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This meeting brought together a number of young mathematicians with specialists

working on various aspects of this �eld coming primarily from France, Germany, Russia, and

USA. The organizers were U. Abresch (Bochum), D. Gromoll (Stony Brook), F. Labourie

(Orsay), and W. T. Meyer (M

�

unster).

Recently, nonnegatively curved spaces have again become the focus of intense research

leading to some breakthrough results; they were a main topic of this conference. The pre-

sentation of this work was well complemented by talks about results on negative curvature

and metric invariants in symplectic geometry. Essential links between these topics show up

in the study of fundamental groups, holonomy, the geodesic 
ow, and special geometries,

including in particular isoparametric submanifolds, nilmanifolds and quaternionic K

�

ahler

manifolds. Analytic aspects spanned index theory, geometric extremal value problems and

spectral problems. The 28 lectures started many stimulating and informal work sessions.

One substantial new result was established and at least two papers were completed in the

course of the conference.
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1. Schedule

Mon Tue Wed Thu Fri

Rong Grove Goldman Hamenst

�

adt Heintze

Tuschmann Ziller Wilking Benoist Peyerimho�

Walschap Wilhelm Leuzinger Weingart Ghanaat

Bazaikin Sch

�

uth Cort�es Eberlein

Taimanov B�erard Bergery Semmelmann

Schroeder Schwachh

�

ofer Goette

DiScala Schlenker Katz

2. Abstracts

Biquotients with integrable geodesic 
ow

Y. Bazaikin (Novosibirsk)

The main result presenting in this talk is the following

Theorem: Let M = KnG=H be a biquotient, where H;K are Lie subgroups of the Lie

group G, and with a �xed biinvariant metric on G. Let k; h; g be the corresponding Lie

algebras of the Lie groups K;H;G. Consider two chains of Lie algebras

h = h

0

� h

1

� � � � � h

l

= g and k = k

0

� k

1

� � � � � k

m

= g:

Let r

1

= rank(fh

i

g

i

;V ), r

2

= rank(fk

j

g

j

;V ), r

3

= rank g, where V = (h + k)

?

� g.

Then the geodesic 
ow on M has at least r

1

+ r

2

� r

3

almost everywhere functional inde-

pendent Thimm integrals.

This theorem uses the following de�nitions:

1) Let g be a Lie algebra, and h � g a Lie subalgebra. Let g = h � p and, for X 2 g,

put N

g

(X) = Center(ker(ad(X))). Then put

rank((h; g);V ) := max

X2V

dim(pr

p

(N

g

(X)));

where V � g is a vector subspace.
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2) If we have a chain h

0

� h

1

� � � � � h

n

� g, then put

rank(fh

i

g

i

;V ) :=

n�1

X

i=0

rank((h

i

; h

i+1

); pr

h

i+1

(V ));

where V � g is a vector subspace.

This de�nition of a rank of a chain is quite constructive, and using the theorem one can

immediately obtain the integrability of the geodesic 
ow on positively curved Eschenburg

examples and positive curved 13-dimensional spaces introduced by the author.

Symplectic actions of compact groups

Y. Benoist (Orsay)

For any symplectic action of a compact connected group on a compact connected symplectic

manifold, we show that the intersection of the Weyl chamber with the image of the moment

map is a closed convex polyhedron. This extends Atiyah-Guillemin-Sternberg-Kirwan's

Convexity Theorem to non hamiltonian actions.

As a consequence, we describe those symplectic actions of a torus which are coisotropic (or

multiplicity free), i.e., which have at least one coisotropic orbit.

Non-irreducible pseudo-Riemannian manifolds

L. B

�

erard Bergery (Nancy)

The holonomy representation of an indecomposable (i.e., not locally a product) pseudo-

Riemannian manifold is not necessarily irreducible. The talk described two other types,

according to the existence or non-existence of a direct sum decomposition in two isotropic

invariant subspaces. Then all pseudo-Riemannian symmetric manifolds of the 3

rd

type are

described as vector bundles over the cotangent bundle of a�ne symmetric spaces. Also

indecomposable manifolds with parallel Ricci are not necessarily Einstein. In the 3

rd

type,

the Ricci operator may satisfy Ric

2

= 0, Ric 6= 0. 2

nd

type appear for complex manifolds

with a complex Einstein non degenerate symmetric 2-form (work with C. Boubel). Various

examples of non-irreducible and non symmetric holonomies are presented (work with A.
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Ikemakhen).

