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Die Tagung fand unter der Leitung von A. Beauville (Paris), F. Catanese

(G�ottingen), E. Looijenga (Utrecht) und Ch. Okonek (Z�urich) statt.

Wie schon bei fr�uheren Tagungen �uber komplexe Geometrie in Oberwol-

fach haben auch in diesem Jahr wieder viele bedeutende Mathematiker aus

verschiedenen L�andern an der Tagung teilgenommen, und es war deshalb

nicht schwer, ein interessantes Tagungsprogramm zusammenzustellen.

Viele Vortr�age bezogen sich auf wichtige komplex-geometrische Themen

wie z.B. Modulr�aume von Fl�achen, Hilbertschemata, birationale Automor-

phismen projektiver R�aume, Abelsche Variet�aten, Kurven auf Fl�achen. Be-

handelt wurden auch moderne Entwicklungen und neuste Resultate in der

komplexen Geometrie, etwa: projektive Kontaktmannigfaltigkeiten, Mori-

Theorie, Calabi-Yau Variet�aten, holomorphe Bl�atterungen, Zopf-Monodromie,

Fundamentalgruppen von K�ahler Mannigfaltigkeiten. Dar�uber hinaus wur-

den auch Anwendungen von Methoden aus symplektischer und fast komplexer

Geometrie dargestellt.



L. Ein

E�ective Nullstellensatz

We discuss our recent joint work with R. Lazarsfeld.

Let X be a smooth complex projective variety of dimension n and L be an

ample line bundle on X. Consider a linear system jV j � jLj. Let B be the

base locus of jV j. Let Z

1

; : : : ; Z

r

be the distinguished subvarieties of B (in

the sense of Fulton's intersection theory). We show that there are positive

integers a

1

; : : : ; a

r

satisfying the Bezout inequality

c

1

(L)

n

�

r

X

i=1

a

i

deg

L

Z

i

;

such that

I

(na

1

)

Z

1

\ : : : \ I

(na

r

)

Z

r

� I

B

:

We also discuss the relation between the Seshadri numbers and asymptotic

regularity of ideal sheaves.

S. Mukai

Moduli of abelian surfaces and the regular polyhedral groups

Let (A;L) be an abelian surface of type (1; d). A bilevel structure is the pair

of a canonical level structure

(K(L);Weil)

�

�!

 

(Z=5)

�2

;

 

0 1

�1 0

!!

of (A;L) and that of the dual abelian surface (

^

A;

^

L). The moduli space

and its Satake compacti�cation A

bl

(1; d) has a natural action of the group

G

d

�G

d

, where G

d

= PSL(2;Z=d).

Theorem 1: For d = 2; 3 and 4, A

bl

(1; d) is smooth and G

d

�G

d

-equivariantly

isomorphic to P

3

.

For 2 � d � 5, G

d

is a regular polyhedral group. G

d

� G

d

acts on P

1

� P

1

and its ambient space P

3

. Note that the complement of P

1

� P

1

� P

3

is

isomorphic to PGL(2). A

bl

(1; 5) is no more smooth. The singular locus is

the set of 72 point cusps.
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Theorem 2: Let

f

P

3

be the blow-up of P

3

at the 60 points G

5

� PGL(2) � P

3

.

Then there exists a G

5

�G

5

-equivariant birational morphism

f

P

3

�! A

bl

(1; 5)

which is an isomorphism outside the point cusps. There are 72 lines in P

3

passing through 5 ofG

5

and the strict transforms of these lines are contracted

to the point cusps. (Normal bundle is O(�4)�O(�4).)

J. Wi�sniewski

(report on a joint work with S. Kebekus, Th. Peternell, A. Sommese)

Projective contact manifolds

Let X be a projective manifold of dimension 2n+1 de�ned over C . Suppose

there exists a line bundle L over X and a twisted form � 2 H

0

(X;


X


 L)

such that

� ^ (d�)

^n

2 H

0

(X;K

X


 L


(n+1)

)

does not vanish anywhere. Such a form is called a contact structure on X.

