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The meeting was organized by L�aszl�o Lov�asz (Redmond) and Hans J�urgen Pr�omel

(Berlin). The 38 talks that were delivered during the meeting covered many di�erent

aspects of combinatorics. In the following we include the abstracts in alphabetical order.

Maximal number of constant weight vertices of the unit n{cube contained

in a k{dimensional subspace

Rudolf Ahlswede (Bielefeld)

We introduce and solve a seemingly basic geometrical extremal problem. For the set

E(n; w) =

�

x

n

2 f0; 1g

n

: x

n

has w ones

	

of vertices of weight w in the unit cube of

R

n

we determine M(n; k; w) = max

�

jU

n

k

\E(n; w)j : U

n

k

is a k{dimensional subspace of

R

n

	

.

The motivation for the study of the interplay between the properties \constant weight"

and \linearity" comes from Information Theory (c.f. the problem stated Aug. 1993 in

the Book of Problems).

Here is our complete solution.

Theorem. For k; w; n 2 N with k � n and w �

n

2

(a) M(n; k; w) = M(n; k; n� w)

(b) M(n; k; w) =

8

>

<

>

:

�

k

w

�

; if (i) 2w � k

�

2(k�w)

k�w

�

2

2w�k

; if (ii) k < 2w < 2(k � 1)

2

k�1

; if (iii) k � 1 � w:

The sets giving these values are (up to isomorphies)
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(i) S

1

= E(k; w)� f0g

n�k

(ii) S

2

= E

�

2(k � w); k � w

�

� f10; 01g

2w�k

� f0g

n�2w

(iii) S

3

= f10; 01g

k�1

� f1g

w�k+1

� f0g

n�k�w+1

.

An auxiliary result of independent interest is the

Lemma. Let X = X

1

:

[X

2

:

[ :::X

s

with jX

i

j = n

i

for i = 1; 2; : : : ; s and let A = fA �

X : jAj � wg be a family with the property that for any A;B 2 A and j = 1; 2; : : : ; s

the sets A \

�

j

S

i=1

X

i

�

, B \

s

S

i=1

X

i

are incomparable, if they are di�erent. Then jAj �

max

s

P

i=1

w

i

�w

s

Q

i=1

�

n

i

w

i

�

and this bound is best. (The case (i = 1; w = n

1

) is Sperner's well{known

result.)

An evaluation of this bound leads to the trichotomy in the Theorem.

We also present an extension of the results to multi{sets, explain an analogy to the

(higher dimensional) Erd}os{Moser problem and mention results and conjectures for

subspaces over GF(2).

This is joint work with H. Aydinian and L. Khachatrian.

Ramsey graphs

Noga Alon (Tel Aviv)

The problem of constructing explicitly Ramsey graphs, that is, graphs which contain

neither large cliques nor large independent sets, received a considerable amount of at-

tention. I will describe some recent and less recent constructions, mention several open

problems and discuss some related information theoretic questions.

New 2-intersection sets in �nite projective planes

Aart Blokhuis (Eindhoven)

A 2-intersection set, or an (m;n)-set, is a collection of points in a �nite projective plane,

such that every line contains either m or n points of the set. Classical examples are

unions of disjoint Baer subplanes (m;

p

q + m), unitals (1;

p

q + 1), hyperovals (0; 2)

in planes of even order, or more generally Denniston arcs (0; 2

h

) in PG(2; 2

n

). In odd

order planes all examples had n � m =

p

q until Dover and Batten found a (4; 9)-arc

in PG(2; 5

3

). It consists of the points in an orbit of a subgroup of index 19 in the

Singer cycle. In a very interesting paper C. White and B. Schmidt (\All two-weight

irreducible cyclic codes") found a (possibly complete) list of 2-intersection sets of this

form including ones in PG(2; 17

11

) and PG(2; 41

27

) obtained by taking subgraphs of the

Singer cycle of index 67 resp. 163.
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Concerning (m;

p

q+m) sets it was proved by Storme, Sz}onyi and myself that any set of

m(q +

p

q + 1) points with at least m points on a line is the union of m Baer subplanes

provided that m < q

1=6

. An example of such a set (an (m;

p

q+m)-set) of this size that

is not the union of Baer was constructed by Michel Lavrauw and me for m = q

1=4

+ 1.

The Interlace Polynomial - a new graph polynomial

Bel�a Bollob�as (Memphis and Cambridge)

We report on results from three papers, with Arratia, Coppersmith, and Sorkin; Arratia

and Sorkin; Balister, Riordan and Scott.

The problem of DNA-sequencing by hybridization leads to problems concerning the

number of Euler circuits in 2-in 2-out graphs de�ned by pairings. An n-pairing is a

sequence of length 2n with n symbols, each symbol occuring twice, as in ABBCAC. An

n-pairing S de�nes a 2-in 2-out graph D(S) on the set of symbols, with the directed edges

being the successive symbols of the pairing. An n-pairing S de�nes a graph H(S) as

well, the interlace graph of S: the vertices are the symbols and two symbols A and B are

joined by an edge if they are interlaced in S, i.e. they occur as : : : A : : : B : : : A : : : B : : : .

Among other results, we show that the number of Euler circuits of D(S) is determined

by the interlace graph H(S).

