15 exotic Milnor 7-spheres admit metrics of nonnegative curvature.

Theorem C. All vector bundles over S

4

admit complete metrics with sec � 0.

In A and B there are in�nitely many such metrics, with di�erent isometry groups.

Xiaochun Rong

Positive Pinching, Injectivity Radius, and Second Betti Number

In this talk, we explain the main idea of the following result of Fang and Rong:

Theorem A. Let M be a compact simply connected manifold with positive pinched sec-

tional curvature. If the second Betti number of M is zero, then the injectivity radius of M

is bounded from below by a positive constant depending only on n and the pinching.

This theorem is also independently obtained by Petrunin and Tuschmann. The main

geometrical ingredients are

1. The �bration theorem of Cheeger{Fukaya{Gromov and its re�nement by Rong.

2. The gluing theorem of Petrunin{Rong{Tuschmann.

3. The Grove{Searle theorem which asserts that if a compact positively curved manifold

admits an isometric circle action with �xed point set of codimension 2, then it is

di�eomorphic to a sphere, a lense space, or a complex projective space.

The main accomplishment in the proof of TheoremA is a topological �niteness theorem

concerning certain collection on T

k

-manifolds with the same weighted orbit space.

Wilderich Tuschmann

Finiteness and Second Homotopy

(joint work with Anton Petrunin)

Our results concern a di�eomorphism �niteness theorem and injectivity radius estimates

for certain classes of closed Riemannian manifolds:

Theorem A. For given m, C, D, there is at most a �nite number of di�eomorphism

types of simply connected closed m-dimensional manifolds M with �nite second homotopy

groups which admit Riemannian metrics with sectional curvature jK(M)j � C and diam-

eter diam(M) � D.
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Theorem B. Given any m and � > 0, there exists a positive constant i

0

= i

0

(m; �) such

that the injectivity radius of any simply connected closed m-dimensionall Riemannian man-

ifold with �nite second homotopy group which satis�es the positive Ricci pinching condition

Ricc � � > 0, K � 1, is bounded from below by i

0

(m; �).

Theorem B is also new in even dimensions and gives in the case of manifolds with �nite

�

2

an a�rmative answer to a conjecture of Klingenberg and Sakai, starting that if M is a

closed manifold and 0 < � � 1, then there exists i

0

= i

0

(M; �) > 0 such that the injectivity

radius of any metric on M with positive sectional curvature � � K � 1 is bounded from

below by i

0

. It is to note that under this pinching condition F. Fang and X. Rong obtained

a di�erent and independent proof of Theorem B.

Theorem A in particular implies the following classi�cation result: For givenm, C, D, there

exists a �nite number of closed smooth manifolds E

i

such that any simply connected closed

m-dimensional manifold M admitting a Riemannian metric with jKj � C and diameter

� D is di�eomorphic to a factor space M = E

i

=T

k

i

, where 0 � k

i

= dimE

i

�m and T

k

i

acts freely on E

i

.

The proof of this theorem uses the notion of universal torus bundles. A simply connected

manifold E is called a universal torus bundle of a simply connected closed manifold M if

for some 0 � k 2 N the manifold E admits the structure of a T

k

principal bundle over M

and if moreover �

2

(E) is �nite.

The above classi�cation result leads to a homotopy group �niteness theorem and allows

one to drop the �

2

-assumption in Theorem A if m = 5, thereby explaining why for any

given 0 < � � 1 the �rst examples of in�nite sequences of �-pinched simply connected

manifolds show up in dimension 7.

Question. Let (M; g) be a simply connected closed manifold with positive sectional curva-

ture and E its universal torus bundle. Does E admit a metric with nonnegative curvature

which is invariant so that E=T

k

= (M; g)?

Conjecture. For any m � 4 and � > 0 there exists i

0

= i

0

(m; �) > 0 such that the

injectivity radius of any metric with isotropic curvature K

isotr

C

� � and sectional curvature

K � 1 on a simply connected closed m-manifold is bounded from below by i

0

.

Mikhail Shubin

Magnetic Schr�odinger Operators on Manifolds

Consider a magnetic Schr�odinger operator on a Riemannian manifold (M; g):

H

A;V

= d

�

A

d

A

+ V : C

1

(M)! C

1

(M);

where d

A

= d + iA, A 2 �

1

(M) is a real valued 1-form on M , called magnetic potential,

d

�

A

is the adjoint operator in L

2

(M), and V is a real valued function on M .