The only known examples of contact projective manifolds over C are:

(1) Wolf spaces-homogenous rational manifolds, each one de�ned for a simple

algebraic group over C , and

(2) projective bundles P(T

Y

), where Y is an arbitrary smooth projective

(n+ 1)-fold and L = O

P(T

Y

)

(1).

The following theorem provides important information for the minimal model

algorithm run for the classi�cation of contact projective manifolds:

Theorem (Kebekus, Peternell, Sommese, Wi�sniewski):

Let ' : X �! Y be an extremal ray contraction of a projective contact man-

ifold (as de�ned above). If dimY > 0 then Y is smooth of dimension n+ 1,

X = P(T

Y

), ' is the projection, L = O

P(T

Y

)

(1) and the contact structure

comes from Aut(T

Y

).

M. Lehn

The cobordism class of Hilbert schemes of points on a surface

Let X be a smooth projective surface over the complex numbers. For each

natural number n let X

[n]

denote the Hilbert scheme of zero-dimensional

closed subschemes in X of length n. By a theorem of Fogarty X

[n]

is a

projective manifold of dimension 2n. For any manifold Y let [Y ] denote its

class in the complex cobordism ring 


�

= 


U

�


 Q . We prove that [X

[n]

]
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depends only on [X] and n. As a corollary, there is a well-de�ned linear map




2

! 
[[z]], [X] 7! log(

P

n

[X

[n]

]z

n

). In particular, the value of any complex

genus g : 


�

�! R on a Hilbert scheme can be computed from its values on

the Hilbert schemes of any two surfaces that rationally span 


2

. Thus meth-

ods using the toroidal structure of P

2

and P

1

� P

1

become available. The

main theorem is equivalent to the existence of universal polynomials such

that c

�

(X

[n]

) = P

�

(c

2

1

(X); c

2

(X)) for any Chern number c

�

, � a partition of

2n. The proof of this claim proceeds by induction on n using the incidence

variety of all pairs (�; �

0

) 2 X

[n]

�X

[n+1]

with � � �

0

.

L. Caporaso

Uniformity of rational points over function �elds

Let g � 2, B a smooth projective curve over C , S � B a �nite set.

Shafarevich conjecture, proved by Parshin and Arakelov, states that there ex-

ists only a �nite number of non-isotrivial families of smooth curves of genus

g over B n S.

{ We prove that such a number is uniformly bounded by a function on g, the

genus of the base B, the cardinality of S.

{ We generalize this to higher dimensional base.

{ We apply the above results to obtain uniform boundedness of rational

points of curves over function �elds.

I. Dolgachev

Birational automorphisms of �nite order of P

2

We discuss the following equivalent problems:

1) Classify the conjugacy classes of elements of �nite order in the group of

birational transformations of P

2

.

2) Classify rational surfaces with an action of a cyclic group up to equivariant

birational isomorphisms.

3) Classify plane curves f(x; y) = 0 up to birational isomorphism such that

the a�ne surface z

n

= f(x; y) is rational.

These problems were solved in XIX-century in the work of several mathe-

maticians (E. Bertini, S. Kantor, E. Noether, A. Bottari are among them).

In this talk we reconstruct this work by using modern techniques (e.g. the

classi�cation of conjugacy classes in the Weil group of root lattices of type
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A

4

; D

5

; E

6

; E

7

; E

8

). We also mention another approach to this classi�cation

suggested by De-Qi Zhang. It is based on the theory of log-terminal Del

Pezzo surfaces.

E. Sernesi

Nodal curves on surfaces of general type

On a given projective irreducible nonsingular algebraic surface S de�ned over

C , let jCj be a linear system whose general element is smooth irreducible. For

a given integer � � 0 let V

C;�

� jCj be a locally closed subscheme parametriz-

ing the universal family of irreducible curves in jCj having � nodes and no

other singularities. An irreducible componentW � V

C;�

is called REGULAR

if it is nonsingular of codimension � in jCj. The following result, due to F.