More importantly, we de�ne a pivot operation for every graph G and every edge ab 2

E(G). Set V

1

= fc 2 V (G) n fa; bg : ac; bc 2 E(G)g, V

2

= fc 2 V (G) n fa; bg : ac 2

E(G); bc =2 E(G)g, V

3

= fc 2 V (G) n fa; bg : ac =2 E(G); bc 2 E(G)g, V

4

= fc 2

V (G) n fa; bg : ac; bc =2 E(G)g.

Now the pivot graph G

ab

has vertex set V (G), and E(G

ab

) is obtained from E(G) by

toggling the edges between every two of the �rst three classes.

The main result, proved with Arratia and Sorkin, is that there is an interlace polynomial

q : G ! Z[X] such that

q(E

n

) = X

n

8n and q(G) = q(G� a) + q(G

ab

� b) 8ab 2 E(G):

Rather little is known about q(G), but we do know that q(H(S))(1) is the number of

Euler circuits of D(S).

Counting Euler circuits also leads to an extremely simple proof of Bankwitz' theorem,

a weak version of Tait's conjecture about alternating links, that an alternating link K

with n crossings satis�es jA

K

(�1)j � n, where A

K

(t) is the Alexander polynomial.

Random proper colorings of regular trees

Graham Brightwell (London)

We consider the space Hom(T

r

; K

q

) of all proper q-colorings of the (r + 1)-regular tree

T

r

; we wish to study measures on this space with certain properties. A motivating

example is the measure �

RW

generated as follows: color a root with one color, chosen
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uniformly at random; then work out, at each stage coloring a site with some color chosen

uniformly independently at random from those not used at the \parent".

We wish our measure to be (a) a Gibbs measure, (b) simple - conditional on the color at

one site of T

r

, the colorings on di�erent branches are independent, (c) invariant under

the automorphism group of T

r

, or at least \semi-invariant" { invariant under parity-

preserving automorphisms.

This is related to the antiferromagnetic Potts model at zero temperature.

Our results include the following: (1) There is always a unique simple invariant Gibbs

measure { namely �

RW

. (2) For q < r + 1, there is always more than one simple semi-

invariant Gibbs measure. (3) For q = r + 1, there is only one simple semi-invariant

Gibbs measure, but others appear if the \activities" of the colors are non-constant.

This is joint work with Peter Winkler.

Normal spanning trees, Aronszajn trees, and excluded minors

Reinhard Diestel (Hamburg)

We prove that a connected in�nite graph has a normal spanning tree (the in�nite ana-

logue of a depth-�rst search tree) if and only if it has no minor obtained canonically

from either an (@

0

;@

1

)-regular bipartite graph or an order-theoretic Aronszajn tree.

This disproves Halin's conjecture that only the �rst of these obstructions was needed to

characterize the graphs with normal spanning trees. As a corollary we deduce Halin's

further conjecture that a connected graph has a normal spanning tree if and only if all

its minors have countable colouring number.

The precise classi�cation of the (@

0

;@

1

)-regular bipartite graphs remains an open prob-

lem. One such class turns out to contain obvious in�nite minor-antichains, so as an

unexpected corollary we reobtain Thomas's result that the in�nite graphs are not well-

quasi-ordered as minors.

This is joint work with I. Leader.

Connectivity and supermodular functions

Andr�as Frank (Budapest)

We overview developments of the past decade concerning connectivity preserving and

increasing of graphs. The main emphasis is on the use of supermodular functions. A

starting point is Lov�asz' splitting-o� theorem asserting that, given an undirected graph

G = (V + s; E) with d(s) even so that �(x; y) � k; 8x; y 2 V , then the edges incident

with s can be paired and split o� so that the resulting graph is k-edge-connected. [�(x; y)

denotes the minimum cardinality of a cut separating x and y.] This theorem is equivalent

to a characterization of graphs G which may be extended to a k-edge-connected graph

by adding a degree-speci�ed graph to G. Lov�asz' theorem has several extensions due

to Mader, Bang-Jensen and Jackson, Bencz�ur and Frank, Jordan and Sz�egeti. A main
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open question of the area is the optimal node connectivity augmentation problem: given

a graph G add a minimum number of edges to G so as to obtain a k-node-connected

graph. The problem is solved for k = 1(trivial), k = 2 (Eswaran and Tarjan), k = 3

(Watanabe and Nakamura). Here we provide a solution for arbitrary k in the special

case when G is the complement of a bipartite graph.

Tur�an type problems in graphs, multigraphs, weighted graphs,

hypergraphs, etc.

Zolt�an F�uredi (Urbana and Budapest)

Let ex(n; F ) be the maximum number of edges of an n-vertex graph can have without a

subgraph isomorphic to F . For example (Tur�an 1941, Mantel 1907) ex(n;K

3

) = bn

2

=4c.

We discuss new developments, like ex(n;K

3;3

) = (

1

2

+ o(1))n

5=3

and generalizations for

multigraphs, and weighted graphs (obtained together with Andr�e K�undgen). These

density results lead to the solution of a problem of V. S�os, namely ex

3

(n;Fano) =

(

3

4

+ o(1))

�

n

3

�

.

This means, that for some c > 0 if F �

�

[n]

3

�

is a triple system on n vertices, with

jFj >

3

4

�

n

3

�

+ cn

2

, then it contains 7 triples forming a Fano plane, and on the other hand

an example of S�os (the set of triples meeting both points of an n=2 � n=2 partition)

shows that ex

3

(n;Fano) �

�

n

3

�

�

�

bn=2c

3

�

�

�

dn=2e

3

�

. This bound is conjectured to be exact

(for n > n

0

). The above result is joint work with D. de Caen.