Theorem 1. Assume that V (x) � �Q(x), x 2M , where Q(x) � 1, and
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1. jQ

�

1

2

(x

0

)�Q

�

1

2

(x)j � C dist(x

0

; x),

2.

R

1

0

ds

Q(x)

= 1 along any curve 
 going out to in�nity (e.g. Q(x) � C dist(x

0

; x)

2

is

su�cient).

Then H

A;V

is essentially self adjoint in L

2

(M).

Let B = dA 2 �

2

(M) be the magnetic �eld.

Theorem 2. Assume that

1. jrBj � O((1 + jBj)

3

2

), x 2M ,

2. for any � > 0, V (x) + �jB(x)j ! +1 as x!1.

Then H

A;V

has discrete spectrum in L

2

(M).

Theorem 2 is a joint result with V. Kondrat'ev. Condition 2 can be replaced by A.

Molchanov's capacity condition (M). In the case B = 0 or jBj bounded this condition

M is necessary and su�cient for the discreteness of the spectrum.

Tristan Riviere

Some Progress towards Ja�e and Taubes Conjectures

We consider the abelian Yang{Mills{Higgs functional on all of R

2

:

G(u;A) =

Z

R

2

jr

A

uj

2

+ �

2

(1� juj

2

) + jdAj

2

;

where u : R

2

! C and A is a 1-form on R

2

(r

A

u := ru� iAu).

We de�ne a weak homotopy class for any (u;A) such that G(u;A) <1 which corresponds

to the degree of u=juj on @B

R

for R large enough in the case where juj > 0 on R

2

rB

R

.

We prove that in the strongly repulsive case (� large) there is no minimizer of G in the

N -homotopy classes for jN j � 2 and that for N = �1 there exists a unique minimizer of G

(modulo translations and gauge invariance) in the corresponding homotopy class and that

it is axially symmetric.

Bruce Kleiner

Recent Developments in Nonpositive Curvature

The lecture discussed various recent results that pertain to ideal boundaries of Hadamard

spaces and natural actions on them.

� relations between the geometry of a nonpositively curved graph manifoldM with the

action of �

1

(M) on the ideal boundary of the universal cover

~

M (C. Croke, B. Kleiner)
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� characterizations of symmetric spaces and Euclidean buildings by means of Tits met-

rics (B. Leeb)

� rigidity theoremss for quasi-isometries (Leeb{Kleiner, Bourdon{Pajot)

At the end of the talk several open questions were presented.

Jean-Marc Schlenker

Negatively Curved Surfaces in Hyperbolic 3-space

E�mov proved in 1963 that there is no complete, smooth surface in R

3

with curvature

K � �1. We extend this in H

3

as follows: There is no smooth, complete surface in H

3

with curvature K � �1 � � < 1. Analoguous results hold in S

3

and in the anti-de Sitter

space H

3

1

for space-like surfaces. These results rest on a phenomenon of propagation of

degenerations for solutions of hyperbolic Monge-Ampere equations.

Urs Lang

Lipschitz Maps into Hadamard Spaces

(Joint work with Branka Pavlovic and Viktor Schroeder)

We prove that every �-Lipschitz map f : S ! Y de�ned on a subset of an arbitrary metric

space X possesses a c�-Lipschitz extension

�

f : X ! Y for some c � 1, provided Y is a

Hadamard manifold which has pinched negative sectional curvature or is homogeneous. In

the �rst case the constant c depends only on the dimension of Y and the pinching constant,

in the second case on Y . We obtain similar results for large classes of Hadamard spaces Y

in the sense of Alexandrov.

Andreas Kollross

Polar and Hyperpolar Actions

An isometric action of a compact Lie group on a Riemannian manifold is called polar if

there exists a closed connected submanifold � (called a section) which intersects the orbits

orthogonally and meets all orbits. If the action has a 
at section, it is called hyperpolar.