Flamini, has been discussed:

Theorem (Flamini): Let S and C as above and assume:

1. (C � 2K

S

)

2

> 0; C(C � 2K

S

) > 0

2. (i) K

2

S

> �4 if C(C � 2K

S

) � 8

(ii) K

2

S

� 0 if 0 < C(C � 2K

S

) < 8

3. CK

S

� 0

4. H(C;K

S

) < 4[C(C � 2K

S

)� 4] where H(C;K

S

) = (CK

S

)

2

� C

2

K

2

S

5. (i) � �

1

4

C(C � 2K

S

)� 1 if C(C � 2K

S

) � 8

(ii) � <

1

8

�

C(C �K

S

) +

q

C

2

(C � 2K

S

)

2

�

if 0 < C(C � 2K

S

) < 8:

Then every irreducible component of V

C;�

is regular.

H. Kaji

Projective geometry of adjoint varieties

An adjoint variety X(g) associated to a complex simple Lie algebra g is by

de�nition the homogeneous projective variety in P

�

(g) obtained from the

adjoint action of Int g on g. The main results here (a joint work with O.

Yasukura) are as follows:

Theorem 1: For general points x; y 2 X(g), the tangent locus of [x; y] is equal
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to fx; yg, where [x; y] denotes the point in P

�

(g) de�ned by the Lie bracket

of x and y.

Theorem 2: The secant variety of X(g) is decomposed as a disjoint union of

projectivizations of a �nite number of nilpotent orbits in g and the orbit in g

through the semi-simple element associated to the minimal nilpotent orbit.

Moreover there is a unique maximal orbit in those nilpotent orbits with re-

spect to the closure ordering, which is equal to O

[2]

for sl

2

, O

[31

n�3

]

for sl

n�3

,

O

[2

2

1

2n�4

]

for sp

2n

, O

[3

2

1

n�6

]

for so

n�6

, O

A

2

for E

6;7;8

; F

4

and O

G

2

(a

1

)

for G

2

.

Theorem 3: The variety of k-secants of X(sl

n

) is given by the projectivization

of the locus in the space sl

n

of traceless matrices with rank at most k + 1,

for 0 � k � n.

Theorem 4: A homogeneous projective variety has one apparent double point

if and only if it is projectively equivalent to one of irreducible Freudenthal

manifolds in P

�

(g

1

) de�ned by fY 2 g

1

j(adY )

2

g

�2

= 0g for simple Lie alge-

bras g, where g = �

2

k=�2

g

k

is a graded decomposition of contact type.

Theorem 5: The intersection of X(g) and P

�

(g

1

) coincides with the Freuden-

thal manifold associated to g.

G. Pareschi

Syzygies of abelian varieties

Let X be a projective variety and let L be a (usually very ample) line bundle

on X. According to M. Green, the pair (X;L) is said to satisfy the property

N

p

if the �rst p steps of a minimal resolution of R

L

over S

L

are as follows:

�S

L

(�p� 1) �! : : : �! �S

L

(�3) �! S

L

(�2) �! S

L

�! R

L

�! 0

where R

L

:= �

n�0

H

0

(L


n

) is the graded algebra associated to L and

S

L

:= �

n�0

Sym

n

(H

0

(L)) is the symmetric algebra over H

0

(L).

I prove the following result conjectured by Rob Lazarsfeld:

Theorem: Let X be an abelian variety over an algebraically closed �eld of

characteristic zero. Let A be an ample line bundle on X and let us denote

L = A


n

. Let p 2 N . If k � 3 + p then the pair (X;L) satis�es the property

N

p

.

The proof uses methods of vector bundles on abelian varieties, which can be

of independent interest.
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K. Konno

Relative canonical algebra for pencils of curves

Let f : S �! B be a relatively minimal �bration of curves of genus � 2,

where S (resp. B) is a non-singular projective surface (resp. curve). One of

the naive objects associated with f is the relative canonical algebra:

R(f) = �

n�0

R

n

; R

n

:= f

�

(!


n

S=B

):

But not much is known so far about the structure of R(f). Some years ago,

Miles Reid conjectured that R(f) is generated by elements of degrees � 3 and

related in degrees � 6 (1-2-3 conjecture). By Nakayama's lemma, studying

this problem for R(f) is equivalent to studying the same problem for the

canonical ring R(F;K

F

) of any �bre F of f .