Branch width and well-quasi-ordering in matroids

Bert Gerards (Amsterdam and Eindhoven)

We prove that a class of matroids representable over a �xed �nite �eld and with bounded

branch width is well-quasi-ordered under taking minors. The result implies Robertson

and Seymour's result that graphs with bounded tree width are well-quasi-ordered under

taking minors.

This is joint work with Jim Geelen and Geo� Whittle.

Entropy, independent sets and antichains

Je� Kahn (New Brunswick)

"Dedekind's Problem" of 1897 asks for the number, say f(n), of antichains in the Boolean

algebra of subsets of [n].

In 1969 Kleitman showed that log(f(n)) is asymptotic to the middle binomial coe�-

cient (call it b(n)), and a 1975 improvement by Kleitman and Markowsky showed that

the error term is not more than O(logn=n)b(n). Then Korshunov (1981) and later

Sapozhenko (1989) determined the asymptotics of f(n) itself.

5



Proofs of the preceding results range from di�cult to impenetrable. Our main goal in

this talk will be to sketch an entropy-based "book" proof of the Kleitman-Markowsky

bound. What we actually prove is an exact bound for general graded partial orders,

which, somewhat curiously, specializes to essentially K-M in the case of a Boolean

algebra.

Time permitting, we will also say a little about the proof of a conjecture of Benjamini,

Haggstrom and Mossel on the range of a "cube-indexed random walk."

How general is the Upper Bound Theorem (and some diversions)

Gil Kalai (Jerusalem)

The upper bound theorem (UBT) asserts that among all the d-polytopes with n vertices

the cyclic polytopes C(d; n) have the maximum number of k-faces for every k between

1 and d� 1.

This was conjectured by Motzkin and proved by McMullen. Stanley proved the UBT for

all simplicial (d� 1)-dimensional spheres. Novik proved the UBT even for large classes

of (d� 1)-dimensional simplicial manifolds.

The cyclic polytopes consist of the convex hull of n points on the moment curve

(t; t

2

; : : : ; t

d

). As Vera S�os said, studying the cases of equality in an extremal prob-

lem is as important as proving the inequality. The cyclic polytopes are not the only

examples for equality for the UBT. Equality holds for all neighborly polytopes. (Poly-

topes for which every [d=2] vertices determine a face.) There are many such polytopes

and they are quite mysterious.

But the moment curve is (in even dimension) the only [d=2]-neighborly embedding of

R

1

in R

d

; "only" in the sense of order types (or oriented matroids). So this was an

opportunity to promote the study of order types of non-discrete subsets in R

d

. In this

direction I diverged to consider Perles question on k-dimensional r-neighborly manifolds

in R

n

, it is easy to see that n � (k + 1)r and Vassiliev showed that n must be actually

� 2kr�d(r) , where d(r) is the number of \1"s in the binary expansion of r. Wigderson

and I gave examples where n is polynomial in k and r.

With these diversions it is no wonder that I could not bring McMullen's proof but its

especially simple presentation in terms of simple polytopes is available e.g. in Mulmuley's

book on computational geometry. Nor did I even mention my proof with Noga Alon,

the recent continuous extensions by Ulli Wagner and Welzl and other related things.

In the talk I explained Stanley's general approach in the language of Gr�obner bases (or

algebraic shifting). For every simplicial polytope P with n vertices (or a subcomplex

of a simplicial polytope) one can associate a set of monomials B(P ) in the variables

y

1

; y

2

; : : : . The number of k-faces of P can easily be read from the number of monomials

of degree k + 1 of B(P ) and the crucial fact is that B(P ) is always a subset of the set

of monomials associated to the cyclic polytopes.

This inclusion implies a very strong extension (that we refer to as GUBT) (of Kruskal-

Katona type) which give an upper bound for the number of k-faces given the number

of (k � 1)-faces.
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It is believed that the GUBT applies not only to simplicial spheres but also to simplicial

manifolds with vanishing middle homology (in particular, to odd-dimensional simplicial

manifolds). And even to a large class of pseudomanifolds with vanishing middle (in-

tersection) homology (the so called Witt spaces). I also speculated that the UBT is a

manifestation of the Van-Kampen theorem and is related to the impossibility to embed

certain complete skeleta of simplices in the space in question. (So the nonplanarity of

K

5

is the starting point for the UBT.)

Moreover, it is also conjectured that the GUBT applies to general polytopes (simplicial

or not). This will show (using an argument of Anders Bj�orner) that the face numbers

of all d-polytopes are unimodal in the lower and upper quarters of the face numbers.

(Namely, f

0

� f

1

� ::: � f

d=4

.) (Gluing together a cyclic polytope and its dual shows

that you cannot expect unimodality in the range between d=4 and 3d=4.)

The GUBT for arbitrary polytopes will settle also the following conjecture of Imre

Barany which (shamefully) we cannot answer: The number of k-faces of a d-polytope is

at least the minimum of the numbers of vertices and facets.

