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This conference was organised by

D. M�uller (Kiel ),

E.M. Stein (Princeton)

and

H. Triebel (Jena).

There were 28 plenary sessions, including six (invited) double lectures (given by M. Christ,

G. Grubb, S. M�uller, A.J. Nagel, A. Seeger and L. Skrzypczak) and 16 further talks about

the following topics :

� Fourier analysis (convergence, maximal operators, oscillatory integrals, singular integrals)

� PDE (Strichartz estimates, hypoellipticity, wave equation, Sturm-Liouville operators)

� Applications of harmonic analysis (crystal microstructures, porous medium equation,

Ornstein-Uhlenbeck semigroup)

� Analysis on Lie groups and symmetric spaces

� Pseudodi�erential operators

� Function spaces (embeddings, decomposition techniques)

� Problems of complex analysis, tackled with real methods (Bergman projection, universal

covering maps)

� closely related questions (Paley type inequalities for orthogonal series, random trigono-

metric polynomials, sparse spectra)

In addition, some informal lectures took place in the afternoons, where 8 participants presented

their latest results.

The organisers and all the participants of this conference are greatly indebted to the Ober-

wolfach institute for providing a stimulating atmosphere for discussions and the exchange

of ideas concerning common research interests.

The following abstracts are ordered alphabetically by the author.



OLIVIER BRACCO

Spectral measure for a certain class of singular Sturm-Liouville operators

We consider di�erential operators of the following type :

L =

d

2

dx

2

+

A

0

A

(x)

d

dx

:

Such operators arise for example as radial parts of Laplacians on Euclidean or on some Rie-

mannian symmetric spaces. The basic properties we suppose on A are :

� A 2 C

1

�

]0;+1[

�

and A > 0,

� at 0,

A

0

A

(x) =

2� + 1

x

+B(x), with � � �

1

2

and B neglectable,

� at +1,

A

0

A

(x)! 2% � 0.

We study two questions :

1) the estimations of the eigenfunctions of L,

2) the estimation of the spectral measure of L.

In the �rst part of the talk, we present the technique of perturbation of di�erential equations,

which we used to attack the �rst question. We explain how it leads to an expression of the

spectral measure.

In the second part we present the di�erent methods we found to know precisely the behaviour

of the spectral measure in the whole set where it is de�ned.

ANTHONY P. CARBERY

A conditional form of Stein's conjecture (joint work with F. Soria and A. Vargas)

A (variant of a) conditional form of Stein's conjecture concerning Bochner-Riesz means was

given. Let �

�

be a smooth bump function associated to a 1-neighbourhood of �

�1

S

1

� R

2

.

Let (S

�

f)

^

(u) = �

�

(u)

^

f(u). Let

M

�

f(x) = sup

R3x

1

jRj

Z

R

f ;

the sup being over all rectangles of eccentricity � �

�1

.

Let �

�

be a smooth bump function,

R

�

�

= 1, associated to B(0; �). Then

Z

�

�

S

�

f

�

�

2

w � c

�

log

1

�

�

M

Z

jf j

2

M

�

1=2

�

�

�

�

1=2

� (M

�

1=2

w)

2

�

1=2

for some M 2 N , all f 2 S, some w � 0, PROVIDED that whenever A;B 2 L

2

(S

1

) are

supported in 1-separated 1-intervals with bisector the x

i

-axis, we have
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Z

�

�

�

d

A dv(Ry)

[

B dv(Ry)

�

�

�

w(y) dy �

C

R

kAk

2

kBk

2

supw(T )

"

�3=4

R

�1

; (�)

where the sup is taken over all tubes T of dimensions "

�1=2

R

�1

� "

�1

R

�1

, R

�1

� " � 1,

with long direction making angle �

�

2

�

1

100

with the x

i

-axis.

A discussion of the likelihood of (�) holding, and some potential consequences, was given.

MICHAEL CHRIST

Remarks on hypoellipticity

Consider a linear partial di�erential operator L =

P

j

X

2

j

where X

j

are real vector �elds

with coe�cients in C

1

or C

!

. Under what conditions is L hypoelliptic in one of the function

spaces C

!

, C

1

or G

s

?

We list a number of the examples already known, and seek to provide a unifying framework.

This is formulated by de�ning a metric %, closely adapted to fX

j

g, in the cotangent bundle;

the de�nition involves the ratios H

j

=e�, where H

j

is the Hamiltonian vector �eld associated

to the principal symbol of iX

j

, and (e�)

2

is the `e�ective symbol' of �L. A certain inequality

comparing % to a power (or logarithm) of a standard metric characterizes hypoellipticity in

C

!

, G

s

, C

1

for all of the examples that we have listed. We ask whether this condition or

some closely related one characterizes hypoellipticity in full generality, or at least provides a

sort of �rst-order approximation to a characterization. We explain how the de�nition of % is

related to the commutator method which, in various guises, has been used by many authors

to prove the known positive results in the subject.

In the second half of the lecture we announce partial results concerning C

1

hypoellipticity

for @

b

� @

b

�

, for 3-dimensional pseudoconvex CR structure possessing cylindrical symmetry,

for which the set of weakly pseudoconvex points consists of a single curve transverse to the

complex direction. Hypoellipticity holds under various rather weak supplementary hypotheses,

but we outline a counterexample showing that it fails in general. We explain how this is

predicted by the general framework discussed in the �rst half of the lecture.

ANTHONY H. DOOLEY

De Leeuw's Theorems for the contraction of K to NM

De Leeuw's Theorems study the relationship between L

p

-multipliers on T or R induced by the

homomorphisms �

�

: x 7! e

��x

, � 2 R

+

; if � is a function on R (=

b

R) , de�ne �

(�)

on Z

(=

b

T) by �

(�)

(k) = �

�

k

�

�

. Then De Leeuw showed that

(1) if � is a multiplier of L

p

(R), then jjj�

(�)

jjj

p;T

� jjj�jjj

p;R

for all � ; and

(2) if for each �, �

(�)

is a multiplier of L

p

(T) with lim sup

�!1

jjj�

(�)

jjj

p;T

� K < 1, then

jjj�jjj

p;R

< K.