Theorem 1: R(F;K

F

) is generated in degrees � 3 and related in degrees � 6

except in the case:

F is a multiple �ber which contains a cycle E with p

a

(E) = 1,

E

2

= �1 such that E � BsjK

F

j.

In the exceptional case, R(F;K

F

) is generated in degrees � 4 and related in

degrees � 8.

A main part of Theorem 1 is a corollary to the following:

Theorem 2: Let D be a 1-connected curve on a smooth surface, p

a

(D) � 2

and K

D

nef. Let L;M be line bundles on D such that L � 2K

D

;M � 2K

D

are both nef. Then the multiplication

H

0

(D;L)
H

0

(D;M) �! H

0

(D;L+M)

is surjective except in the following cases:

(1) p

a

(D) = 2, L =M � 2K

D

(2) D contains a curve E, p

a

(E) = E � (D � E) = 1 and L = M � 2K

D

on

E.

F. Bogomolov

Szpiro inequality for elliptic surfaces and mapping class groups

We consider an elliptic smooth nonisotrivial �bration V over P

1

with multi-

plicative degenerate �bers only and without multiple �bers. In this case we
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have two invariants D = # number of singular �bers and N = #

P

s2S

n

s

,

where S is a set of singular �bers and n

s

is a number of components in the

singular �ber over s. It is clear that D � N . Szpiro inequality says that

N � 6D and the lecture contains a proof of this result which uses only the

monodromy of the �bration. Local monodromies are powers T

n

s

s

of local pos-

itive Dehn twists and we can write the natural relation for them as

Q

T

n

s

s

= 1.

T

s

are elements ofMap(1) = SL(2;Z) but it is more natural to consider them

in Map(1; 1) which is the Z central extension of Map(1). This extension is

induced from the universal covering

g

SL(2;R) of SL(2;R) and positivity of T

s

is interpreted as the property of it's natural lifting

f

T

s

� Map(1; 1) to move

all the points of R= universal covering of P

1

(R) = S

1

to the right.

The groupMap(1; 1) has a natural character � :Map(1; 1) �! Z, �(

~

T

s

) = 1

and �(c) = 12, where c generates the kernel Map(1; 1) �! Map(1). Now

Q

~

T

n

s

i

= Mc where M =

N

12

. On the other hand, the displacement angle for

~

T

n

s

i

is bounded by � independently on n

s

. Thus we obtain 2�M � D�, i.e.

N � 6D.

We extend this result to the case of elliptic �brations over any curve, with any

�bers and also to the families of curves of any genus (see Alg-geom preprint

of Amoros, Bogomolov, Katzarkov, Pantev).

L. Bonavero

Mori theory on non projective toric manifolds

In this talk we are interested in the following:

let X be a non projective toric manifold such that there exists an invariant

curve C � X such that the blow-up B

C

(X) of X along C is projective.

Then, we classify extremal Mori contractions on

~

X = B

C

(X) for which the

exceptional locus intersects the exceptional divisor E of

~

X �! X. We show

that there are 3 types only, all being smooth blow-down on a smooth center.

For this we use Mori theory for toric variety due to M. Reid. As a simple

corollary, we show that there exists no such toric 3-fold X such that

~

X is

Fano, without using any classi�cation.

L. Katzarkov

Algebraic geometry methods in symplectic geometry

Let V be a 4-dimensional symplectic manifold. We say that it has a structure

7



of a topological Lefschetz pencil (TLP) i�:

-there exists a subset of points A

-there exists a subset of points fx

�

g

-a C

1

map f : fV n Ag n fx

�

g such that

1) near A there are complex coordinates z

1

= z

2

= 0 such that f : (z

1

; z

2

) �!

z

1

=z

2

2) near fx

�

g f : (z

1

; z

2

) �! z

2

1

+ z

2

2

.