On the largest member of a regular intersecting family

Gyula O.H. Katona (Budapest)

Let X be a �nite set of n elements. If F � X then e

F

denotes the characteristic vector

of F . A family F � 2

X

is balanced if there are non-negative real numbers �

F

such

that

P

F2F

�

F

e

F

= e

X

. A family is regular if every element of X is contained in the

same number of members F 2 F . A regular family is always balanced. Suppose that

any t members (t � 2) of a balanced family on X have at least k common elements. It

is proved that the largest member of the family has at least k

1=t

n

1�1=t

elements. The

estimate is asymptotically sharp when t; k are �xed, n is large.

This is joint work with A. Idzik and R. Vohra.

Random matchings which induce Hamilton cycles, and Hamilton

decompositions of random regular graphs

Jeong Han Kim (Redmond)

Select four perfect matchings of 2n vertices, independently at random. We �nd the

asymptotic probability that each of the �rst and second matchings forms a Hamilton

cycle with each of the third and fourth. This is generalized to embrace any �xed number

of perfect matchings, where a prescribed set of pairs of matchings must each produce

Hamilton cycles with suitable restrictions on the prescribed set of pairs. We also show

how the result with four matchings implies that a random d-regular graph for �xed

even d � 4 asymptotically almost surely decomposes into d=2 Hamilton cycles. This

completes a general result on the edge-decomposition of a random regular graph into
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regular spanning subgraphs of given degrees together with Hamilton cycles, and veri�es

conjectures of Janson and of Robinson and Wormald.

This is joint work with Nick Wormald.

Extremal set theory via information theory

J�anos K�orner (Rome)

It came as a surprise when L. Tolhuizen proved in a paper yet to appear in the IEEE

Trans. Information Theory that the Frankl-F�uredi asymptotic upper bound for the

maximum size of cancellative set families is tight. The Tolhuizen paper has put a well-

known problem from extremal set theory into a purely information-theoretic framework

and, in a way, has underlined the relevance of information-theoretic methods in extremal

combinatorics.

In a series of papers to appear in Combinatorics, Probability and Computing, N. Alon,

E. Fachini, A. Monti and the author have studied several related problems, and in

particular, the maximum size of locally thin set families. A family of subsets of an n-set

is called k-locally thin if for every k distinct members of the family, at least one point of

the ground set is contained in exactly one of them. We denote by M(n; k) the maximum

size of such a set family and de�ne

t(k) = lim sup

n!1

1

n

logM(n; k)

Obviously, M(n; 2) = 2n and t(2) = 1, but already the determination of t(3) is an

extremely di�cult problem concerning strong �-systems and one doesn't even know

whether t(3) < 1. It is tempting to conjecture that t(k) is monotonically decreasing in

k, but this is open. On the other hand, one easily sees that t(k + l) � maxft(k); t(l)g.

We can prove that t(k) goes to 0 with increasing k. We prove that 0:26 < t(4) < 0:496

and 0:19 < t(5) < 0:57. As the best lower bounds are obtained by routine random

choice, the interesting part of the results is the method used to obtain upper bounds.

We interpret our problems as graph and hypergraph covering and then use the sub-

additivity of graph entropy to bound the minimum number of graphs (hypergraphs) of

a given form needed to cover a �xed graph (hypergraph).

On the equilateral dimension of the rectilinear space

Monique Laurent (Amsterdam)

It has been conjectured by Kusner (1983) that there exist at most 2k equidistant points

in the k-dimensional rectilinear space. This conjecture has been veri�ed for k � 3 (by

Bandelt, Chepoi and Laurent, Discrete and Computational Geometry, 19 (1998)). We

show here its validity in dimension k = 4; the proof is based on a reformulation of the

problem in terms of set systems and a strengthening of the conjecture. We also discuss

a number of related questions.
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For instance, what is the maximum number h(k) of equidistant points lying in the

hyperplane:

P

k

i=1

x

i

= 0 ? If this number would be equal to k, then the above conjecture

would follow.

Other related parameters are s(k), the maximum number of pairwise touching translates

of the k-dimensional simplex, and a(n), the maximum cardinality of an antichain in a

design B on n points; a multiset B on [1; n] being a design if there exist integers r; �

such that each point i 2 [1; n] belongs to exactly r members of B and any two distinct

points i; j 2 [1; n] belong to exactly � common members of B. The following relations

hold:

h(k) = s(k � 1); h(k) � n() a(n) � k:

Clearly, a(n) � n and equality would imply the original conjecture. More precisely,

if a(n) � 2k, then there are at most n equidistant points in the rectilinear k-space.

However, it is known that a(n) � n� 1 for n � 5, h(k) = s(k � 1) � k + 1 for k � 4.

This is joint work with Jack Koolen and Lex Schrijver.

Sparse Deuber sets

Imre Leader (London)

We prove a conjecture of Deuber that for any m; p; c there exists a subset of the natural

numbers such that the mpc-sets contained in it form a hypergraph of large girth and

large chromatic number. This extends the sparse van der Waerden theorem of Pr�omel

and Voigt and the sparse Rado theorem of Ne�set�ril and R�odl.

The main tools are amalgamation and a Ramsey theorem on products of trees that may

be of independent interest.