A new construction of homogeneous quaternionic manifolds and

related geometric structures

V. Cort

�

es (Bonn)

Habilitationsschrift, to appear in Memoirs of the AMS

Let V = R

p;q

be the pseudo-Euclidean vector space of signature (p; q), p � 3 and W

a module over the even Cli�ord algebra Cl

0

(V ). A homogeneous quaternionic manifold

(M;Q) is constructed for any spin(V )-equivariant linear map

� : �

2

W ! V:

If the skew symmetric vector valued bilinear form � is nondegenerate then (M;Q) is endo-

wed with a canonical pseudo-Riemannian metric g such that (M;Q; g) is a homogeneous

quaternionic pseudo-K

�

ahler manifold.

If the metric is positive de�nite, i.e., a Riemannian metric, then the quaternionic K

�

ahler

manifold (M;Q; g) admits a transitive solvable group of automorphisms. In this special

case (p = 3) we recover all the known homogeneous quaternionic K

�

ahler manifolds of

negative scalar curvature (Alekseevsky spaces) in a uni�ed and direct way. If p > 3 then

M does not admit any transitive action of a solvable Lie group and we obtain new families

of quaternionic pseudo-K

�

ahler manifolds. For q = 0 the noncompact quaternionic manifold

(M;Q) can be endowed with a Riemannian metric h such that (M;Q; h) is a homogeneous

quaternionic Hermitian manifold, which does not admit any transitive solvable group of

isometries if p > 3.

Finally, the construction has a mirror in the category of supermanifolds. In fact, for any

spin(V )-equivariant linear map � : S

2

W ! V a homogeneous quaternionic supermanifold

(M;Q) is associated and, moreover, a homogeneous quaternionic pseudo-K

�

ahler superma-

nifold (M;Q; q) if � is nondegenerate.

Homogeneous hyperbolic submanifolds and transitivity of Lorent-

zian holonomy

A. J. DiScala (Cordoba)

joint work with C. Olmos

We characterize geometrically isometry subgroups of hyperbolic space. As a consequence of

this we obtain a direct and conceptual proof of classi�cation results of M. Berger (a question

explicitely posed by B�erard-Bergery and Ikemakhen in 1993). Namely, the holonomy group

of an irreducible Lorentzian manifold is SO

0

(N; 1). In particular, irreducible Lorentzian
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locally symmetric spaces must have constant curvature. Moreover, we obtain the following

general result:

Let M be a locally indecomposable Lorentzian manifold. Then its restricted holonomy group

either acts transitively on hyperbolic space or transitively on a horosphere.

Another application of our results is that a minimal (extrinsically) homogeneous subma-

nifold of hyperbolic space must be totally geodesic. We also prove the same result for the

Euclidean space, which has the following corollary (using the Calabi Rigidity Theorem and

the fact that complex immersions are minimal):

A complex isometric immersion from a complex homogeneous space into C

N

must be totally

geodesic.

In other words, such isometric immersions can not exist unless the immersed manifold is

an a�ne space.

Geometry of 2-step nilpotent Lie groups

P. Eberlein (Chapel Hill)

We consider an interesting class of compact 2-step nilmanifolds �nN constructed from

representations � : G ! GL(U), where ker� is �nite, G is a compact, connected Lie

group and U is a �nite dimensional real vector space. Let h�; �i be a �(G)-invariant inner

product on U . This implies d�(g) � so(U; h�; �i). De�ne n = U � g, orthogonal direct sum,

where g is equipped with an inner product for which ad(g) is a family of skew symmetric

transformations. De�ne a 2-step nilpotent structure on n by requiring that g � center of n

and h[X; Y ]; Zi

g

:= hZ(X); Y i

U

for X; Y 2 U and Z 2 g.

Theorem: The corresponding 2-step, simply connected nilpotent Lie group N with left

invariant metric h�; �i admits lattices � (i.e., there exists a discrete subgroup � of N such

that �nN is compact).