Theorem (Donaldson): Every (V; !) with [!] integral has a structure of a

TLP. Moreover the �bers are symplectic submanifolds PD to k[!] for some

k >> 0.

Using the above theorem one can de�ne a series of invariants:

�

k

: �

1

(P

1

n fp

1

; : : : ; p

n

k

g) �! Sp(2g

k

;Z=dZ):

Conjecture: For H

1

; H

2

Horikawa surfaces the sequences of representations:

�

0

k

: �

1

(P

1

n fp

1

; : : : ; p

n

k

g) �! Sp(2g

k

;Z=3Z):

�

0

k

: �

1

(P

1

n fp

1

; : : : ; p

n

k

g) �! Sp(2g

k

;Z=3Z):

corresponding to m

k

H

1

and m

k

H

2

are not Hurwitz and and conjugacy equiv-

alent.

A corollary from this conjecture will be that H

1

is not symplectomorphic to

H

2

.

C. Voisin

On the Hilbert scheme of points of an almost complex fourfold

Recently it was proved by Ellingsrud, G�ottsche and Lehn that the complex

cobordism class ofHilb

k

(X), where X is a complex compact surface, depends

only on the complex cobordism class of X. Here Hilb

k

(X) is the Hilbert

scheme parametrizing subschemes of length k of X. One natural question

raised by this result is whether or not the assignment X 7�! Hilb

k

(X) can

be extended to the context of almost complex varieties. We prove essentially

this

Theorem: Let (X; J) be an almost complex fourfold. Then there exists a

di�erentiable variety Hilb

k

(X), with a stable almost complex structure and

a di�erentiable map

c : Hilb

k

(X) �! X

(k)

;

8



such that c

�1

(Z) is di�eomorphic to c

�1

I

(Z) for any complex structure I on

X de�ned near Z and c

I

the corresponding Hilbert Chow morphism. This

Hilb

k

(X) is well de�ned up to deformation.

K. Oguiso

Finiteness of c

2

= 0 contractions on a Calabi-Yau 3-fold

By a Calabi-Yau 3-fold we mean a minimal projective 3-fold /C such that

O

X

(K

X

)

�

=

O

X

and h

1

(O

X

) = 0. By a contraction � : X �!W , we mean a

surjective morphism on a normal projective varietyW with connected �bers.

� is called c

2

= 0 contraction if � = �

jDj

such that (D:c

2

(X)) = 0. As

a corollary of the classi�cation of c

2

= 0 contractions, we have shown the

following:

Theorem:

(1) #(fc

2

= 0 contractions on Xg=isom) < +1

(2) Assume c

2

(X) � 0 in Pic(X). Then the Picard number �(X) = 2 or 3

and

(a) the nef cone

�

A(X) is rational simplicial cone, and

(b) every nef rational divisor on X is semi-ample.

As a corollary we also �nd the following:

Corollary: If �(X) = 1, then �

1

(X) is �nite.

J. Wahl

Hyperplane sections of Calabi-Yau varieties

A Calabi-Yau variety Z

n

will mean a normal complex projective variety with

isolated singularities, so that K

Z

�

=

O

Z

, h

1

(O

Z

) = 0, and the singularities

are canonical (=rational Gorenstein). If n = 2, this means a K3 surface with

RDP's.

One expects from "boundedness of families of Calabi-Yaus" that there are few

of these, hence few hyperplane sections X = Z\H. Note K

X

= K

Z

+Hj

X

=

O

X

(1) is very ample. So we ask which canonically polarized (X;K

X

) are hy-

perplane sections of a C-Y. We explained the proof of the

9



Theorem: Suppose W is a smooth variety with h

1

(O

W

) = 0. Then a su�-

ciently ample smooth divisor X on W cannot be a hyperplane section of a

Calabi-Yau variety Z, unless W = Z.

