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The conference was organized by Robion Kirby (Berkeley), Wolfgang L�uck (M�unster) and

Elmer Rees (Edinburgh), and was attended by about 40 participants. Within 18 talks

various new developments and new results in topology have been presented. A certain em-

phasis was put on results in low dimensional topology and geometric group theory. Seven

of the 18 talks were devoted to this area. However, there were also talks on classical sub-

jects as for example stable homotopy theory.

Special attention went to results of Bob Edwards on a generalization of the Hilbert-Smith

Conjecture, and to results of Cochran and Teichner, who found new powerful knot invari-

ants. Both topics were presented in a series of two lectures. As topology can be used in

various branches of mathematics the talks covered a wide range of results. For example,

there was a talk on the Lichtenbaum-Quillen Conjecture. Another talk covered the solution

of the conjugacy problem for automorphisms of free groups.

During the whole week there was a good, stimulating atmosphere, and the schedule allowed

to have plenty of discussion. The latter has extensively been used, and everybody pro�ted

a lot from his stay at Oberwolfach.
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Arthur Bartels

Link homotopy and singular concordance

Link homotopy was introduced by Milnor in 1954 to study links S

1

q� � �qS

1

,! S

3

. A link

homotopy is a motion that keeps di�erent components disjoint (but allows sel�ntersection).

Examples of links not link homotopic to trivial links are given by the Hopf link and the

Borromean rings. In higher dimensions the situaton is di�erent:

Theorem. For n � 2 every (embedded) link L : S

n

q� � �qS

n

,! S

n+2

is link homotopically

trivial.

The proof uses surgery to construct the complement of singular slice disks for L in D

n+3

.

As an important step we construct a nilpotent model space from certain singular slice disks

for the trivial link.

Stefan Bauer

Seiberg-Witten theory and stable homotopy theory

Let X be an oriented closed Riemannian 4-manifold with a �xed spin

c

structure. The

monopole map 	

X

is a compact perturbation of an S

1

-equivariant linear Fredholm map,

extending continuously to the one-point completions of certain Hilbert spaces. One can

associate to this monopole map an element of an equivariant stable cohomotopy group

[	

X

] 2 �

b

S

1

(Pic

0

(X); ind(D));

which via the Hurewicz-map relates to the integer valued Seiberg-Witten invariant. A

connected sum theorem states that the stable cohomotopy invariant of a connected sum

is the smash product of the respective stable cohomotopy invariants of the summands.

Using this theorem, one can distinguish 4-manifolds which could not be distinguished via

Seiberg-Witten or Donaldson invariants.

The second part of the talk gave a general picture for the stable cohomotopy invari-

ant: Let G denote the automorphism group of the spin

c

structure. This locally convex

Lie group acts properly on the con�guration space consisting of metrics, spin

c

connections

and harmonic one-forms on X. This con�guration space actually is a classifying space

for proper actions of the group G. Consider the monopole map as a G-equivariant map

between Hilbert space bundles over the con�guration space. This monopole map can be

viewed as an element of a suitably de�ned proper G-equivariant stable cohomotopy ring

�

G

(Conf). The latter can be viewed as some sort of generalized Burnside ring associated

to G.
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Michel Boileau

Geometrization of 3-orbifolds with in�nite fundamental group

Work in progress with B. Leeb and J. Porti: we are writing a complete proof of the follow-

ing theorem:

Theorem. Let O be a compact, connected, orientable, irreducible, 3-orbifold with non

empty singular locus. Assume that O has either a non-empty boundary or an in�nite

fundamental group. If O is topologically atoroidal, then O admits either a hyperbolic, a

Euclidean or a Seifert �bered structure.