On Heilbronn's problem in higher dimensions

Hanno Lefmann (Dortmund)

Heilbronn conjectured that given arbitrary n points from the 2{dimensional unit square,

there must be three points which form a triangle of area at most O(1=n

2

). This con-

jecture was disproved using random arguments by Koml�os, Pintz and Szemer�edi. They

showed that for every n there is a con�guration of n points in the unit square where

all triangles have area at least 
(logn=n

2

). Considering a generalization of this prob-

lem to dimensions d � 3, recently Barequet proved the existence of n points in the

d-dimensional unit-cube such that the minimum volume of any simplex spanned by

(d + 1) of these points is at least 
(1=n

d

). In this talk we showed how to improve on

this lower bound by the logarithmic factor �(logn).
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Some questions and results about the girth

Nati Linial (Jerusalem)

The main question I have addressed is: How large can the girth of a graph be in a d-

regular graph with n vertices - g(d; n). The upper bound follows from a straightforward

counting argument, whereas the best lower bound comes from the Ramanujan Graphs

that were constructed by Margulis and Lubotzky-Phillips-Sarnak. Some attempts on

both bounds were described: A recent spectral method (jointly with A. Amit and S.

Hoory) that ties in the Markov Moment Problem. The concept of random lifts of graphs

(developed jointly with A. Amit) seems like a promising tool with which to improve the

lower bound on g(d; n).

A graph theory of crystal structures

Martin Loebl (Prague)

We study enumeration of perfect matchings and edge-cuts of toroidal square grids and

of 3d cubic lattices. We present some observations on how degeneracy of toroidal grids

and cubic lattices depends on frustration of basic building blocks of these lattices. We

also present a new expression for the enumeration of perfect matchings of the cubic

lattice, which is also known as 3d dimer problem. We prove that it may be computed

easily from average determinant of matrices associated with certain orientations of the

3d lattice.

Szemer�edi's Regularity Lemma and Ramsey Theory

Tomasz  Luczak (Pozna�n)

We discuss two applications of Szemer�edi's Regularity Lemma to Ramsey Theory. Thus,

we show that for an odd n, the Ramsey number for a cycle C

n

is given by

R(C

n

; C

n

; C

n

) = (4 + o(1))n ;

which settles in the a�rmative a conjecture of Bondy and Erd}os. Then we present

a result of Haxell,  Luczak and Tingley, and prove that if T is a tree with bipartition

(V

1

; V

2

), where jV

2

j = t

2

� jV

1

j = t

1

, and �(T ) = o(t

2

), then

R(T; T ) = (1 + o(1)) maxf2t

1

+ t

2

; 2t

2

g :
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On the chromatic number of Kneser hypergraphs

Ji�r�� Matou�sek (Prague)

Let S be a system of subsets of a �nite set X. The Kneser r-hypergraph KG

r

(S) has S

as the vertex set, and an r-tuple (S

1

; S

2

; : : : ; S

r

) of sets in S forms an edge if S

i

\S

j

= ;

for all i 6= j. Kneser conjectured in 1955 that �(KG

2

(

�

[n]

k

�

)) � n � 2k + 2. This was

proved in 1978 by Lov�asz as one of the earliest and most spectacular applications of

topological methods in combinatorics. Further proofs and extensions were obtained e.g.

by B�ar�any, Schrijver, Walker, Alon, Frankl, Lov�asz, Dolnikov, Sarkaria, and K�r���z.

Here we consider a lower bound for the chromatic number of KG

r

(S) for an arbitrary set

system S due to K�r���z from 1992 (for r = 2, the result was obtained earlier by Dolnikov

in 1988). We recall that a mapping c : V ! [m] is a (proper) coloring of a hypergraph

H = (V;E) if none of the edges e 2 E is monochromatic under c. The chromatic number

�(H) of H is the smallest m such that a proper coloring c : V ! [m] exists. We de�ne

the r-colorability defect cd

r

(H) as the minimum cardinality of Y � X such that there is

a partition X nY = A

1

[: : :[A

r

with no e 2 E satisfying e � A

i

for some i = 1; 2; : : : ; r.

The K�r���z{Dolnikov theorem states

�(KG

r

(S)) �

1

r � 1

� cd

r

((X;S))

for any set system (X;S) and any r � 2.

We outline a proof of this result; the basic approach is similar to that of K�r���z, but our

proof is simpler and more accessible to non-specialists in topology.

Concentration for independent permutations

Colin McDiarmid (Oxford)

We discuss an extension of some concentration inequalities of Talagrand. This extension

concerns both independent random variables and independent random permutations. It

is particularly useful for analysing randomised methods for graph colouring.

Combinatorics of mappings (homomorphisms)

Jaroslav Ne�set�ril (Prague)

Given two graphs G = (V;E); G

0

= (V

0

; E

0

) a homomorphism f : G ! G

0

is any

mapping f : V ! V

0

which preserves the edges: [x; y] 2 E ) [f(x); f(y)] 2 E

0

.

Homomorphisms generalize coloring problems (x(G) � k i� G ! K

k

) and form a

category. On the other side they induce a quasiorder � on the class of all graphs:

G � H i� G! H. The quasiorder � is universal.
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Given a class K of graphs we say that a pair (G;H) is a gap in K if G;H 2 K, G < H

and there is no F 2 K with G < F < H.

Welzl (1980) characterized all gaps for undirected graphs and Ne�set�ril, Tardif (1998)

characterized all gaps for directed graphs and even all the gaps for general relational

structures of a given type.