We prove versions of De Leeuw's Theorems where �

�

is replaced by a contraction mapping
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between two Lie groups G

1

, G

2

, that is, a family f�

�

g

�>0

such that

x �

G

1

y = lim

�!1

�

�1

�

(�

�

x �

G

2

�

�

y) :

In this talk, we surveyed these results for the contraction of a semisimple group to its Cartan

motion group, and described some new results obtained jointly with S.K. Gupta, extending

these to the contraction of K to NM within the Iwasawa decomposition of a rank one

semisimple group G = KAN . (The case G = SU(2; 1) gives the contraction of SU(2) to

the Heisenberg group.)

The essential technical problem to be overcome is the de�nition of �

(�)

as an `appropriate

intertwining' between the representations of the groups G

1

and G

2

. We also gave a new

de�nition of `restriction' so that both directions of De Leeuw's Theorem could be proved {

this leads to a resolution of Herz' asymmetry problem.

JOSE GARCIA-CUERVA

Paley type inequalities for orthogonal series with vector-valued coe�cients (joint

work with K.S. Kazarian and V.I. Kolyada)

We investigate the extension to Banach-space-valued functions of the classical inequalities due

to Paley for the Fourier coe�cients with respect to a general uniformly bounded orthonormal

system �. This leads us to introduce the notions of Paley �-type and �-cotype for a Banach

space and some related concepts.

We study the relations between these notions of type and cotype and those previously de�ned.

We also analyse how the interpolation spaces inherit these characteristics from the original

spaces and use them to obtain sharp coe�cient estimates for functions taking values in Lorentz

spaces.

The preprint can be obtained in dvi form from the web page of the Universidad Aut�onoma

de Madrid at the address : http://www.uam.es.

DIRK GORGES

Convergence a.e. of Bochner-Riesz means on the Heisenberg group

Let L denote the sub-Laplacian on the Heisenberg group H

n

and T

�

r

:= (1� rL)

�

+

the

corresponding Bochner-Riesz operator. Furthermore let Q denote the homogeneous dimension

of H

n

.

We prove convergence a.e. of the Bochner-Riesz means T

�

r

f as r ! 0 for all f 2 L

p

(H

n

)

such that

either � �

3

2

and

Q�

8

3

�

2Q

<

1

p

�

1

2

or � >

3

2

and

Q� 2�� 1

2Q

<

1

p

�

1

2

:
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GERD GRUBB

Parametric pseudodi�erential calculi allowing full asymptotic trace expansions (joint

work with E. Schrohe)

After having recalled the classical parameter-dependent operators (P ��)

�1

, (P ��)

�k

, e

�tP

,

P

�s

, where P is, say, a strongly elliptic di�erential operator on a closed manifold { it can also

be replaced by P

T

, a realization of P on a compact manifold with boundary de�ned by an

elliptic boundary condition Tu = 0 { we accounted for cases where pseudodi�erential elements

come in. Then the traces have asymptotic expansions in the parameter with not just powers

of � or t, but also logarithmic terms �

��

log� resp. t

�

log t, and the traces of functions of

s have double poles.

A survey was given of the weakly polyhomogeneous calculus by the author and Seeley (Inven-

tiones 1995) for  do's on closed manifolds, and its application to the Atiyah-Patodi-Singer

problem.

The second talk was concerned with two recent developments :

1. A weakly polyhomogeneous calculus for pseudodi�erential boundary operators of Boutet

de Monvel type, allowing complete trace expansions with logarithms.

2. An analysis of Tr

�

(P

+

+G)(P

1;T

� �)

�k

�

and Tr

�

(P

+

+G)P

�s

1;T

�

, where P

+

+

G is in the Boutet de Monvel calculus and P

1;T

is a realization of a second order strongly

elliptic di�erential operator, showing how the noncommutative residue of P

+

+G (de�ned

by Fedosov, Golse, Leichtnam and Schrohe, JFA 1996) appears as the coe�cient of the

�rst logarithmic term �

�k

log� in Tr

�

(P

+

+G)(P

1;T

� �)

�k

�

or the �rst double pole

(at s = 0) of �(s)Tr

�

(P

+

+G)P

�s

1;T

�

, thus connecting the noncommutative residue with

the original residue formula of Wodzicki (1984) in the boundaryless case.

DOROTHEE D. HAROSKE

Embeddings in spaces of Lipschitz type, entropy and approximation numbers (joint

work with David E. Edmunds)

We consider (sharp) embeddings of certain Besov and Triebel-Lizorkin spaces in spaces of

Lipschitz type. The prototype of such embeddings arises from the Br

�

ezis-Wainger result

(Comm. PDE, 1980) about the `almost' Lipschitz continuity of elements of the Sobolev

spaces H

1+n=p

p

(R

n

) when 1 < p <1. Thus we were led to the introduction of logarithmically

adapted spaces of Lipschitz type, that is spaces Lip

(1;��)

, � � 0, containing continuous

functions with










f jLip

(1;��)

(R

n

)










= kf jL

1

(R

n

)k+ sup

jf(x)� f(y)j

jx� yj jlog jx� yjj

�

<1;

where the supremum is taken over all x; y 2 R

n

, with 0 < jx � yj <

1

2

. Then the Br

�

ezis-

Wainger result reads as H

1+n=p

p

(R

n

) ,! Lip

(1;�1=p

0

)

(R

n

), where 1 < p <1, and

1

p

+

1

p

0

= 1,

as usual. We can show that the log-exponent

1

p

0

is sharp (i.e. the smallest possible one)
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and extend the above result in the framework of Triebel-Lizorkin spaces F

s

p;q

(R

n

), s 2 R,

0 < p <1, 0 < q � 1. We study similar limiting embeddings of type B

1+n=p

p;q

(R

n

) ,!