This is part of a Theorem announced by Thurston in 1982. A di�erent proof of this

theorem is also announced by D. Cooper, G. Hodgson and S. Kerckho�. An orientable

compact irreducible 3-orbifold O is Haken if it can be decomposed into discal 3-orbifolds

or fturnoversg�[0; 1] by repeated cutting along 2-sided properly embedded essential 2-

suborbifolds. It is small if it is not Haken. An extension to Haken 3-orbifolds of Thurston's

hyperbolization Theorem for Haken 3-manifolds allows to reduce the proof of Theorem 1

to the small case. Let O be a compact connected orientable small 3-orbifold with a non

empty singular locus �. Let �

(o)

be the set of vertices and �

(1)

the set of edges of �. We set

M = O�f�

(1)

\N (�

(o)

)g. Using Thurston's hyperbolization theorem we reduce the proof

to the case where M admits a complete hyperbolic structure with �nite volume and totally

geodesic boundary. For t 2 [0; 1], let C(t�) denote a hyperbolic cone 3-manifold having

topological type (jOj;�) and cone angles t� =

�

2t�

m

1

; : : : ;

2t�

m

q

�

(where m

1

; : : : ; m

q

are the

rami�cation indices). C(0) denotes the complete hyperbolic structure of �nite volume on

M . Let

J := ft 2 [0; 1]; such that C(t�)is a hyperbolic cone 3-manifold g;

then the �rst step of the proof is:

Openess Theorem. J is open.

Since J 6= ;, it reduces the proof to the following propositions:

Proposition 1. If supJ < 1, then O has a �nite fundamental group.

Proposition 2. If J = [0; 1[, then O is either Euclidean or Seifert �bered.

A key ingredient in the proofs of Propositions 2 and 3 is:

Thickness Theorem. Given 0 < ! < �, there is a uniform constant �(!) > 0 such that

every closed hyperbolic cone 3-manifold C with diam(C) � 1 > 0 and cone angles � ! < �

contains a point x with injectivity radius inj(x) � �(!).
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Martin Bridson

The complexity of navigating in discrete groups

Let � be a group with �nite generating set A. We seek to understand � via the structure

of the normal forms that it admits, i.e. set-theoretic sections � : � ! A

�

of the natural

projection (word evaluation) A

�

! � from the free monoid on A. One views the words �

g

as edge-paths in the Cayley graph of �.

Geometric Constraints: A group is said to be combable if it admits a normal form (comb-

ing) � for which there is a constant K > 0 such that d(�

g

(t); �

ga

(t)) � K for all t 2 N ,

where w

t

denotes the pre�x of length t in w. One also considers a weaker condition |

asynchronous combability, where monotone reparametrization of paths is allowed before

comparing them | and a stronger condition, bicombability.

Grammatical Constraints: One attempts to minimize the grammatical complexity of the

language �(�) � A

�

and locate it within the standard hierarchy of formal languages:

Reg � CF � Ind � CS;

regular, context-free, indexed and context-sensitive languages.

There is an obvious tension in trying to minimize the geometric and grammatical com-

plexity of � simultaneously.

Motivation:

Theorem. If X is a compact non-positively curved space, then �

1

X is bicombable.

Theorem [Cannon-Gromov]. If X is negatively curved then one can require the bicomb-

ing of �

1

X to be a regular language.

This second theorem was the starting point for automatic group theory in the early

eighties. This area of geometry/group theory has been marred by a lack of examples to

distinguish between the di�erent classes of groups obtained by imposing the geometric and

grammatical constraints listed above. The situation for asynchronous combings was largely

resolved by analysing the fundamental groups of 3-manifolds (Bridson-Gilman, Epstein-

Thurston) Comm. Math. Helv. 71 (1996), 525{555. We now prove:

Theorem 1. There exist compact aspherical 2-complexes X such that �

1

X is combable but

not bicombable.

Theorem 2. There exist complexes X as in Theorem 1 such that the optimal isoperimetric

inequality for X is cubic.

Corollary. There exist combable groups that are not automatic.
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Theorem 3. There exist Ind-combable groups that are not Ind-combable (i.e. automatic).