The di�erential geometric properties of such spaces �nN are interesting and can be investi-

gated algebraically using the properties of the representation � : G! GL(U), in particular

the weight space decomposition of V = U

C

in the case that G is semisimple. Understanding

the geometry of these examples is important since if �

�

is a lattice in any simply connected

2-step nilpotent group N

�

, then there exists a left invariant inner product h�; �i

�

on N

�

and

a Riemannian submersion q : �nN ! �

�

nN

�

such that � is a lattice in a suitable group

representation example N as above. Moreover the �bers of q are 
at, totally geodesic tori.

Interesting partial results have already been obtained about the density of closed geodesics
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in compact 2-step nilmanifolds �nN , where N is a group representation example.

Curvature, eigenvalues and nilmanifolds

P. Ghanaat (Karlsruhe)

joint work with B. Colbois and E. A. Ruh

For closed n-dimensional Riemannian manifolds M with almost positive Ricci curvature,

the Laplacian on one-forms is known to admit at most n small eigenvalues. With strong

curvature assumptions we show that if there are n small eigenvalues, then M is di�eomor-

phic to a nilmanifold, and the metric is almost left invariant. Our result sharpens a recent

theorem of Petersen and Sprouse. For the proof, we consider an L

2

-orthonormal system of

eigenforms !

1

; : : : ; !

n

corresponding to the small eigenvalues. Bochner's formula implies

that the covariant derivatives r!

k

are small in the L

2

-norm. Our main step consists in ob-

taining smallness of r!

k

in the L

1

-norm. This is based on a general deGiorgi-Nash-Moser-

estimate on the Laplacian and volume comparison arguments. The mean value theorem

then quickly reduces our problem to a comparison theorem for almost Lie groups obtained

earlier.

Comparison theorems for scalar curvature, extremal metrics, and

rigidity

S. Goette (Orsay)

joint work with U. Semmelmann

Inspired by results of Llarull, Min-Oo, and others, Gromov asked the following question:

Which compact connected manifoldsM carry Riemannian metrics that cannot be enlarged

without making the scalar curvature � smaller somewhere? More generally, he proposed to

also investigate area-nonincreasing maps from some other manifold to M .

Generalizing Llarull's and Min-Oo's approach, we established the following

Theorem: Let (M; g) be a compact, connected K

�

ahler manifold with Ric � 0 and canonical

bundle K ! M . Let (N; �g) be compact, connected, orientable with scalar curvature ��. If

f : N !M is area-nonincreasing with w

2

(N) = f

�

w

2

(M) and (

^

A(N)f

�

ch(K

1=2

))[N ] 6= 0,

then either �� = � � f everywhere, or �� < � � f somewhere on N .

If M is biholomorphic to C P

n

or the quadric Q

n

, we may replace "ch(K

1=2

)" by "vol

M

".

If moreover Ric > 0, dim

C

M � 2 and �� � � � f , then N is isometric to M �F , F is Ricci


at, and f is the product projection.
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Note that we may take N = M and f = id if Td(M) 6= 0 (for example, if Ric > 0). We

prove similar theorems for quaternionic K

�

ahler manifolds, and also for manifolds with a

nonnegative curvature operator on �

2

M (but with a slightly weaker rigidity statement).

We also give an upper bound for min� for deformed metrics on algebraic varieties.

Hyperbolic geometry and 
at Lorentz 3-manifolds

W. Goldman (College Park)

In 1977 Milnor asked whether a discrete group of a�ne transformations of R

n

which acts

properly is virtually polycyclic. He pointed out that this question is equivalent to whether a

free group of rank 2 admits such an action. He proposed starting with a Schottky group in

SO(2; 1) and adding translational parts. In 1983 Margulis showed such examples do occur.

(Fried and Goldman reduced the general question in R

3

to this special construction.) In

his 1990 doctoral thesis, Drunn constructed explicit fundamental polyhedra (called crooked

planes) and showed that the classical construction of Schottky groups can be carried out

in this context. This talk surveyed the geometry of these quotients and some speculations

on their classi�cation.

Fundamental groups in positive curvature

K. Grove (College Park)

The so called Chern conjecture (1965) proposed that any abelian subgroup of the funda-

mental group of a positively curved manifold is cyclic. The following counterexamples were

recently discovered (the �rst by K. Shankar):

Theorem 1 (Shankar): The Alo�-Wallach spaceM

1;1

= SU(3)=S

1

1;1

= SU(3)SO(3)=U(2)

(Wilking) as well as the Eschenburg space N

1;1

=M

1

=

�

z

z

z

�

nSU(3)=

�

1

1

�z

3

�

admit free

isometric actions of SO(3). In particular, Z

2

� Z

2

� SO(3) occurs as the fundamental

group of two positively curved manifolds.