Lip

(1;��)

(R

n

) and obtain that this embedding holds, if, and only if, � � (1 �

1

q

)

+

, where

0 < p; q � 1. This outcome (in case of the Besov spaces) is somehow surprising in our

opinion, involving the usually less important q-parameter essentially.

Furthermore we investigate a variety of related compact embeddings (the spaces are now

de�ned on bounded domains) and study their entropy and approximation numbers. Two-sided

estimates are obtained, providing thus an opportunity to apply our results, for instance, when

estimating the eigenvalue distribution of certain (degenerate) pseudodi�erential or elliptic

operators.

ANDRZEJ HULANICKI

Martin boundary for homogeneous Riemannian manifolds of negative curvature at

the bottom of the spectrum (joint work with Ewa Damek, and Roman Urban)

Let L be a second order subelliptic di�erential operator on a Riemannian manifold of negative

sectional curvature K with �a

2

� K � �b

2

. In the case when L is weakly coercive, i.e. if for

� > 0 the operator L+ �I has the Green function, the Martin boundary has been described by

A. Ancona as a sphere at in�nity. For general negatively curved manifolds for L not weakly

coercive, e.g. when L = � + �I, where � is the Laplace-Beltrami operator and �� is the

bottom of the spectrum of � no description of the Martin boundary is known.

We show that in the case of homogeneous Riemannian manifolds of negative curvature the

Martin boundary is the sphere at in�nity also for noncoercive invariant second order operators

such like �+ �I.

Since the Ancona methods do not apply in this case, we develop another approach.

NETS KATZ

Recent progress on the Kakeya maximal operator (joint work with Terry Tao)

We improve the following Lemma of Bourgain.

Lemma [Bourgain]. Let Z be a torsion free Abelian group. Let A, B, C � Z be �nite

sets with #(A) = #(B) = #(C) = N . Let G � A�B. De�ne maps +(a; b) = a+ b and

�(a; b) = a� b. Suppose � is one to one on G and + : G! C. Then #(G) � N

2�

1

13

.

Lemma [Katz - Tao]. Indeed under these hypotheses #(G) � N

2�

1

6

.

Lemma [Katz - Tao]. De�ne +

2

(a; b) = a+ 2b. Suppose in addition D � Z, #(D) = N ,

+

2

: G! D. Then #(G) � N

2�

1

4

.

These lemmata imply lower bounds of the dimension d of a Besicovitch set in R

n

. Indeed,

regardless of the number of �nite sets, an estimate of the form #(G) � N

2��

implies

6



(2� �)(d� 1) � n� 1. Therefore the �nal lemma gives us

d �

4n+ 3

7

which is best known for n > 8. If we could reach � = 1, the Kakeya conjecture could be

solved and the grand destiny of Spanish harmonic analysis would be redeemed.

HERBERT KOCH

Singular integrals and the porous medium equation

The theory of singular integrals, which was developed by Calder�on and Zygmund around 1950

in R

n

, had a profound impact on various areas of analysis. That theory relies on few properties

of the Euclidean geometry and can be adapted to di�erent geometric structures. Examples

are operators which occur in homogenization, elliptic equations with strong drift, as well as

operators which come from linearizing the porous medium equation

�

t

���

m

= 0 in R

n

� R ; m > 1:

The main result, regularity of the free boundary (the boundary of the support) for large times

under weak assumptions on initial data, follows from modi�ed Gaussian estimates of the

fundamental solution of degenerate parabolic equations, which imply Harnack inequalities and

�t into the theory of singular integrals.

STEFANO MEDA

Functional calculus for the Ornstein-Uhlenbeck semigroup (joint work with J. Garc��a

Cuerva, G. Mauceri, P. Sj�ogren, and J.L. Torrea)

The Ornstein{Uhlenbeck operator �

1

2

� + x � r is essentially self-adjoint in L

2

(
), where

d
(x) = �

�d=2

e

�x

2

dx: We denote by L its self-adjoint extension. Then for every f in the

domain of L we have Lf =

1

P

n=0

nP

n

f , with eigenvectors given by the (d-dimensional)

Hermite polynomials.

Suppose that M : N ! C is a bounded sequence. By the spectral theorem we may form the

operator M(L)f =

1

P

n=0

M(n)P

n

f for every f in L

2

(
):

Suppose that � is a nonnegative integer and that  is in (0; �=2). We denote by H

1

(S

 

;�)

the Banach space of all M in H

1

(S

 

) such that M( � e

�i 

) satisfy a H�ormander condition

of order �. We prove the following

Theorem. Suppose that 1 < p <1, p 6= 2, and de�ne  

p

to be

�

2

� arctan

2

p

p�1

jp�2j

.

Let M : N ! C be bounded and suppose that there exists a bounded holomorphic

function

f

M such that

f

M(k) =M(k) k = 1; 2; 3; : : :

The following hold:
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(i) if � > 3 and

f

M is in H

1

(S

 

p

;�), then M(L) extends to a bounded operator on

L

q

(
), j1=q � 1=2j � j1=p� 1=2j;

(ii) if

f

M is inH

1

(S

 

p

), thenM(L) extends to a bounded operator in L

q

(
), j1=q�1=2j <

j1=p� 1=2j.

PAUL F.X. M

�

ULLER

Universal covering Maps and radial Variation (joint work with Peter W. Jones )

We let E � C be a closed set with two or more points. By the uniformization theorem there

exists a Fuchsian group of Moebius transformations such that C nE is conformally equivalent

to the quotient manifold D =G. The universal covering map P : D ! C n E is then given by

P = � � �, where � is the natural quotient map onto D =G and � is the conformal bijection

between C n E and D =G. We will show that there exists e

i�

2 T such that

Z

1

0

jP

00

(re

i�

)j dr <1:

Considering u = log jP

0

j, one obtains this from variational estimates.