Bestvina-Brady give a very di�erent proof of the above Corollary.

Viktor M. Buchstaber

Torus actions and combinatorics of polytopes

In our research we develop the study of the relationship between the algebraic topology

of manifolds and the combinatorics of polytopes. Originally, this research was inspired

by results of toric variety theory. In our joint paper with N.Ray we developed relations

between toric varietes and cobordism theory. One of the main results proved there is that

each complex cobordism class contains a smooth quasitoric manifold. The main object of

our present study are smooth manifolds de�ned by the combinatorial structure of simple

polytopes. The study of such manifolds was undertaken in our joint paper with T.Panov.

The main topics of my talk are:

1. Simple polytopes and their face rings.

2. Topological spaces de�ned by simple polytopes and arrangement of planes in Eu-

clidean space.

3. Bigraded (moment - angle ) cellular complexes and bigraded cohomology rings.

4. Bigraded cohomology rings of manifolds de�ned by polytopes and combinatorial re-

sults.

5. Multioriented quasitoric manifolds and complex cobordisms.

6. Combinatorial formulae for the Hirzebruch genera of multioriented quasitoric mani-

folds.

Tim Cochran & Peter Teichner

Knot concordance and L

2

-signatures

We construct many examples of non-slice knots in 3-space that cannot be distinguished

from slice knots by previously known invariants. Using Whitney towers in place of embed-

ded disks, we de�ne a geometric �ltration of the 3-dimensional topological knot concor-

dance group. As special cases of Whitney towers of height less than four, the bottom part

of the �ltration exhibits all classical concordance invariants, including the Casson-Gordon

invariants. Considering our entire �ltration could lead to a 4-dimensional homology surgery

theory. As a �rst step, we construct an in�nite sequence of new obstructions that vanish on

slice knots. These take values in the L-theory of skew �elds associated to certain rationally

universal solvable groups. Finally, we use the dimension theory of von Neumann algebras
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to detect the �rst unknown step in our obstruction theory by an L

2

-signature, providing

in�nitely many examples of non-slice knots with vanishing Casson-Gordon invariants.

Robert Edwards

Cantor groups, their classifying spaces, and the Hilbert-Smith Conjecture

A cantor group is a topological group which is homeomorphic to the cantor set (i.e., is

an in�nite second-countable pro�nite group, if you wish). Basic examples are 1) any

countably-in�nite direct product of nontrivial �nite groups, and 2) the p-adic integers, for

your favorite prime p. It is a beautiful classical theorem (attributable to Peter-Weyl-von

Neumann) that a (second countable) compact topological group is either a Lie group, or else

contains a cantor subgroup, and furthermore both properties cannot hold simultaneously.

A fundamental open problem concerning how cantor groups can act on nice spaces is the

Free-Set Z-Set (FSZS) Conjecture. Given any action by a cantor group on an ENR

(= euclidean neighborhood retract), the free set of the action is a homology Z-set (in the

ENR).

A homology Z-set is one whose removal does not change the homology of any open sub-

set of the ENR. The FSZS Conjecture can be regarded as a sort of Super Hilbert-Smith

Conjecture, the HSC being the case where the ENR is a manifold. Our talk discussed

the (natural) classifying space approach to the FSZS Conjecture, and my solution of the

key free-action, �nite-dimensional-quotient case. The main theorem can be paraphrased

as follows: Although it is well known that the classical (principal action) cohomological

dimension of the p-adic integers is �nite (either 1 or 2, depending on your 
avor), the

free-action cohomological dimension is in�nite.

Hans-Werner Henn

Euler characteristics of orthogonal groups over Z[1=2]

In this talk we describe joint work in progress with Jean Lannes. We compute the vir-

tual Euler characteristic of the orthogonal groups over the ring Z[1=2] for quadratic forms

which are positive de�nite when considered over the real numbers. We express the Euler

characteristic in terms of values of zeta functions resp. L-functions. These computations

complement results of Harder and Serre from the early 70's. They had found similar ex-

pressions for the Euler characteristic of many classes of S-arithmetic groups. However,

they worked with certain assumptions which do not hold in our case.