Theorem 2 (Grove{Ziller): Z

2

� Z

2

acts freely and isometrically on the Eschenburg

space M

p

=

�

z

z

z

p

�

nSU(3)=

�

1

1

�z

p+2

�

when p and q are odd and (p+ 1; q) = 1.

Theorem 3 (Grove{Shankar): Z

3

�Z

3

acts freely and isometrically on the Alo�-Wallach

space M

k;l

= SU(3)=

�

z

k

z

l

�z

k+l

�

if and only if 3 - kl(k + l).

In addition, Z

6

� Z

6

and Z

3

� Z

3q

, 3 - q act freely and isometrically on the Alo�-Wallach-

Wilking space.
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The main geometric input is the following

Lemma: If a compact Lie group G � Iso(M) (including �nite groups) acts freely on M

with secM > 0, then G \ torus, torus � Iso(M) is either cyclic or a circle.

The algebraic input is contained in the following result of Borel (1961):

There is a Z

p

� Z

p

in a connected compact Lie group G and not in a torus � G i� �

1

(G)

does not have p-torsion.

Marked length spectrum and volume

U. Hamenst

�

adt (Bonn)

The marked length spectrum of a closed Riemannian manifold M of negative sectional

curvature is the function which assigns to a conjugacy class in the fundamental group

�

1

(M) of M the length of the unique closed geodesic in M representing the class. We

discuss the following

Theorem: The marked length spectrum determines the volume of M .

Together with a deep result of Besson, Courtois and Gallot this implies that a negatively

curved locally symmetric metric is determined by the marked length spectrum.

The strategy of proof consists in studying the cross ratio on the ideal boundary of the

universal covering of M as an integrated form of the natural symplectic structure on the

space of geodesics.

Isoparametric submanifolds

E. Heintze (Augsburg)

joint work with X. Liu and C. Olmos

A general de�nition for isoparametric submanifolds in arbitrary Riemannian spaces is given

and it is shown that this behaves nicely with respect to certain Riemannian submersions. In

particular one can lift isoparametric submanifolds with 
at sections in normal homogeneous

spaces to a Hilbert space and exploit Terng's theory of isoparametric submanifolds there.

As an application one gets a Chevalley-type restriction theorem which partially generalizes

the basic isomorphism R(G) ! R(T )

W

in representation theory of compact Lie groups,

since the action of G on itself by conjugation gives rise to an isoparametric foliation with

8




at sections.

Minimal volume with distance bounded below

N. Katz (Bonn)

The talk concerned determining the in�mal volume of all Riemannian metrics (or those

in a conformal class) on a smooth, compact manifold M with connected boundary V ,

whose distance function restricted to V is bounded below by a given distance function

� : V � V ! [0;1). When � arises from a Riemannian metric h on V , the in�mal volume

is Gromov's �lling volume. A su�cient condition for minimal volume over a conformal class

was stated and new examples were presented.

A new modulus of curves was introduced, adapted to the problem of minimal volume over

a conformal class. This gives the minimal volume as the modulus of the set of all recti�able

curves with endpoints in the boundary. This new modulus was shown to be a conformal

invariant in that it reproduced the distortion of a �-preserving, C

1

-di�eomorphism in terms

of measures of curves. The �lling volume of round spheres (bounding hemispheres with �

given by the extrinsic distance on the equator) was used to give an upper bound for the

�rst eigenvalue of the Laplacian in terms of the convexity radius and an upper bound on

sectional curvature.

Critical exponents of discrete groups and L

2

-spectrum

E. Leuzinger (Karlsruhe)

Let � be a discrete, torsionfree subgroup of a noncompact semisimple Lie group G. The

critical exponent of � is

�(�) := lim sup

R!1

jB

R

(x

0

) \ � � x

0

j

R

(where x

0

is a base point of X = G=K). The bottom of the L

2

-spectrum of M = �nG=K

is

�

0

(M) := inf

f2C

1

0

(M)

R

M

jgradf j

2

R

M

jf j

2

:

Let � :=

1

2

P

�2�

+

m

�

� be the halfsum of the positive roots counted with multiplicity and

let �

min

:= minf�(H)jH 2 a

+

; kHk = 1g.