Theorem. There exists e

i�

2 T and M > 0 such that for r < 1,

u(re

i�

) < �

1

M

Z

r

0

jru(�e

i�

)j d� +M:

Clearly, the class of universal covering maps contains two extremal cases: The case where

C n E is simply connected and the case where E consists of two points. (We considered the

simply connected case separately when we solved Anderson's conjecture. The second case

follows from estimates for the Poincar�e metric on the triply punctured sphere.) In the course

of the proof of the Theorem we measure the thickness of E at all scales, and we are guided by

the following philosophy. If, at some scale, the boundary E appears to be thick then, locally,

the universal covering map behaves like a Riemann map. On the other hand, if E appears to

be thin, then, locally, the Poincar�e metric of C n E behaves like the corresponding Poincar�e

metric of C n f0; 1g. With the right estimates for the transition from the thick case to the

thin case, this philosophy leads to a rigorous proof. Our proof also shows the existence of a

very large set of angles � for which the Theorem holds.

STEFAN M

�

ULLER

Possible connections between harmonic analysis and crystal microstructures

In the �rst lecture I outlined some mathematical problems that arise in the analysis of mi-

crostructures in crystals that undergo solid-solid phase transformations and the connection of

these problems with harmonic analysis. In the second lecture I considered a speci�c problem

whose resolution involves seemingly new estimates for the Haar coe�cients in terms of the

8



Riesz transform.

A key problem that arises in the analysis of crystal microstructure is the following. Given

K � M

m�n

; a subset of m� n matrices; m; n � 2


 � R

n

bounded, open;

characterize sequences u

j

: 
! R

m

, jru

j

j � C, u

j

�

�

* u in W

1;1

such that

dist

�

ru

j

; K

�

! 0 in L

p

:

Speci�c questions are

a) (compactness) ru

j

!ru (strongly) in L

p

b) (stability) ru 2 K ?

c) (relaxation) Find smallest set K

macro

for which ru 2 K

macro

a.e.

A closely related question is for which integrands the functional I(u) =

R




f (ru) dx is

lower semicontinuous with respect to W

1;1

weak-�-convergence. Morrey showed that this

is the case if, and only if, f is quasiconvex, i.e. 8 F 2M

m�n

,

Z

T

n

f (F +r'(x)) dx � f(F ) 8 ' 2 C

1

periodic on T

n

;

but more than 40 years after their introduction the class of quasiconvex functions remains

largely mysterious. A linearized condition, implied by quasiconvex is convexity along rank-1

lines (rank-1 convexity) which for C

2

functions becomes D

2

f(F ) (a
 b; a
 b) � 0.

Major question : Does rank-1 convexity imply quasiconvexity ?

The answer is `No' for m � 3 (

�

Sver�ak '92), m = 2, n � 2 is open and a positive answer

would have striking consequences, including an optimal bound for the Beurling transform.

The questions raised above are a special case of the compensated compactness theory, initiated

by L. Tartar and F. Murat. Instead of gradients they consider sequences which (almost) belong

to the kernel of a general �rst order operator A(v) =

P

k

A

k

@

k

v, A

k

2 Lin

�

R

d

;R

p

�

,

v

j

* v in L

2

; A(v

j

) 2 cpt set H

�1

loc

: (�)

There is a theory largely parallel to that for gradients a as long as a satis�es the constant rank

condition,

rank

P

k

A

k

�

k

= const for � 6= 0 :

In the second lecture I discuss the simplest example where this conditions fails : v = (v

1

; v

2

) :

R

2

! R

2

, A(v) = (@

2

v

1

; @

1

v

2

).

Theorem. Suppose f : R

2

! R separately convex, 0 � f(p) � C (1 + jpj

2

), v

j

satis�es

(�). Then

Z




f(v) dx � lim inf

j!1

Z




f(v

j

) dx :
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Thus in this case the counterpart of rank-1 convexity, namely separate convexity, implies weak

lower semicontinuity which corresponds to quasiconvexity. A key ingredient is the following

estimate for coe�cients in the Haar basis fh

�

g : h

(")

j;k

= h

(")

(2

j

� �k), h

(1;0)

= h 
 1l

[0;1]

,

h = 1l

[0;

1

2

]

� 1l

[

1

2

;1]

, h

(0;1)

= 1l

[0;1]


 h, etc.

Theorem. For u =

P

�

a

�

h

�

and �xed " 2 f0; 1g

2

n f(0; 0)g, consider the projection

P

(")

u :=

P

j;k

a

(")

j;k

h

(")

j;k

. Then







P

(")

u







L

2

� C kR

2

uk

1

2

L

2

kuk

1

2

L

2

; if " 6= (1; 0) :

Similar estimates hold in L

p

.
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ALEXANDER J. NAGEL

The @

b

complex on quadratic CR manifolds (joint work with Fulvio Ricci and Elias

M. Stein)

We consider an Hermitian map A : C

n

! C

m

, and we want to study the operators associated

to the @

b

complex on the manifold

�

A

= f(z; w) 2 C

n

� C

m

j =m[w] = A(z)g :

This is a generic CR submanifold of CR dimension n. We let Z

1

; : : : ; Z

n

, and Z

1

; : : : ; Z

n

be

the standard bases for tangential vector �elds of type (1; 0) and (0; 1) on �

A

. The Laplacian

is the operator 2

b

= @

b

@

b

�

+ @

b

�

@

b

. In general, this is a system of second order PDE's. For

simplicity of exposition, we consider 2

b

= 2

0

acting on functions, when it becomes the scalar

operator

2

0

(f) =

n

X

j=1

Z

j

Z

j

[f ] :

�

A

carries the structure of a nilpotent Lie group of step 2.