The main ingredients in the computation are Minkowski-Siegel mass formulae for (uni)modular

lattices together with a combinatorial analysis of a suitable contractible complex (a kind
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of building) on which these orthogonal groups act.

Lars Hesselholt

Algebraic K-theory of local �elds

This is joint work with Ib Madsen. In one formulation, the Lichtenbaum-Quillen conjecture

states that for any �eld K and any prime p, the natural map

K

�

(K;Z=pZ)! �

�1

K

�

(K;Z=pZ)

is an isomorphism in degrees � cd

p

(K). Here � 2 K

2p�2

(Z;Z=pZ) is the Bott ele-

ment de�ned as tranfer image of the canonical generator of the subgroup �


(p�1)

p

of

K

2p�2

(Z(�

p

);Z=pZ). We prove this conjecture when K is the fraction �eld of a complete

discrete valuation ring A of characteristic 0 with perfect residue �eld k of characteristic

p > 2. If k is �nite, or equivalently, if K is a �nite extension of Q

p

, the a�rmed conjecture

implies that

K(K)

^

p

' (F	

g

p

a�1

d

� BF	

g

p

a�1

d

� U

jK:Q

p

j

)

^

p

;

where F	

r

is the homotopy �ber of 	

r

� 1: Z � BU ! BU , g 2 Z

�

p

is a topological

generator, d is p� 1 divided by jK(�

p

) : Kj, and a is maximal with �

p

a

� K(�

p

).

It is known that for the �elds in question, the cyclotomic trace

K

�

(K;Z=pZ)! �

�

(TC(AjK; p);Z=pZ)

is an isomorphism in degrees � 1, and it is the right hand side we evaluate. We de�ne

T (AjK) to be the mapping cone of the transfer map T (k)! T (A) in topological Hochschild

homology. There is a circle action on T (AjK) and we de�ne TR

n

(AjK; p) to be the �xed

set by the cyclic group of order p

n�1

. The homotopy groups �

�

TR

�

(AjK; p) have a rich

algebraic structure of which the de Rham-Witt pro-complex W

�

!

�

(A;M)

is the universal

example. The main theorem is that when �

p

� K, the canonical map

W

�

!

�

(A;M)


 S

F

p

(�

p

)

�

�! �

�

(TR

�

(AjK; p);Z=pZ)

is a pro-isomorphism. The Lichtenbaum-Quillen conjecture for K is an immediate conse-

quence of this result and the de�nition of TC(AjK; p).

Marc Lackenby

Word hyperbolic Dehn surgery

Thurston's geometrisation conjecture proposes that every compact orientable irreducible

atoroidal 3-manifold is either Seifert �bred or hyperbolic. (A manifold is hyperbolic if its
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interior is homeomorphic to the quotient of hyperbolic space by a discrete group of �xed-

point free isometries.) Thurston proved this conjecture in the case where M has non-empty

boundary (and, more generally, when M is `Haken'). To what extent can this result be used

to explore the unsolved case when M is closed? One possible approach to this problem is

via Dehn surgery. Thurston proved that, if M is a hyperbolic manifold with a single toral

boundary component (other than the solid torus), then all but �nitely many manifolds

obtained by Dehn surgery on M admit a hyperbolic structure. But how many `exceptional

surgeries' can there be? In my talk, I explained the proof of the following theorem, which

goes some way to answering this question.

Theorem. For all but at most 12 slopes on the boundary of M, the manifold obtained by

Dehn �lling along this slope is irreducible, atoroidal and not Seifert �bred, and has in�nite,

word hyperbolic fundamental group.