Theorem:
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a) �

0

(M) = k�k

2

if �(�) 2 [ 0; �

min

].

b) k�k

2

� (�(�)� �

min

)

2

� �

0

(M) � k�k

2

if �(�) 2 [ �

min

; k�k ].

c) maxf0; k�k

2

� (�(�) � �

min

)

2

g � �

0

(M) � k�k

2

� (�(�) � k�k)

2

if �(�) 2

[ k�k; 2k�k ].

This generalizes a classical theorem of Elstrodt, Patterson, Sullivan, Corlette.

Isoperimetric and ergodic properties of horospheres in symmetric

spaces of higher rank

N. Peyerimhoff (Bochum)

partially joint work with L. Karp

Motivated by results about spherical means in Riemannian manifolds without conjugate

points (by G

�

unther, Farnhammer, Knieper, Eskin/McMullen and others) we prove the

following result:

Theorem 1 (Karp, Peyerimho�): Let M be a compact locally symmetric space of non-

compact type and arbitray rank, H

v

a horosphere (perpendicular to v 2 SX) in the Rie-

mannian unviersal covering � : X ! M , and fK

n

g an exhaustion of H

v

by increasing

compact sets with smooth boundary satisfying the isoperimetric condition

(�) lim

n!1

area(@K

n

)

vol(K

n

)

= 0:

Then we have, for all f 2 C(M),

lim

n!1

1

vol(K

n

)

Z

K

n

f � � =

1

vol(M)

Z

M

f:

In the rank one case, all horospheres are nilpotent groups and already intrinsic geodesic

balls satisfy condition (�) of the theorem. In this case, Theorem 1 can also be deduced

by the result of Bowen/Marcus concerning unique ergodicity for horocycle foliations. In

higher rank there are only particular horospheres satisfying (�) which we refer to as \good"

horospheres (there is one good horosphere associated to each Weyl chamber). These good

horospheres are homogeneous manifolds with zero Cheeger isoperimetric constant, even

though they seem to have exponential volume growth of intrinsic geodesic balls. The precise

statement is as follows (with � :=

1

2

P

�2�

+

m

�

�, m

�

= dim g

�

):

Theorem 2: Let X be a symmetric space of noncompact type and higher rank, g = k � p

the Cartan decomposition at p 2 X and T

p

X

�

=

p. In each closed spherical Weyl chamber
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W � a \ S

p

X there is precisely one vector v 2 W , namely � = k�khv; �i, such that the

corresponding horosphere H

v

is good. Moreover, for any vector v 2 W we have the following

estimate for the Cheeger isoperimetric constant of the corresponding horosphere:

h(H

v

) � 2 max

w?v

w2a\S

p

X

j�(w)j:

Collapsed manifolds with positive pinched curvature

X. Rong (New Brunswick)

The main results presented in this talk are the following:

Theorem A (Rong, 95-96): Let M be a �-pinched n-manifold. Then:

(A1) Either j�

1

(M)j � !(n; �) or j�

1

(M)=Z

q

j � !(n).

(A2) �

q

(M) has at most c(n; �) many isomorphic classes for q � 2n� 3, or q 6= 3(mod4)

and q 6= n� 1.

Theorem B (Fang{Rong, Petrunin{Tuschmann, 98): Let M be a simply connected

n-manifold with �-pinched curvature. If �

2

(M) is �nite, then inj(M) � �(n; �) > 0.

Theorem C (Petrunin{Rong{Tuschmann, 98): Let M be a compact T

k

-manifold.

If M admits a collapse along the T

k

-orbits with curvature � � K

g

i

� 1, then there is a

noncompact Alexandrov space, Y = Y (M;T

k

; g

i

), with curvature � � (in the Alexandrov

comparison sense).

Theorem D (Rong, 97): A maximally collapsed n-manifold with �-pinched curvature has

a �nite covering of order �

n+1

2

which is di�eomorphic to a lens space, S

n

=Z

q

, such that

c(n; �)

�1

� q vol(M) � c(n; �).

Roughly, a collapse along the T

k

-orbits is a generalization of collapsing Berger's sphere.