Theorem 1. There are convolution operators P

j

; Q

j

; G

j

; H

j

; P , and K on �

A

such that

(i) P

j

and Q

j

are the orthogonal projection of L

2

(�

A

) onto the null spaces of Z

j

and Z

j

.

(ii) G

j

Z

j

= I � P

j

, Z

j

G

j

= I �Q

j

, H

j

Z

j

= I �Q

j

, Z

j

H

j

= I � P

j

(iii) P is the orthogonal projection of L

2

(�

A

) onto the null space of 2

0

.

(iv) 2

0

K = K2

0

= I � P

Our objective is to study the regularity properties of these operators, and also to study the

nature of the singularities of their distribution kernels.

Theorem 2. For general A, the operators P

j

, Q

j

, P and Z

j

Z

j

K, Z

j

Z

j

K, Z

j

Z

j

(I�P

j

)K,

Z

j

Z

j

(I � P

j

)K are bounded on L

2

(�

A

).

However, the operators Z

j

Z

j

K and Z

j

Z

j

K are in general not bounded on L

2

(�

A

).

To go beyond L

2

theory, we consider the special case when the quadratic forms in A can be

simultaneously diagonalized.

Theorem 3. If A can be diagonalized, the operators in Theorem 2 are bounded in L

p

(�

A

)

for 1 < p <1.

We also give a description of the singularities of the distribution kernels of these operators. In

general, the kernels have singularities away from the origin. We introduce the notion of `
ag'

singularities which is analogous to but more general than a product singularity.

Theorem 4. If A can be diagonalized, the distribution kernels of the operators in Theorem

2 can be written as sums of 
ag singularities.

11



ALEXANDER OLEVSKII

Sparse spectra : approximation and expansions

We consider the following two (connected) problems.

1. How sparse the spectrum � � R might be, such that for an appropriate  2 L

2

(R) the

set of translates f (t� �)g

�2�

spans the space ?

2. Is it possible to decompose any measurable function f on R into a series

f(x) =

X

n2Z

c(n) e

i�(n)x

;

convergent a.e., which involves harmonics with `almost integer' frequencies,

�(n) = n + o(1) ?

MARCO M. PELOSO

Boundedness of Bergman projections on tube domains over light cones (joint work

with David Bekoll�e, Aline Bonami, and Fulvio Ricci)

Let

� =

n

y 2 R

n

: y

n

> (y

2

1

+ � � �+ y

2

n�1

)

1

2

o

be the forward light cone in R

n

, n � 3, and let 
 = R

n

+ i� be the associated tube domain

in C

n

. If Q denotes the quadratic form

Q(y) = �y

2

1

� � � � � y

2

n�1

+ y

2

n

;

we denote by L

p

�

, 1 � p � 1, the Lebesgue space L

p

�


; Q(y)

��n

dx dy

�

.

The weighted Bergman space A

p

�

is the closed subspace of L

p

�

consisting of holomorphic

functions. In order to have a non-trivial subspace, we impose that � > n� 1.

The weighted Bergman kernel B

�

(z; w) = c

�

Q(z � �w)

��

is the reproducing kernel on

A

2

�

, and the weighted Bergman projection

P

�

f(z) =

Z




B

�

(z; u+ iv) f(u+ iv) Q(v)

��n

du dv

is the orthogonal projection of L

2

�

onto A

2

�

. Let P

+

�

denote the operator

P

+

�

f(z) =

Z




jB

�

(z; u+ iv)j f(u+ iv) Q(v)

��n

du dv :

The question is whether there are values of p for which P

�

is bounded, but P

+

�

is unbounded.

We obtain the following partial answer to this question.

12



Theorem. P

�

is bounded on L

p

�

for 1 +

n�2

2(��1)

< p < 1 +

2(��1)

n�2

.

We must take advantage of the oscillations of the Bergman kernel. We are so induced

to use the Fourier transform in the x variables and consequently to focus on L

2

norms

in these variables. For this reason, for 1 � p; q � 1, we consider the spaces L

p;q

�

=

L

p

�

�; Q(y)

��n

dy; L

q

(R

n

; dx)

�

. As before, we call A

p;q

�

the closed subspace of L

p;q

�

con-

sisting of holomorphic functions.

For q = 2, we obtain the exact range of p (modulo two endpoints) for which P

�

is bounded.

Then the Theorem follows by interpolation with the results of [1].

[1] D. Bekoll

�

e, A. Bonami, Estimates for the Bergman and Szeg�o projections in two symmetric

domains of C

n

, Coll. Math., 68 (1995), 81-100.

[2] D. Bekoll

�

e, A. Bonami, M. M. Peloso, F. Ricci, Boundedness of Bergman projections

on tube domains over light cones, preprint, 1999.

DUONG H. PHONG

Uniform estimates and stability of oscillatory integrals and oscillatory integral oper-

ators (joint work with Elias M. Stein and Jacob Sturm)

We report uniform estimates both on

1. Scalar Oscillatory Integrals : In dimension 3, we show the stability of decay rates for

oscillatory integrals

�

�

�

�

Z

e

i�S(x)

�(x) dx

�

�

�

�

� C j�j

��

;

as long as � <

2

N

, where N is the order of vanishing of S(x) at the origin and � is a

cut-o� function supported near 0.

2. Oscillatory Integral Operators : we establish uniform estimates for one-dimensional op-

erators of the form

T

�

f(x) =

1

Z

�1

e

i�S(x;y)

�(x; y)f(y) dy ;

where S(x; y) is a polynomial of degree n.

� When S(x; y) = S

0

(x; y)� 2E(x; y), then the sharp decay rate kT

�

k � Cj�j

�

1

2

�

(with � de�ned by the reduced Newton diagram), is uniform for S

0

and E homo-

geneous polynomials and j�j su�ciently small.