We present a classi�cation of hyperpolar actions on the irreducible Riemannian symmetric

spaces of compact type. Since, if K � G is a symmetric subgroup, the action of H � G on

G=K is hyperpolar if and only if the action of H �K on G is hyperpolar, it is su�cient to

consider hyperpolar actions on the compact simple Lie groups. The result can be stated as

follows: If U � G�G acts hyperpolarly on G then there is U

0

, such that U � U

0

� G�G

and U

0

is one of the following: (i) a symmetric subgroup of G � G, (ii) a group given

by a cohomogenity one action on a sphere, complex or quaternionic projective space, or

(iii) locally and after conjugation, U

0

= H � K � G � G, where (H;G;K) is one of

seven exceptional triples (the actions are of cohomogenity one). Since cohomogenity one
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actions on compact irreducible symmetric spaces are hyperpolar, also a classi�cation of

cohomogenity one actions can be obtained from this result.

Burkhard Wilking

On Compact Riemannian Manifolds with Noncompact Holonomy

Groups

We give the �rst example of a compact Riemannian manifold with a noncompact holonomy

group. Furthermore, we prove structure results for these manifolds. The easiest example

occurs in dimension �ve: It is a compact solvmanifold, i.e., a compact quotient of a solvable

Lie group. Conversely, we show that each �ve-dimensional example is actually di�eomor-

phic to an infrasolvmanifold. For a general structure theory, one has to investigate the

holonomy representation of the fundamental group of a compact Riemannian manifoldM :

It is de�ned on the subspace V � T

p

M that is �xed by the identity component Hol

0

(M; p)

of the holonomy group of M by [
] 2 �

1

(M) 7! Par




jV

, where Par




denotes the parallel

transport along 
. A crucial observation is that the holonomy representation of �

1

(M) is

actually hidden in the fundamental group itself:

Theorem. There is a �nitely generated free abelian subgroup L / �

1

(M) and a subgroup

H < �

1

(M) such that

1. The representation ~� : �

1

(M) ! GL(Z


Z

R) that is induced by conjugation decom-

poses as ~� = ~�

1

� ~�

2

, where ~�

1

is equivalent to the holonomy representation.

2. H \ l = feg and H r L has �nite index in �

1

(M).

Using an argument of Cheeger and Gromoll, one can show that the holonomy group of a

compact Riemannian manifold is compact if and only if the holonomy representation of

its fundamental group has �nite image. Combining this result with the proof of the above

theorem one can show that a �nite cover of a compact Riemannian manifold M with a

noncompact holonomy group is the total space of a torus bundle over another compact

Riemannian manifold B with dimM � dimB � 4.

McKenzie Wang

Recent Developments in Einstein Metrics

We discussed some recent results in Einstein manifolds and other results which may have

some bearing on the search for Einstein metrics. These include

� Einstein metrics of di�erent signs on the same manifold (Catanese-LeBrun, D. Kotschick),

� surgery and Yamabe invariants (J. Patean),

� odd dimensional simply connected manifolds with arbitrarily large b

2

(Boyer{Galicki),
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� in�nitely many cohomogenity 1 Einstein metrics on S

k

, 5 � k � 9, and related

constructions (C. B�ohm).

Olivier Biquard

Asymptotically Symmetric Einstein Metrics and Quaternionic

Geometry

I construct new Einstein metrics which are deformations of complex and quaternionic

hyperbolic space, by two methods.

The �rst method relies on analysis and proves that Einstein deformations of complex and

quaternionic hyperbolic spaces are in 1�1 correspondence with some Carnot-Caratheodory

metrics on the boundary at in�nity. In the quaternionic case, a new structure at in�nity

emerges, which I call a quaternionic contact structure.

The second method is more algebraic: It actually uses twistor theory to prove that a real

analytic quaternionic contact structure (in dimension di�erent of 7) is the boundary at

in�nity of a unique quaternion-K�ahler metric de�ned in a neighborhood.

Matthew J. Gorsky

L

2

-curvature Estimates for Einstein 4-manifolds

In this talk, sharp L

2

-curvature estimates for positive Einstein 4-manifolds were described.

Applications included the study of the set of Einstein constants, and (in joint work with

C. Le Brun) an improvement of Hitchin's inequality for Einstein manifolds of nonnegative

sectional curvature. An interesting corollary is the following: Complex projective space

is the unique Einstein 4-manifold of nonnegative sectional curvature with positive de�nite

intersection form.