Convex surfaces in Lorentzian space forms

J. M. Schlenker (Orsay)

Pogorelov (after other's works) proved that any metric with curvature K > �1 is induced

on a unique convex surface in H

3

. We describe a similar (but slightly di�erent) phenomenon

in the de Sitter space S

3

1

: any metric with K < 1, and closed geodesics of length L > 2�,

is obtained on a unique space-like surface in S

3

1

.
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For surfaces of higher genus, convex embeddings are not possible, so one turns to equivariant

embeddings. Gromov proved that, if � is a compact surface with genus at least 2, and g is a

Riemannian metric on � with curvature K > �1, then (�; g) has an equivariant isometric

embedding into H

3

, ('; �), such that the group morphism � : �

1

(�) ! Isom(H

3

) �xes a

2-plane.

Theorem (F. Labourie, J. M. Schlenker): If � has genus at least 2 and g is a metric

over � with K < �1 (resp. K < 0) then (�; g) has a unique equivariant isometric embed-

ding into H

3

1

(resp. R

3

1

); and, if K < 1 and all closed geodesics of (

~

�; g) have length above

2�, then (�; g) has a unique equivariant isometric embedding into S

3

1

, whose representation

�xes a point.

Using the duality between H

3

and S

3

1

, the result concerning S

3

1

can be reformulated as

describing the third fundamental forms of surfaces in H

3

.

Bounded geodesics in manifolds of negative curvature

V. Schroeder (Z

�

urich)

We outline the proof of the following results

Theorem 1: Let M be a complete noncompact Riemannian manifold with sectional cur-

vature �b

2

� K � �a

2

< 0, vol(M) < 1 and dim(M) � 3. Then, given a point x 2 M ,

there exists a complete bounded geodesic through the point x.

Theorem 2: Let M be compact with curvature K < 0 and dim(M) � 3. Then there exists

a proper closed subset W of the unit tangent bundle SM which is invariant under the

geodesic 
ow such that �(W ) =M where � : SM !M is the footpoint projection.

The proof combines ideas of K. Burns and M. Pollicott together with some additional

topological considerations. For these methods the dimension assumption is necessary.

Continuous families of isospectral left invariant metrics on com-

pact Lie groups

D. Sch

�

uth (Bonn)

We present a new class of families of closed Riemannian manifolds which are isospectral for

the Laplacian on functions. The \classical" way of constructing such manifolds is by the so-

called Sunada method. It produced isospectral quotients of a common Riemannian covering

manifold by di�erent discrete subgroups of isometries. In particular, those manifolds were
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always locally isometric, and were non-simply connected. The �rst examples of closed,

locally non-isometric isospectral manifolds were given by C. Gordon (1992). They arise as

principal torus bundles satisfying certain conditions.

The same method later led to the construction of continuous families of isospectral, locally

non-isometric metrics on S

m�1

� T

2

with m � 5 (Gordon/Gornet/Sch

�

uth/Webb/Wilson,

1997), and S

m�1

�K, where K is any compact Lie group of rank � 2 (Sch

�

uth 1997). These

manifolds were locally non-homogeneous.

We apply Gordon's method of principal torus bundles in a new way to obtain continuous

families of left invariant metrics on the following compact Lie groups: SO(m) � T

2

and

Spin(m) � T

2

for m � 5, SU(m) � T

2

for m � 3, SO(n) and Spin(n) for n � 9, and

SU(n) for n � 6. In particular, we thus obtain:

- the �rst examples of isospectral manifolds which are simply connected and irreducible;

- the �rst continuous families of isospectral manifolds which are globally homogeneous;

- the �rst examples of continuous families of isospectral manifolds of positive Ricci

curvature.

In most cases, the norm of the Ricci tensor changes during the deformation. This implies,

by using the heat invariants for the Laplacian on 1-forms, that the manifolds are not

1-isospectral.

Homogeneous symplectic manifolds with special holonomy

L. Schwachh

�

ofer (Leipzig)

Let (M;!;r) be a triple of a manifold M with a symplectic form ! and a torsion free

connection r such that r! � 0. Then the scalar curvature is de�ned by the equati-

on scal(p) = tr Ric

p

2

, where Ric

p

is the endomorphism of T

p

M given by !(Ric

p

x; y) =

Ric

p

(x; y) = tr R

p

(�; x)y. We prove the following theorem

Theorem: Let (M;!;r) be as above, and suppose that Hol

r

� Sp(V; !) is a proper

absolutely irreducible subgroup. Then the following are equivalent:

1) M is locally homogeneous under the action of the group of local di�eomorphisms

preserving ! and r;

2) scal is constant;

3) there is a point p 2M with (rR)

p

6= 0 for which scal� scal(p) vanishes at p of order

� 3.
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Moreover, we obtain a complete classi�cation of homogeneous symplectic manifolds with

holonomy Hol. As it turns out, not every possible holonomy group can be realized on

a homogeneous space. However for each given proper absolutely irreducible subgroup of

Sp(V; !), there are �nitely many homogeneous spaces (M;!;r) with this holonomy.