� When @

k

x

@

`

y

S

00

xy

> 1 and @

r

x

@

s

y

S

00

xy

> 1, then the estimate kT

�

k � Cj�j

�

1

2

�

holds

uniformly (with � de�ned by a Newton diagram construction based on the vectors

(k+ 1; `+ 1) and (r+1; s+1)), with a constant C depending only on n, k, `, r,

s, and �.

13



HANS M. REIMANN

Mappings on H-type groups

H-type groups are special step 2 nilpotent Lie groups N . The tangent space TN contains a

sub-bundle HN spanned by the left invariant vector �elds from the subspace generating the

Lie algebra = + of N . A contact mapping f : N ! N is a di�erentiable mapping

which preserves HN : f

�

HN � HN .

We consider the vector �elds which generate local one-parameter groups of contact mappings.

It is shown that these vector �elds make up a �nite dimensional Lie algebra in all cases when

the dimension of the center is at least 3.

The Heisenberg group is the special case dim = 1 and here the vector �elds generating

contact mappings are well known. The case dim = 2 is the complexi�ed Heisenberg group.

For this case it is shown that the contact mappings are holomorphic.

FRANCIS RIBAUD

Self-similar solutions of the nonlinear wave equations (joint work with A. Youss�)

We prove the existence of a class of `special solutions' of the nonlinear wave equations

(NLW)

8

>

<

>

:

@

2

t

u��u = ��juj

��1

u (t; x) 2 R

+

� R

n

; � 2 R

u

jt=0

= f

@

t

u

jt=0

= g :

Also, we show that those special solutions allow sometimes to describe the asymptotic be-

haviour of some �nite energy solutions of (NLW). More precisely, we prove the existence of

self-similar solutions of (NLW), i.e. solutions such that u(t; x) = a

2

��1

u(at; ax) 8 a > 0.

One can prove that u is a self-similar solution if, and only if, the initial data (f; g) are of the

particular form

f(x) =




1

(xkxk

�1

)

kxk

2

��1

; g(x) =




2

(xkxk

�1

)

kxk

�+1

��1

;

where the 


i

are functions de�ned on the unit sphere S

n�1

. So, to prove the existence of

self-similar solutions we study the global Cauchy problem (NLW) with homogeneous initial

data. The main problem is now that such initial data never belong to the usual spaces of

resolution of (NLW) (Lebesgue or Sobolev spaces). To overcome this problem we introduce

some non-standard resolution spaces which allow us to prove the existence of not necessarily

radially symmetric self-similar solutions when k


1

k

C

n

+k


2

k

C

n�1

� " and when � > �

0

(n)

(n = 2; 3; 4; 5) and when � 2]�

0

(n);

n+3

n�1

] [ ]�

1

(n);+1[, (n � 6), where �

0

(n) is the lowest

bound for the scattering theory and �

1

(n) �

n

2

� 1. Next we prove that initial data of the

form

~

f(x) = (1� '(x)) f(x) ; ~g(x) = (1� '(x)) g(x)

(' is a cut-o� function in a neighbourhood of 0) give raise to �nite energy solutions of

(NLW) which behave asymptotically like the self-similar solution with initial data (f; g) when

n = 3; 4; 5; 6 and when �

0

(n) < � < �

�

(n) =

n+2

n�2

.
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WILHELM SCHLAG

On minima of the absolute value of certain random exponential sums

Let T

n

(x) =

n

P

j=1

�e

2�ij

2

x

where � stands for a random choice of sign with equal probability.

It is shown in this talk that with high probability min

x2[0;1]

jT

n

(x)j < n

��

provided n is large and

� <

1

12

. Similar results are proved for other powers than squares. The problem of determining

the optimal � is open.

For the case T

n

(x) =

n

P

j=1

r

j

e

2�ij

d

x

, where d = 2; 3; : : :, is �xed and with standard normal r

j

we show that the minima are typically on the order of n

�d+

1

2

with high probability and for

large n.

ANDREAS SEEGER

Failure of weak amenability and a family of singular oscillatory integrals (joint work

with Michael Cowling, Brian Dorofae� and James Wright)

Let A(G) be the Fourier algebra of a locally compact groupG. We say that f�

i

g is c-completely

bounded approximative unit if k�

i

� � �k

A(G)

! 0 for all � 2 A(G) and k�

i

k

M

0

A(G)

� c

uniformly in i; hereM

0

A(G) denotes the algebra of Herz-Schur multipliers. The approximation

number �(G) is de�ned as the in�mum over all c so that there is a c-completely bounded

approximative unit.

The object of this study is to complete the project of determining �(G) for all matrix groups.

Using structure theory of Lie groups and various previously known results one is led to the

case of G

n

= SL(2;R) n H

n

where n � 2, H

n

is the 2n + 1 dimensional Heisenberg group

and SL(2;R) acts via the irreducible representation of dimension 2n �xing the center of H

n

.

Following an idea of Haagerup for the case n = 1 we identify a family of distributions D

R

which act on the Fourier algebra A(H) of a certain nilpotent subgroup H of G and have the

following two properties, for large R.

(i) If �

i

is an SO(2)-biinvariant approximative unit in G

n

then

lim sup

i

hD

R

; �

i

j

H

i � C

0

logR: (�)

(ii) For all g 2 A(H)

jhD

R

; gij � C

1

log logRkgk

A(H)

: (��)

One can use these facts to show that �(G

n

) = 1; in fact there is no multiplier bounded

approximative unit on A(G

n

).