Corollary: A non-singular hypersurface of degree d in P

n

(n � 2) cannot be a

hyperplane section of a Calabi-Yau once d > 2n+ 2.

M. McQuillan

Non-commutative minimal models

The object of this talk was to study in the spirit of Mori's programme one

of the basic examples of non-commutative geometry, namely foliations. Pre-

cisely we study pairs (X;F ) consisting of an integrable foliation F on a

normal algebraic space X. Restricting to the case of surfaces, we obtain an

almost complete foliated analogue of Enriques-Kodaira classi�cation. Various

hyperbolicity results, already established by the author, would modulo con-

siderations from diophantine geometry approximation, follow immediately or

having a complete rather than almost complete classi�cation, i.e. �nishing

o� the remaining case.

References:

1) McQuillan M., "Diophantine approximation and foliations",

Publ.Math I.H.E.S., vol.87, 1998

2) McQuillan M., Holomorphic curves on hyperplane sections of 3-folds",

GAFA, vol.9,#2, 1999

R. Piene (joint work with S. Kleiman)

Enumerating singular curves on surfaces

Given a family of smooth projective surfaces � : F �! Y and D � F a

relative divisor, T a topological type (= Enriques diagram), let

Y (T ) := fy 2 Y jD

y

has singularities of type Tg. We show that, under cer-

tain genericity assumptions, and for cod(T ) � 8, the class u(D; T ) :=

h

Y (T )

i

can be expressed as a polynomial of degree r := #froots of the diagram Tg

in the classes �(a; b; c) := �

�

c

1

(O(D))

a

c

1

(


1

F=Y

)

b

c

2

(


1

F=Y

)

c

. We conjecture

this holds for any T , at least for the case that T = rA

1

(= r nodes). In this

latter case, write u(D; r) := u(D; rA

1

) and (inspired by G�ottsche's work) the

generating function as

P

u(D; r)t

r

= exp(

P

a

q

t

q

=q!); we show that the a

q

are

linear and we give an algorithm for computing them { this computes u(D; r)

10



for r � 8.

Applied to F = S � Y , S surface, Y = jLj, L = M


m


 N we prove that

the above formula is valid provided m � 3r + g

2

+ g + 4� (s+ x)=12 where

g := 1 + c

1

(M)(c

1

(


1

S

) + c

1

(M))=2; s = c

1

(


1

S

)

2

; x = c

2

(


1

S

).

We also recover two examples where Y is non-linear: Vainsencher's enumer-

ation of 6-nodal quintic plane curves on a general quintic hypersurface in

P

4

, and Bryan-Leung's enumeration of the number N

g;n

of genus g curves

algebraically equivalent to a given curve C, with C

2

= 2g � 2 + 2n, n � 8,

on an Abelian surface.

M. Teicher

New invariants of braid monodromy

x1. Introduction: Braid Monodromy Type (BMT) characterize curves and dis-

tinguish among families of curves. When applied to branch curves of generic

projections of surfaces of general type, it characterize surfaces and it is an

invariant of deformation families. It was proven in 1998 by the author and

Viktor Kulikov that it two plane curves S

1

and S

2

are of the same BMT,

then they are isotopic. Moreover, if two surfaces of general type have branch

curves which are of the same BMT, then the surfaces are di�eomorphic. Thus

BMT is between Def and Diff : Def ) BMT ) Diff . There is a work in

process to adapt this notion of BMT to the symplectic situation (following

thesis of Auroux, who produced "generic" projection to C P

2

of symplectic

4-manifolds).

We want to provide discrete invariants of braid monodromy factorizations.

The situation is as follows:

x2. De�ning Braid Monodromy Type of curves: Let S be a plane curve of de-

gree m. Let ' be the braid monodromy related to S (' : �

1

�! B

m

).