The point spectrum of the Dirac operator on noncompact sym-

metric spaces

U. Semmelmann (M

�

unchen)

joint work with S. Goette

In this work we consider the Dirac operator D on a Riemannian symmetric space M of

noncompact type. Using representation theory we completely determine the point spectrum

of D. We prove the following result:

Theorem: Let M be a Riemannian symmetric space of noncompact type and let D be the

Dirac operator acting on spinors over M . Then the following statements are equivalent:

i) the point spectrum of D is nonempty;

ii) the point spectrum of D is precisely spec

p

(D) = f0g; moreover, as a G-module,

ker(D) is irreducible and isomorphic to the discrete series representation with Harish

Chandra parameter �

t

;

iii) the

^

A-genus of the compact dual of M is non zero;

iv) each irreducible factor of M is isometric to U(p; q)=U(p)� U(q), with p+ q odd.

Integrable geodesic 
ow with positive topological entropy

I. A. Taimanov (Novosibirsk)

We present the following result from our joint paper with A. V. Bolsinov (Moscow): There

is a three-dimensional compact real-analytic Riemannian manifold M

3

such that

1) its geodesic 
ow is (Liouville) integrable by C

1

�rst integrals and not integrable in

terms of real-analytic �rst integrals;

2) the Liouville entropy of the geodesic 
ow vanishes and the topological entropy of this


ow is positive;
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3) the fundamental group of the manifold, �

1

(M

3

), has exponential growth;

4) the phase space of this 
ow contains a two-torus which is invariant under the trans-

lations along trajectories per unit time and this translation is given by an Anosov

(hyperbolic) automorphism of the torus.

Asymptotically 
at manifolds

W. Tuschmann (Leipzig)

joint work with A. Petrunin

Let M

m

be an asymptotically 
at m-manifold which has cone structure at in�nity. We

show thatM has a �nite number of ends and classify for simply connected ends all possible

cones at in�nity (except for dim M = 4 where it is not clear if one of the theoretically

possible cones, R � R

+

, can actually arise). This leads to a complete classi�cation of

asymptotically 
at manifolds with nonnegative sectional curvature: The universal covering

of such a manifold is isometric to R

m�2

� S, where S is an asymptotically 
at surface.

Here a complete noncompact Riemannian manifold M with a marked point p is said to

be asymptotically 
at if lim sup

jpxj!1

jK

x

j jpxj

2

= 0, where jK

x

j denotes the maximal

absolute value of the sectional curvatures at x 2 M , and (M; g) has by de�nition cone

structure at in�nity if there exists a locally compact metric cone C with vertex o such that

for any sequence of numbers �

n

! 0 the pointed Gromov{Hausdor� limit of ((M; �

n

g); p)

exists and such that this limit is isometric to (C; o).

Transitive holonomy and rigidity in nonnegative curvature

G. Walschap (Norman)

joint work with L. Guijarro

We explore the relationship between the twisting of a vector bundle � over a manifold

M and the action of holonomy groups of connections on �. In particular, if the holonomy

group of some connection does not act transitively on the unit sphere bundle of �, then

for any map of a sphere f : S

l

! M into M , the pullback bundle f

�

� admits a nowhere-

zero section. Thus, if the bundle is twisted enough, then every connection has transitive

holonomy.

As a consequence, if such a bundle occurs as the normal bundle �(S) of a soul S in an open

manifold with nonnegative sectional curvature, then the exponential map exp : �(S)!M

must be a di�eomorphism, the metric projection ofM onto S is C

1

, and the ideal boundary
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M(1) of M consists of a single point.