The proof of the main estimate involves introducing a variational problem, which amounts

to a variant of the Yamabe equation. A test function is constructed for the functional

using the self-dual component of the Weyl curvature. This test function shows that the

in�mum of the related energy is negative (using the Weitzenb�ock formula for harmonic

Weyl tensors) and the L

2

-estimate follows once the in�mum of the energy is known to be

negative.

Other applications of this technique were described.

Ursula Hamenst

�

adt

Recent Developments in Symplectic Geometry

We present recent results in symplectic geometry. The topics discussed include

� Hofer metric for compactly supported Hamiltonian symplectomorphisms (after Hofer,

Bialy-Polterovich),
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� symplectic folding and applications (after Lalonde-McDu�, Schlenk),

� symplectic manifolds with boundary of contact type (after Cieliebak-Floer-Hofer-

Wiesocki, Cieliebak),

� symplectic capacities for topological balls in R

2n

with contact-type boundary.

Joachim Lohkamp

Curvature in Symplectic Geometry

In Riemannian and Symplectic Geometry there are \attracting constructions" based on a

given Riemannian/Symplectic geometry. That is one may �nd new geometric structures

just patching additional geometric \objects" to given base geometry. On the Riemannian

side this leads to a curvature decreasing while on the symplectic area one �nds symplectic

submanifolds which arise as zero sets of bundles \attached" to the symplectic base manifold.

The similarity of these results exceeds the basic existence results and we describe some new

insights.

Denis Auroux

Symplectic 4-manifolds and Branched Coverings of C P

2

Building upon the techniques of approximately holomorphic geometry on compact sym-

plectic manifolds introduced by Donaldson, we show the following result:

Theorem. Let (X

4

; !) be a compact symplectic 4-manifold; assume [

!

2�

] 2 H

2

(X;Z), and

let L be the line bundle such that c

1

(L) = [

!

2�

]; �x a compatible almost complex structure

J on X. Then for every large enough k 2 N the bundle L


k

admits three approximately

holomorphic sections (s

0

; s

1

; s

2

) such that the corresponding projective map f

k

= (s

0

: s

1

:

s

2

) : X ! C P

2

is an approximately holomorphic branched covering, i.e., is everywhere

locally modelled on one of the holomorphic maps (x; y) 7! (x; y), (x; y) 7! (x

2

; y), (x; y) 7!

(x

3

� xy; y).

Moreover, for large enough k the topology of the constructed branched covering is a sym-

plectic invariant of X (it does not depend on the chosen almost-complex structure). This

makes it possible to de�ne invariants in the following way: Consider the branch curve

D � C P

2

, which is an immersed symplectic curve with cusps. After a suitable pertur-

bation, a generic linear projection C P

2

r fpointg ! C P

1

makes D a singular branched

covering of C P

1

, with branch points, cusps, positive double points, and negative double

points. Applying the brad group techniques of Moishezon one can then de�ne the brad

monodromy map � : �

1

(C P

1

r fpointsg) ! B

d

, where B

d

is the reduced brad group on

d = degD strands. The curve D is then characterized up to isotopy by a bradfactorization

�

2

= �

i

Q

i

X

�

i

1

Q

�1

i

, where �

2

is the generator of the centre of B

d

, Q

i

is any brad, X

1

is

the half-twist, and �

i

2 f1;�2; 3g, up to simple algebraic operations.
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One can also introduce a map � : �

1

(C P

2

r D) ! S

N

, where N = deg �

k

, which has to

satisfy some simple properties; the purely combinatorial data (Q

i

; �

i

) (up to equivalence)

and � characterize the manifold X up to symplectomorphism.

Guofang Wei

A Lower Bound for Heat Kernel under Integral Ricci Curvature Bounds

(joint work with Xianzhe Dai)

We extend Cheeger-Yau's lower bound for heat kernel to integral Ricci curvature. In there

we derive a new comparison of volume element integrated over the directional sphere. The

error term is then controlled by this volume comparison and Gallot's upper bound estimate

of the heat kernel and a result of Grigor'yan which furnishes us with a Gaussian upper

bound for the heat kernel.