Let f�

i

g

N

i=1

be a free geometric base of �

1

. Let �

2

be the generators of

center(B

m

). Then by Artin: �

2

=

Q

N

i=1

'(�

i

). Such a presentation is called

a Braid Monodromy Factorization (BMF). In the talk I de�ned Hurwitz

equivalence of BMF, which induces the notion of BMT (S

1

and S

2

are of

the same BMT if they have factorization which are Hurwitz and conjugacy

equivalent).

x3 The Hecke Representation Invariants: On each BMF we de�ne a new in-

variant derived from the Hecke algebra. Let Hecke(B

m

) be the Hecke alge-
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bra of B

m

, dimHecke(B

m

) = m!. Let HR be the representation of B

m

in

Hecke(B

m

) de�ned by multiplication from the left. For each BMF,

Q

N

i=1

b

i

we look at the m!�Nm! matrix HR(b

1

)�I, HR(b

N

)�I and at the g.c.d. of

its maximal order minors. We compute it for several examples and currently

we try to apply it on branch curves.

N. Shepherd-Barron

Moduli and pencils of Enriques surfaces

This describes a joint work with T. Ekedahl.

There is a coarse moduli spaceM over Z for appropriately polarized Enriques

surfaces. The geometric �bres are 10-dimensional and irreducible (this is well

known) if char 6= 2, while in char = 2 there are two 10-dimensional com-

ponents, meeting in an irreducible 9-dimensional variety. This strati�cation

re
ects the possible values of Pic

�

. The proofs depend upon an analysis of

the period map (in the sense of Ogus) de�ned in the case where Pic

�

6= �

2

.

In contrast to the K3-case, the �bres of the pencil map are open subsets of

P

1

(this comes from a construction similar to that of Moret-Bailly), but there

is a generic Torelli theorem where Pic

�

= �

2

.

From the viewpoint of general moduli problems, the quotient map from the

stack to M has the property that the local rings of M are not always invari-

ant subrings (with respect to the automorphism group scheme) of the local

rings of the universal deformation spaces. In fact, there can be 1-dimensional

�bres, while the group schemes are �nite.

F. Campana

Green-Lazarsfeld sets and solvable quotients of K�ahler groups

Theorem 1: Let X be a compact K�ahler manifold. Let G be a linear (i.e. em-

beddable in Gl(m;Q ); m � 0) solvable group which is a quotient of �

1

(X).

Then either G is almost nilpotent, or there exists a �nite etale abelian cover

~

X of X and a surjective holomorphic map f :

~

X �! C to a curve C of genus

g � 2.

When X is projective, this result is due to Arapura-Nori, who obtained it by

means of arithmetic geometry.

It is here derived from:

Theorem 2: LetX be as above. Let

d

�

1

(X) = Hom(�

1

(X); C

�

) be the complex

12



algebraic group of characters of �

1

(X), and

�

1

(X) := f� 2

d

�

1

(X) s.t. H

1

(�

1

(X); C

�

) 6= 0g

be the Green-Lazarsfeld set of X, where C

�

is C considered as a �

1

(X)-

module via �. Then �

1

(X) is a �nite union of torsion translates of subtori

of

d

�

1

(X).

When X is projective, theorem 2 was proved by C. Simpson (in a more

general form). The K�ahler case is reduced to the projective case, using ar-

guments of A. Beauville, who established (among other things) the special

case where the derived group D�

1

(X) of �

1

(X) is �nitely generated.

G.P. Pirola

On subvarieties of a generic abelian variety

We show that the higher Abel-Jacobi mapping gives some geometrical infor-

mations on subvarieties of a generic abelian variety.

We prove:

Theorem: If X is a n-dimensional smooth variety with a nontrivial morphism

f : X �! A where A is a generic abelian variety of dimension a, a > 3,

dimf(X) = n, then

p

g

(X) �

1

2

(a� n)(a� n� 1) + h

n;0

(A):

The main tools are:

1) Nori Theorem which shows that the Abel-Jacobi image of homologically

trivial cycles is torsion modulo the largest abelian subvariety of the suitable

intermediate Jacobian.

2) An explicit computation of the di�erential of the normal function associ-

ated to the cycle f(X).

These methods give bounds on the number of moduli of irregular varieties.

Berichterstatter: P. Lupascu
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