In order to show the crucial bound (��) one uses a Fourier transform argument and is led to

proving bounds for a family of singular oscillatory integral operators T

R

acting on functions in

L

2

(R

2

). Let n = 1; 2; : : : and let p be a polynomial of degree � n. De�ne �(s) = (1 + s

2

=4)

and

	(x; y) = (x

1

� y

1

)(x

2

2

+ y

2

2

)� (x

2

� y

2

)p(x

1

+ y

1

)

�(x; y) = �(x

1

� y

1

)jx

2

+ y

2

+ p

0

(x

1

+ y

1

)j(x

2

� y

2

):
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For f 2 C

1

0

(R

2

) let T

R

f(x) =

Z Z

e

i

n

2

	(x;y)

sin �(x; y)

�(x

1

� y

1

)(x

2

� y

2

)

�

[�R;R]

(x

1

�y

1

)f(y

1

; y

2

) dy

1

dy

2

:

Theorem. T

R

extends to a bounded operator on L

2

(R

2

) and for large R the operator

norm is � C log logR; here C depends on n but not on the particular polynomial of degree

� n.

The proof relies on a crucial cancellation property for the a�ne case p(x) = ax + b, for

which one obtains the bound kT

R

k = O(1). The general case involves an approximation by

operators which share the properties of the a�ne case; for various remainder terms one uses

the oscillatory properties of the phase function and Hilbert integral arguments.

PETER SJ

�

OGREN

A maximal estimate for the real and the complexi�ed Ornstein-Uhlenbeck semigroup

(joint work with J. Garc��a-Cuerva, G. Mauceri, S. Meda and J.L. Torrea)

Let d
(x) = e

�jxj

2

dx in R

d

and L = �

1

2

�+ x � grad , which is a self-adjoint operator in

L

2

(
). Then H

t

= e

�tL

, t > 0, is the Ornstein-Uhlenbeck semigroup. Here t can be replaced

by a complex parameter z with <ez > 0 and H

z

has a region E

p

� C of holomorphy in

L

p

(
) for each 1 < p <1. This extension is important in particular for spectral multipliers.

It is natural to form the maximal operator given by sup

z2E

p

jH

z

f(x)j , for f 2 L

p

(
). We prove

that for any � > 0, the smaller operator

sup

z2E

p

;jzj<�

jH

z

f(x)j

is of weak type (p; p) with respect to 
, for 1 < p < 2. The proof applies also to the case

p = 1 and then gives a new proof of the known weak type (1; 1) estimate for sup

t>0

jH

t

f(x)j.

In the proof, the operator is split into a local and a global part, where `local' refers to the

length scale

1

1 + jxj

near x.

LESZEK SKRZYPCZAK

Atomic decomposition on symmetric spaces and applications

Let X be a Riemannian manifold with bounded geometry. For the Triebel-Lizorkin spaces

F

s

p;q

(X) and Besov spaces B

s

p;q

(X) de�ned on X (s 2 R, 1 � p; q � 1) an atomic decom-

position is introduced. The atomic decomposition theorem can be used for investigation of

boundedness of pseudodi�erential operators as well as for characterization of the above spaces

in terms of heat and harmonic extensions.

If X is a Riemannian symmetric manifold of the noncompact type, then the following facts

can be proved:

1. the Bernstein type theorem about absolute integrability of the Helgason-Fourier trans-

form Hf of f 2 B

n

11

(X), n = dimX,

16



2. the generalized Riemann-Lebesgue lemma for functions belonging to B


(X)

p;1

(X), 1 �

p < 2, 
(X) > 0 being the constant depending on X,

3. convolution properties of Besov spaces related to the Kunze-Stein phenomenon.

HART SMITH

Global Strichartz estimates for nontrapping metrics (joint work with C. Sogge)

We discuss joint work with C. Sogge establishing mixed-norm (Strichartz) estimates globally

in space-time for solutions to certain variable coe�cient wave equations. Precisely, let g

be a (smooth) Riemannian metric in R

n

such that g

ij

(x) = �

ij

for jxj � R, and let

K � fx : jxj � Rg be an obstacle which is strictly convex relative to g. Consider the wave

equation

8

>

>

>

<

>

>

>

:

@

2

t

u = �

g

u+ F (t; x) 2 R � R

n

n K

u(0; x) = f(x)

@

t

u(0; x) = g(x)

u(t; x) = 0 x 2 @K :

Assuming that the metric g is nontrapping (all geodesics go to 1) we show that, for n odd,

n � 3, the global estimate

kuk

L

p

t

L

q

x

(R�R

n

nK)

� c

�

kfk

_

H


 + kgk

_

H


�1 + kfk

L

r

t

L

s

x

�

holds, provided that this estimate holds on Euclidean space, and provided it holds locally in

space time for the obstacle problem (the local estimates were established by the authors in

previous work). The key idea in the proof is to use local energy decay estimates of Morawetz-

Taylor to reduce the problem to the known estimates.

DANIEL TATARU

Strichartz estimates for hyperbolic operators with nonsmooth coe�cients

The Strichartz estimates are L

p

(L

q

) estimates for solutions to the wave equation which are

related to the restriction theorem for the cone and thus to the (number of) nonvanishing

curvatures of the characteristic cone. Such estimates have been proved quite useful in the

study of various semilinear hyperbolic equations.

The aim of the current work is to study whether similar results hold for operators with low

regularity coe�cients.

The main result is that the full Strichartz estimates hold for a second order hyperbolic operator

P (x; @) = g

ij

(x)@

i

@

j

provided that @

2

x;t

g 2 L

1

t

(L

1

x

). Some weaker results are obtained under

the assumption that @

s

g 2 L

1

(L

2

), 0 � s � 2.

An essential tool in the analysis is the FBI transform, which provides a very convenient way

of localizing simultaneously in the physical space and in the frequency. The analysis leads to
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a nice expression for an approximate parametrix for the wave equation of the form

K(y; ~y) =

Z

t�0

ZZ

cone

e

i��(x�y)

e

�i��

t

(x

t

�~y)

G

1

(x; y; �) G

2

(x

t

; y; �

t

) dx d� dt

where (x; �) 7! (x

t

; �

t

) is the null bicharacteristic 
ow and G

1

, G

2

behave essentially like the

Gaussians

G(x; y; �) ' e

�c�(x�y)

2

:

This seems to be related to the recent construction of parametrices for the smooth coe�cient

case which involves complex phase functions.