Kristopher Tapp

Open Manifolds with Nonnegative Curvature

In this talk, I explore consequences of Perelman's Theorem, which says that the metric pro-

jection � onto a soul is a Riemannian submersion, and moreover, the second fundamental

form of the �bers is bounded. I prove:

1. The embedding of each �ber of � into the manifold is bi-Lipschitz. In particular, the

ideal boundary of the manifold can be determined from a single �ber (at least if the

soul is simply connected).

2. The volume growth of an open manifold of nonnegative curvature is less than or

equal to the codimension of its soul minus the \amount of holonomy" in the normal

bundle of its soul.

Finally, I show how to generalize work of Wu, which explores the question: What geometric

bounds must be placed on the total space and base space of a Riemannian submersion in

order that there are only �nitely many �ber bundle isomorphism types among Riemannian

submersions satisfying these bounds?

Carolyn Gordon

Recent Developments in Isospectral Manifolds

Two Riemannian manifolds are said to be isospectral if the associated Laplacians, acting

on smooth functions, have the same eigenvalue spectrum. We describe techniques for

constructing isospectral manifolds and give many examples illustrating various geometric

invariants which are not spectrally determined.
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Representation theoretic techniques may be used to construct isospectral manifolds with a

common cover. In particular, Sunada developped an elegant and simple technique in 1985

which has led to a veritable industry in constructing isospectral manifolds, including for

example huge isospectral sets of Riemannian surfaces (Brooks-Gornet-Gustafson). H. Pesce

investigated, with interesting results, the extend to which generic isospectral manifolds with

a common covering can be accounted for by Sunada's technique and generalizations.

One may also consider spec

p

(M), the spectrum of the Laplacian of the Riemannian man-

ifold M acting on p-forms. Various examples show that the di�erent spec

p

(M) contain

di�erent geometric information.

In recent years, many examples have been constructed of isospectral manifolds with di�er-

ent local geometry. The isospectrality can be proved by a technique involving Riemannian

submersions. Examples show that the spectrum does not determine homogenity (Szabo),

whether the curvature of a manifold with boundary is negative (Szabo-Gordon), and var-

ious other local curvature properties. D. Sch�uth constructed isospectral deformations of

simply connected manifolds, including deformations of left invariant metrics on simple

compact Lie groups.

Thomas P

�

uttmann

Pinching Constants of Homogeneous Spaces of Positive Curvature

Pinching constants measure how much the local geometry of a compact Riemannian mani-

fold with positive sectional curvature K deviates from the geometry of the standard sphere.

They are de�ned as quotients �(M; g) =

minK

maxK

of the extremal values of the sectional curva-

ture. We compute the pinching constants of all homogeneous metrics on the 13-dimensional

Berger space B

13

and of all homogeneous U(2)-biinvariant metrics on the Alo�{Wallach

space W

7

1;1

. We prove that both these optimal pinching constants are

1

37

. So far the spaces

B

13

and W

7

1;1

were only known to admit metrics with pinching constants

16

29�37

. Moreover,

we investigate the optimal pinching constants of homogeneous T

2

-biinvariant metrics on

the other Alo�{Wallach spaces W

7

k;l

. It turns out that all these optimal pinching constants

are given by a strictly increasing function on k=l 2 [0; 1]. In particular, all these pinching

constants are �

1

37

.

Tobias H. Colding

Embedded Minimal Surfaces in 3-manifolds

In this talk we discuss recent joint work on embedded minimal surfaces in 3-manifolds.

Part of the motivation for this study comes from the following question:

Question (Pitts-Rubinstein). Let M

3

be a �xed closed Riemannian 3-manifold. Does

there exist a uniform bound for the Morse index of all closed embedded minimal tori?

The claim of Pitts and Rubinstein is that if this is the case for a su�ciently large class of

metrics on S

3

, then the spherical space form problem can be solved a�rmatively.
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Recall that the spherical space form problem asks to show that any free action on S

3

is

topologically conjugate to an orthogonal action.

In this talk we will �rst discuss why the main point in answering the above question is to

understand convergence of embedded minimal tori without area bounds. One of the main

tools is a curvature estimate for simply connected surfaces. We also give some applications

of this estimate to classical problems about minimal surfaces in R

3

.
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