Martin Lustig

The conjugacy problem for automorphisms of free groups

The conjugacy problem in Aut(F

n

) and in Out(F

n

) was a well known open problem since

the work of Nielsen in the 20's on non-abelian free groups F

n

of �nite rank n. In a sequence

of papers, starting from his habilitation thesis 1992, and culminating in a detailed preprint

[1] from last year, the author has solved this problem. This solution combines combina-

torial aspects (introducing an improved version of Bestvina-Handel's train tracks) with

geometric ones (R-trees) to de�ne structural invariants for any automorphism of F

n

which

are computable. In the talk this work and some of its consequences has been presented.

[1] Martin Lustig, Structure and conjugacy for automorphisms of free groups, preprint

1999, http://homepage.ruhr-uni-bochum.de/Martin.Lustig/

Wolfgang Metzler

Low-dimensional homotopy theory

The Andrews{Curtis Conjecture claims that a �nite CW{complex with K

2

' � ful�lls

K

2

3

=& �. More generally, Wall asked whether a simple homotopy equivalence between K

2

and L

2

, �xing a common subcomplex K

0

, can be turned into a 3{deformation K

2

3

=& L

2

,

which also �xes K

0

. Unlike in the contractible case, (1) there is a \systematic\ way to

construct potential counterexamples. (2) An invariant to establish these would be obtained

if certain in�nite families of perfect groups could be shown to contain only nontrivial

members. (3) Recently we detected representations into iterated semidirect products of

locally indicable groups where (2) can be shown for a big subfamily. At present we are

optimistic that this method carries through in general.
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The talk also discusses related problems (e.g. the question whether there are 2{dimensional

extensions of complexes with nontrivial Whitehead torsion and the question of the (non{

)existence of groups with a �nite relator gap); they all concern commutators of de�ning

relations; and it looks as if a modi�cation of the above technique will also contribute to

their solution.

Dietrich Notbohm

Spaces with polynomial mod-p cohomology

In the early seventies Steenrod posed the question which polynomial algebras over the �nite

�eld F

p

of p elements can be realized as the mod-p cohomology of a topological space. For

odd primes, based on work of Adams and Wilkerson and Dwyer, Miller and Wilkerson

we gave a complete answer in terms of pseudo re
ection groups acting on a p-adic lattice;

i.e. we characterized the realizable polynomial algebras in these purely algebraic terms

and we achieved a complete classi�cation of all homotopy types of p-complete spaces with

polynomial mod-p cohomology.

Such spaces are constructed as the homotopy colimit of a certain diagram, where all

involved spaces are given by classifying spaces of compact connected Lie groups and where

the underlying diagram is given by a full subcategory of the orbit category of a pseudo

re
ection group.

The technical key lemma compares higher derived limits de�ned on full subcategories

of the orbit category of �nite group. This lemma has several application in the homotopy

theory of classifying spaces; e.g we constructed (sharp) homology decompositions for clas-

sifying spaces of �nite groups associated to modular representations.

Robert Oliver

Equivalences between completed classifying spaces

We consider the question, for given �nite groups G and G

0

and a prime p, of whether the

completed classifying spaces BG

^

p

and BG

0^

p

are homotopy equivalent. Martino and Priddy

tried to show that this is the case if and only if there is a \fusion preserving" isomorphism

between Sylow p-subgroups S � G and S

0

� G

0

| an isomorphism � : S ! S

0

such that

an isomorphism f : P ! Q between subgroups of S is given by conjugation in G i� the

corresponding isomorphism f

0

: P

0

! Q

0

between subgroups of S

0

is given by conjugation

in G

0

. However, their argument was incomplete, and it is still unknown whether or not

this condition is su�cient to imply the homotopy equivalence.