One application of these estimates is to improve the local theory for quasilinear hyperbolic

equations by

1

3

derivative (n � 3) respectively

1

6

derivative (n = 2) below the classical

results. It is not known whether these new results are sharp or not. They go only

2

3

of the

way to the known counterexamples.

CHRISTOPH THIELE

On multilinear singular integrals

We discuss n-linear forms of the type

T (f

1

; : : : ; f

n

) =

Z

�

Z

R

Z

�

0

�

O

i

f

i

�

(�) D

1

2

�t

L

����

'

n


(�) d� dt d� :

Here � is the hyperplane in R

n

perpendicular to (1; 1; : : : ; 1), �

0

is a k-dimensional subspace

of � with 0 � k � n � 2, � is a vector in � perpendicular to �

0

with su�ciently large

norm, ' is a Schwartz function with supp b' � [�1; 1], and we have L

y

f(x) = f(x� y) and

D

1

2

�t

f(x) = f(2

t

x). We have the following result.

Theorem [C. Mascalu, T. Tao, C. Thiele]

For 0 � k <

n

2

� 1,

n

P

i=1

1

p

i

= 1, 1 < p

i

<1, we have

T (f

1

; f

2

; : : : ; f

n

) � C

n

Y

i=1

kf

i

k

p

i

:

WALTER TREBELS

On Laguerre multipliers (joint work with G. Gasper)

Let the Lebesgue space L

p

w(
)

be de�ned by its norm

kfk

L

p

w(
)

:=

0

@

1

Z

0

�

�

f(x) e

�x=2

�

�

p

x




dx

1

A

1=p

<1 ;
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p � 1, 
 > �1. The polynomials are dense in L

p

w(
)

and we restrict ourselves in the following

to a polynomial f . Develop f into a Laguerre series of order � > �1 : f =

P

a

k

L

�

k

.

1. Motivated by the approach of Hardy and Littlewood we consider the fractional integral

I

�

(t) =

P

(k + 1)

��

a

k

L

�

k

. With the use of projection formulae, the problem

I

�

: L

p

w(
)

! L

r

w(�)

; 1 < p � r <1;

for appropriate 
 and �, is reduced to the well-known behaviour of fractional integrals

on the half-line; in particular, the natural weight case 
 = � = � leads to

1

r

=

1

p

�

�

�+1

.

The result contains and improves previous ones due to Kanjin, Sato '95 and Gasper,

Stempak, Trebels '95. Spezialisation of the parameters in combination with quadratic

transformations yields a corresponding fractional integration theorem for Hermite ex-

pansions.

2. An equivalence between Laguerre multipliers (� = �

1

2

) and Hermite multipliers (in

suitable L

p

-spaces, 1 < p <1) is established.

3. An (improved) analogue of a result of Coifman, Weiss '77 (relating radial Fourier mul-

tipliers on R

n

with those on R

n+2

) is obtained : Increasing the smoothness of the

Laguerre multiplier (with respect to �) by 1 leads to Laguerre multipliers with respect

to � = � +

p

2�p

, 1 � p < 2.

STEPHEN WAINGER

Discrete Analogues of Spherical Maximal Functions

We are concerned with functions f de�ned on Z

d

the lattice points in R

d

, that is points m in

R

d

with m = (m

1

; : : : ; m

d

) and m

j

integers. For � a positive integer set r

(k)

d

(�) to be the

number of solutions in integers of the equation

� = jn

1

j

k

+ � � �+ jn

d

j

k

; k = 2; 3; : : : ;

and for m 2 Z

d

, let

S

k

�

f(m) =

1

r

(k)

d

(�

X

n 2 Z

d

jn

1

j

k

+ � � �+ jn

d

j

k

= �

f(m� n):

Theorem 1 [Magyar, Stein, and Wainger].

For k = 2,













sup

�

�

�

S

2

�

f(m)

�

�













`

p

(Z

d

)

� A(p; d) kfk

`

p

(Z

d

)

provided d � 5 and p >

d

d�2

.
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Theorem 2 [Magyar, Stein, and Wainger].

For general k, there are numbers a(k) and b(k) so that













sup

�

�

�

S

k

�

f(m)

�

�













`

p

(Z

d

)

� A(p; d) kfk

`

p

(Z

d

)

provided d > a(k) and p >

d

d�b(k)

.

JAMES WRIGHT

Multiple Hilbert transforms along polynomial surfaces (joint work with A. Carbery

and S. Wainger)

We are interested in studying certain singular integrals in R

n

whose distributional kernel is

supported along a polynomial surface and possesses a product type singularity. There is a

general theory due to F. Ricci and E.M. Stein which examines the situation of convolution

operators where the convolution kernel is homogeneous with respect to a k parameter family of

dilations on R

1

. A model case of such a convolution operator whose kernel is not homogeneous

is given by convolution on R

3

with the distribution

�(') =

Z

jsj;

Z

jtj�1

' (s; t; P (s; t))

1

st

ds dt ;

where P is a polynomial on R

2

with real coe�cients. However, if P (s; t) = s

k

t

`

, then the

Ricci-Stein theory applies and the corresponding convolution operator is bounded on L

p

(R

3

),

1 < p < 1, if, and only if, either k or ` is even. For a general polynomial P (s; t) not all

monomials in
uence matters and we have for a general P :

Theorem. f 7! f � � is bounded on L

p

(R

3

), 1 < p < 1, if, and only if, every vertex

(k; `) of the Newton diagram of P has at least one even entry.

We remark that, if convolution on R

3

is replaced with convolution on H

1

, then the corre-

sponding operator is bounded on L

2

(H

1

) for every polynomial P .
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