An H-coloring of a graph G is any homomorphism G ! H. We say that an H-

coloring problem permits a Finitary Homomorphism Duality (FHD) if there are graphs

F

1

; : : : ; F

t

, F

i

! H, such that for any G either G! H or F

i

! G for some i. Ne�set�ril

and Tardif proved a 1-1 correspondence between gaps and FHD and characterized all

FHD for classes of graphs and even relational systems of a given type. This and related

results were surveyed in the lecture.

Combinatorics, probability and computation on �nite groups

Igor Pak (New Haven)

I will give a somewhat biased review of recent results on theoretical and practical meth-

ods for generating random group elements. We will start by introducing the algorithms

and discuss problems from various �elds as they arise.

Recent Progress on the Generalized Baues Problem

J�org Rambau (Berlin)

A polyhedral subdivision of a point con�guration A is a polyhedral complex that covers

the convex hull of A. (Polyhedral complex means that the intersection of any two cells

is a face of each.)

Given a projection � of a the n vertices of a d

0

-polytope P onto a point set A in the

d-dimensional Euclidean space, we call a polyhedral subdivision �-induced if all its cells

are projections of faces of P under �.

The Generalized Baues Problem asks for which n > d

0

> d the set of all �-induced

polyhedral subdivisions of A, partially ordered by re�nement, has the homotopy type

of a (d

0

� d� 1)-sphere. (The homotopy type of a poset is given by the homotopy type

of the simplicial complex of all chains.)

This problem is related to many other problems formulated before: 
ip connectivity

of triangulations in computational geometry (a generalization of the concept that two-

dimensional triangulations are connected by 
ipping diagonals); extension space conjec-

ture in the theory of oriented matroids, counting roots in sparse polynomial systems,

etc.

In this talk selected results in this area are presented, mounting in the most recent

achievement by Santos showing that there is a triangulation of a six-dimensional point

con�guration without any 
ip. This result has been double checked by the software

package TOPCOM, available at http://www.zib.de/rambau/TOPCOM.html.
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An instance of Hilbert's paradigm

Bruce Reed (Paris)

In 1900, Hilbert gave his famous address at the International Congress of Mathemati-

cians and presented his list of 23 problems for the 20th century. We recall some of

his remarks and present an example of a problem which appears to have in
uenced

mathematics in the way he suggests a good problem should.

Minimizing a submodular function

Lex Schrijver (Amsterdam)

It was proved by Gr�otschel, Lov�asz, and Schrijver in 1981 that the minimum value of

a submodular function can be determined in polynomial time. The algorithm is based

on the ellipsoid method, and is therefore highly impractical. The question remained to

�nd a combinatorial method. In 1999 two such algorithms were found, one by Iwata,

Fleischer, and Fujishige, and one by the present author. In our lecture we present a

description of our algorithm.

Quasi-random graphs

Mikl�os Simonovits (Budapest)

It is an important and interesting question, how the randomlike graphs \can be char-

acterized". Several works are centered around this question. We mention here only the

papers of Wilson, Thomason, Chung-Graham-Wilson, : : :

S�os and Simonovits proved the strong connection between quasirandomness and Sze-

mer�edi's Regularity Lemma. This gave rise to a new proof technique which made the

whole theory more transparent. Recently we applied these methods to prove that cer-

tain counting properties which are originally not quasirandom properties, they turn into

quasirandom ones if we extend them into hereditary properties: if we assume them not

only for the whole graph G

n

but all its su�ciently large subgraphs. (It is natural to

extend the properties in question to hereditary properties since being a random graph

is a hereditary property: all large subgraphs of random graphs behave in a randomlike

manner.) The properties discussed here are \counting properties": counting the number

of certain subgraphs. When counting not necessarily induced subgraphs, \everything

behaves" as it should, yet, counting induced subgraphs some strange counterexamples

may occur.

This is joint work with Vera T. S�os.
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Hypergraph Problems

Vera T. S�os (Budapest)

Let t

r

(n;L

r

) = max

L

r

6�G

r

n

e(G

r

n

) and let RT

r

(n;L

r

; f(n)) denote the maximum number of

edges an r-uniform hypergraph G

r

n

can have if L

r

6� G

r

n

and the stability number

�(G

r

n

) < f(n). Put c

L

= lim

n!1

1

n

r

t

r

(n;L

r

) and c

L

(f) = lim

n!1

1

n

r

RT

r

(n;L

r

; f(n)).

There are several results for c

L

and for c

L

(f) if f(n) = o(n) in the case r = 2. (Tur�an

resp., Ramsey-Tur�an theory.)

For r > 2 just a few exact results are known for c

L

and even less for c

L

(f). In this

lecture we put emphasis on phenomena which are very di�erent for r = 2 and for r > 2.

We also mention some open questions.

On the structure of K

`+1

-free graphs

Angelika Steger (M�unchen)

In 1976 Erd}os, Kleitman and Rothschild showed that almost all triangle-free graphs are

bipartite, i.e., that the cardinality of the two graph classes is asymptotically equal. In

this talk we investigate the structure of the \few" remaining triangle-free graphs which

are not bipartite. As it turns out, with high probability these graphs are bipartite up

to a few vertices. More precisely, almost all of them can be made bipartite by removing

just one vertex. Almost all others can be made bipartite by removing two vertices, and

then three vertices, and so on.

We also show that similar results hold if we replace \triangle-free" by \K

`+1

-free" and

\bipartite" by \`-colorable".