In joint work with Carles Broto and Ran Levi, we found an alternative criterion for

showing that BG

^

p

' BG

0^

p

. We de�ne a category

�

X

c

p

(G), whose objects are the p-centric

subgroups of G | the p-subgroups P � G such that C

G

(P ) = Z(P ) � C

0

(P ) for some

C

0

(P ) of order prime to p | and whose morphisms are given by

Mor

�

X (G)

(P;Q) = C

0

(P )nfg 2 G j g

�1

Pg � Qg:

9



We then show that BG

^

p

' BG

0^

p

if and only if the categories

�

X

c

p

(G) and

�

X

c

p

(G

0

) are

equivalent.

Given a fusion preserving isomorphism � : S ! S

0

between Sylow p-subgroups of G

and G

0

, the obstruction to the existence of a homotopy equivalence BG

^

p

' BG

0^

p

lies in

lim

 �

2

(Z), where Z is the function on the p-subgroup orbit category of G which sends G=P

to Z(P ) if P is p-centric and to 0 otherwise. We do not know yet whether this group

can ever be nonzero, much less whether the obstruction can be nonzero. The best partial

result we have so far is that lim

 �

2

(Z) = 0 if rk

p

(G) < p

2

, and thus that the Martino-Priddy

conjecture holds in this case.

Eric Pedersen

The Baum-Connes conjecture and the assembly map

We talked about joint work with Gunnar Carlson and John Roe. Given a discrete group

�, E� denotes the universal space for proper �-actions, e.g. �-actions where all isotropy

groups are �nite. The universality means that given a � � CW complex E with �nite

isotropy, there is a unique homotopy class of equivariant maps E ! E�. The Baum-

Connes conjecture in the case of discrete groups states that a certain index map

KK

�

i

(C

0

(E�); C ) ! K

i

(C

�

r

�)

is an isomorphism. Strictly speaking we should have assumed that the action of � on E�

is cocompact, or rather replace the lefthand side by the direct limit over the �-invariant

�-compact subsets.

In case � is torsionfree E� = E� and the left side may be identi�ed withKK

i

(C

0

(B�); C )

which in turn may be identi�ed as the homology theory dual to complex topological K-

theory applied to B�. This of course makes the Baum-Connes map look a lot like an

assembly map in the sense of topology, and we shall see this is essentially true.

The main aim of this paper is to construct a functor K from �-spaces to spectra with

�-action (spectra in the sense of topology) such that the induced map on �xed sets

K

�

(E�)! K

�

(�)

induces the Baum-Connes map on homotopy groups, in other words to \spacify" the Baum-

Connes map. Such a spaci�cation has been provided by Davis and L�uck but it is important

for our purposes that it is obtained as a �xed set.

Andrew Ranicki

Circle-valued Morse theory and chain complexes

Given a circle-valued Morse function f :M ! S

1

let c

i

(f) be the number of critical points

of index i. An R-coe�cient Novikov complex C

Nov

(M; f ;R) is a based f.g. free R-module

chain complex, for some ring morphism Z[�

1

(M)]! R, such that
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(i) C

Nov

(M; f ;R) = R

c

i

(f)

(ii) C

Nov

(M; f ;R) is chain equivalent to R 


Z[�

1

(M)]

C(

f

M) with C(

f

M) a cellular chain

complex of the universal cover

f

M of M .

Novikov (for �

1

(M)

�

=

�

1

(S

1

)) and Pazhitnov (for arbitrary �

1

(M)) constructed an

R-coe�cient Novikov complex geometrically, using the gradient 
ow, with R =

\

Z[�

1

(M)]

a certain completion of Z[�

1

(M)].

The talk described the algebraic construction in [1] and [2] of an R-coe�cient Novikov

complex, with R = �

�1

Z[�

1

(M)] a certain noncommutative localization of Z[�

1

(M)].

[1] (with M.Farber) The Morse-Novikov theory of circle-valued functions and noncommu-

tative localization, e-print dg-ga/9812122, to appear in Proc. 1998 Moscow Conference for

S.P.Novikov's 60th Birthday.

[2] The algebraic construction of the Novikov complex of a circle-valued Morse function,

e-print at/9903090 (1999)

Berichterstatter: Michael Joachim
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