Vanishing theorems for quaternionic K

�

ahler manifolds

G. Weingart (Bonn)

joint work with U. Semmelmann

The deRham-cohomology of a compact Riemannian manifold (M; h�; �i) with holonomy

group Hol � O

n

(R) decomposes in isotypical subspaces according to

H

�

dR

(M; C ) =

M

� irred: repr:

of Hol

Hom(�;�

�

C

n

)
H

�

where H

�

is the kernel of a second order elliptic di�. operator �

�

: ��(M) ! ��(M) on

sections of the abstract vector bundle �(M) := HolM �

Hol

�. Similarly the eigenspaces

of a twisted Dirac operator D : �S= 
 R ! �S= 
 R decomposes if R is a geometric

vectorbundle associated to HolM with induced connection and the curvature acts on R by

scalar multiplication. We consider the case of quaternionic K

�

ahler holonomy where there

is a large family of geometric vectorbundles meeting this condition.

Comparing the squares of the twisted Dirac operators with twist R in this family to the

operator �

�

: ��(M)! ��(M) we get a strong vanishing theorem for the kernels of these

twisted Dirac operators on compact quaternionic K

�

ahler manifolds, both of positive or

negative scalar curvature. Examples of applications include:

Theorem (originally proved by Kramer, Semmelmann, Weingart, 97): If a quater-

nionic K

�

ahler manifold is spin and scalar curvature K > 0, then the square of the untwisted

Dirac operator satis�es D

2

�

K

4

n+3

n+2

.

Theorem (for positive scalar curvature originally due to Salamon): If � is an irreducible

representation of Hol = Sp(1)Sp(n) such that

Hol

Sp(1)Sp(n)

(�;�

�

C

4n

) 6= f0g;

then H

�

= f0g unless � is equal to �

a;a

top

E, a = 0; : : : ; n (if K > 0) or � is equal to �

a;a

top

E,

a = 0; : : : ; n or Sym

2n�a�b

H 
 �

a;b

top

E (if K < 0). In particular, all odd Betti numbers of

M , b

2i+1

, with 2i+1 < n, vanish. Moreover, b

2i+1

� b

2i+3

for all 2i+1 < 2n (which is not

covered by Kramer's theorem).

Examples of manifolds with quasi-positive curvature
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F. Wilhelm (Riverside)

In this talk we discussed the following two theorems:

Theorem: The metric on the Gromoll-Meyer sphere can be perturbed to one that has

positive sectional curvature almost everywhere and an isometric SO(3)-action.

Theorem: The unit tangent bundle of S

4

admits a metric with positive sectional curvature

almost everywhere that has the following properties:

(a) The connected component of the identity of the isometry group is SO(4) and it con-

tains two copies of S

3

that act freely.

(b) The set of points with 0-sectional curvatures is the union of 2 copies of S

3

� S

3

that

intersect along a common S

2

� S

3

.

Corollary: There is a homology C P

3

that is not a cohomology C P

3

that admits a metric

with positive sectional curvature almost everywhere.

This last 2 results are joint work with P. Petersen.

All of these metrics have 
at totally geodesic T

2

's, so they do not admit perturbations

whose sectional curvature are positive to �rst order.

On fundamental groups of manifolds of nonnegative curvature

B. Wilking (M

�

unster)

We will characterize the fundamental groups of compact manifolds of (almost) nonnegative

Ricci (sectional) curvature. Actually it turns out that the known necessary conditions are

su�cient as well.

Moreover, we reduce the Milnor problem { are the fundamental groups of open manifolds

of nonnegative Ricci curvature �nitely generated? { to manifolds with abelian fundamental

groups.

Finally, we prove for each positive integer n that there are only �nitely many �nite simple

groups acting e�ectively on some complete n-manifold of nonnegative Ricci curvature.

Bundles with nonnegative curvature

W. Ziller (Philadelphia)

joint work with K. Grove

A group action of G on M is called cohomogeneity one if dim(M=G) = 1. In the particular

case of M=G = interval we prove

17



Theorem 1: Every cohomogeneity one manifold with singular orbits of codimension 2

carries an invariant metric with nonnegative curvature.

This is a rich class of manifolds, as exhibited by

Theorem 2: Every principal SO(k) bundle over S

4

admits a cohomogeity one action by

SO(k)� SO(3) with singular orbits of codimension 2.

In particular one obtains

Corollary 1: Every vector bundle over S

4

admits a complete metric with sec � 0.

Corollary 2: 15 of the 27 exotic spheres in dimension 7 admit in�nitely many metrics

with nonnegative curvature.
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