This is joint work with H. J. Pr�omel and T. Schickinger.

Blocking sets in projective planes and spaces

Tam�as Sz}onyi (Budapest)

A k-blocking set in PG(n; q); q = p

h

, is a set of points intersecting every (n � k)-

dimensional subspace. Extending previous results known for the case n = 2, with

Zs. Weiner we proved that a 1-blocking set of size less than

3

2

(q + 1) intersects every

hyperplane in 1 modulo p points. Using geometric arguments it immediately implies

the same result for 2-blocking sets. A corollary of this result is that 1-blocking sets

in PG(h; p

h

) which are not contained in a hyperplane are precisely the subgeometries

PG(h; p).
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On the evolution of triangle-free graphs

Anusch Taraz (Berlin)

In this talk we address the question whether a random triangle-free graph with n vertices

and m edges is bipartite or not. Classical results from the theory of random graphs imply

that the �rst threshold (from bipartite to non-bipartite) occurs when m = n=2. Pr�omel

and Steger (1996) showed that almost surely such a random graph remains non-bipartite

for m = O(n

3=2

) and is bipartite again when m = 
(n

7=4

logn).

We complete the picture by showing that the second threshold (from non-bipartite to

bipartite) occurs when m =

p

3

4

n

3=2

p

logn. The idea of the proof is to partition the

probability space before applying large deviation inequalities, and makes also use of a

result recently obtained by  Luczak.

This is joint work with Deryk Osthus and Hans J�urgen Pr�omel.

Tutte's edge 3-coloring conjecture

Robin Thomas (Atlanta)

Tutte conjectured in 1966 that every 2-connected cubic graph with no minor isomor-

phic to the Petersen graph is edge 3-colorable. The conjecture implies the Four Color

Theorem by a result of Tait.

In the �rst part of the lecture I will discuss related results and problems. In the second

part I will outline a proof of Tutte's conjecture obtained in joint work with N. Robertson,

D.P. Sanders and P.D. Seymour.

The extremal function for complete minors

Andrew Thomason (Cambridge)

Let c(t) be the minimum number c such that every graph G with e(G) � cjGj contracts

to a complete graph K

t

. Mader in 1968 showed that c(t) exists, and Kostochka and I

proved in the early '80s that c(t) is of order t

p

log t.

Here we show that

c(t) = (� + o(1)) t

p

log t

where � = 0:319 : : : is an explicit constant. The extremal graphs are (more or less) dis-

joint unions of pseudorandom graphs of a certain size and density. No explicit extremal

graphs are known.
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Correlation, enumeration and sorting

William T. Trotter (Tempe)

The following theorem, stated in terms of conditional probability was �rst proved by

Shepp [4] using the FKG inequality and a clever de�nition of a distributive lattice on a

particular set of functions.

Theorem 1 Let x, y and z be distinct points in a poset P with Prob[x > z] > 0. Then

Prob[x > y] � Prob[x > yjx > z]:

�

Theorem 1 is known as the XYZ-theorem; it asserts that the events x < y and y <

z are positively correlated in a poset P . The result was originally posed by Rival

and Sands who in fact conjectured that the inequality is strict when x, y and z form

a 3-element antichain. This stronger result does not follow from Shepp's argument.

Subsequently, P. Fishburn [2] used repeated applications of the Ahlswede/Daykin four

functions theorem [1] to prove the \strong" version of the XYZ theorem.

Theorem 2 Let fx; y; zg be a 3-element antichain in a poset P . Then

Prob[x > y] < Prob[x > yjx > z]:

�

It is easy to see that Theorem 2 yields Shepp's version as a corollary. Of course, the

FKG inequality is a special case of the Ahlswede/Daykin inequality, i.e., it is just the

case when all four functions have unit weight. However, Fishburn's proof also required

some complex variations in the de�nitions of auxiliary distributive lattices.

In this talk, we �rst outline a proof of the strong version of the XYZ theorem which

avoids completely any use of the Ahlswede/Daykin theorem|or any of its derivative

versions.

Let P be a �nite poset with ground set X, and let x 2 X be a �xed element of P .

De�ne a sequence h

1

; h

2

; : : : ; h

n

, where n = jXj by

h

i

= fL 2 E(P ) : h

L

(x) = ig:

This sequence is called the height sequence of x.

The following theorem was originally proved by Stanley [5] using the Alexandrov/Fenchel

inequalities for mixed volumes (in fact, a much stronger result is proved).
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Theorem 3 Let P be a poset with ground set X and set n = jXj. Then for each x 2 X,

the height sequence h

1

; h

2

; : : : ; h

n

of x is log-concave, i.e.,

h

i

h

i+2

� h

2

i+1

for all i = 1; 2; : : : ; n� 2. �

Stanley's proof of this result is both compact and elegant. However, the algebraic

machinery obscures the structural properties of the poset, so for example, nothing is

known about the following natural questions.

Question 4 Under what circumstances is it true that the inequality h

i

h

i+2

� h

2

i+1

is

tight?

Question 5 If the inequality h

i

h

i+2

� h

2

i+1

is strict, what is the minimum size �

n

of the

error term?

To date, we have only been able to make marginal progress in providing a combinatorial

proof of Theorem 3. Speci�cally, we can settle the special case when the height sequence

contains exactly 3 non-zero terms. Even for this case, the argument is quite complex and

requires the full power of the Ahlswede/Daykin theorem plus some new ideas emanating

from the combinatorial approach to the XYZ theorem. Also, we can prove the inequality

when i = 1 or when i+ 2 = n, i.e., when x is either a maximal point or a minimal point.

In this case, we do not need to know that the height sequence has only three non-zero

terms. However, the techniques used to prove these special cases do not seem likely to

extend to a proof for the general case, and we consider this e�ort a major challenge.

Our e�orts to provide a combinatorial proof for Stanley's log-concavity result were

originally motivated by a question posed to us by Je� Kahn [3].

Conjecture 6 Let P = (X;P ) be a poset with jXj = n, and let x and y be distinct

elements of X. If jfz 2 X : z � x or z � ygj = m, then

maxfh(x); h(y)g � m� 1:

Kahn noted that if n = m, then the conjecture is true. This assertion follows easily from

the log-concavity of the height sequence plus the fact that maxfProb[x > y];Prob[y >

x]g �

1

2

. However, when n > m, log-concavity seems to allow the maximum of the two

heights to fall all the way down to m log 2. Secondly, as Kahn also noted, the question

may be generalized in a natural fashion to k � 2 points. In general it is natural to believe

that the extremal value is provided by taking disjoint and pairwise incomparable chains

of approximately equal length.

[1] R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of sets,

their unions and intersections, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43

(1978), 183{185.

17



[2] P. C. Fishburn, A correlational inequality for linear extensions of a poset, Order 1

(1984), 127{137.

[3] J. Kahn, personal communication.

[4] L. A. Shepp, The FKG inequality and some monotonicity properties of partial

orders, SIAM J. Alg. Disc. Meth. 1 (1980), 295{299.

[5] R. P. Stanley, Two applications of the Alexandrov/Fenchel inequalities, J. Combi-

natorial Theory (A) 31 (1981), 56-65.

Generalizations of Davenport-Schinzel Sequences, and their applications

Pavel Valtr (Prague)

We say that a sequence s contains a sequence n if s has a subsequence isomorphic to

n (two sequences are isomorphic if one of them can be obtained from the other one by

renaming the symbols, e.g. 11231, 22432 are isomorphic).

For a sequence n over f1; : : : ; kg and for n � 1, we de�ne (n; n)-GDS sequence (general-

ized Davenport-Schinzel sequence) as any sequence over f1; : : : ; ng not containing n and

having the property that any two occurences of the same integer are at distance at least

k from each other. The maximum length of such a sequence, f

n

(n), has been studied in

several papers. Klazar showed that f

n

(n) = O(n�(n)), where �(n) !1 very slowly. It

is also known that f

n

(n) = O(n) holds for some sequences, e.g. n = abcdcbabcd. As a

consequence it can be shown that any geometric graph on n vertices with no k pairwise

crossing edges has at most c

k

� n logn edges. It is an open problem whether or not the

logn factor is needed. Another application is due to Alon and Friedgut. They have

shown that the number of permutations from S

n

avoiding a �xed permutation � 2 S

k

is bounded by c

n


�

(n)

where 


�

(n) is an extremely slowly growing function. Up to the




�

(n)-term this settles a conjecture of Stanley and Wilf. The bound c

n

conjectured by

Stanley and Wilf was shown by Alon and Friedgut for a certain class of permutations

� , using the generalized Davenport-Schinzel sequences again.

Small complete arcs in projective planes

Van H. Vu (Redmond)

An arc of a projective plane is a set of points with no three on a line. The arc is complete

if no other point from the plane could be added to it without violating this property.

The notion of arcs and complete arcs was developed by B. Segre in the 50's and 60's.

Given a projective plane, determining the size of the smallest complete arc is one of

the major open questions in discrete geometry. Let n(P ) denote the size of a smallest

complete arc. For any projective plane of order q, a lower bound n(P ) >

p

2q was

already shown in the 50's by Lunelli and Sce, but no close upper bound has been
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known. For a Galois plane, which is a special projective plane, the best upper bound

was n(P ) < cq

3=4

. The proof (due to Sz}onyi) made use of Hesse-Weil's theorem and

therefore depends on the structure of the �elds.

Practically nothing has been known for general planes. In this paper, we will show that

there is some constant c such that n(P ) < q

1=2

log

c

q for any projective plane P . This

matches the lower bound within a polylogarithmic factor.

Our proof uses a variant of the probabilistic method known as the semi-random method

or R�odl nibble. This is a quite surprising application of a probabilistic method in this

area, where algebra seems to dominate. Central to the proof is a new concentration

result which is of independent interest.

This is joint work with J.H. Kim.

Coloring Hamming Graphs, and the 0/1-Borsuk Problem

G�unter M. Ziegler (Berlin)

The 0=1-Borsuk problem asks whether any set of 0=1-vectors in R

d

can be partitioned

into at most d+ 1 sets of smaller diameter. This is known to be false in high dimensions

(in particular for d � 561, due to Kahn & Kalai, Nilli, and Raigorodskii), and yields the

known counterexamples to Borsuk's problem from 1933.

Here we ask whether there might be counterexamples in low dimension as well, and we

show { using results about the chromatic numbers of Hamming graphs as well as some

coding theory bounds { that there is no counterexample to the 0=1-Borsuk conjecture

in dimension d � 9. (In contrast, the general Borsuk conjecture is open even for d = 4.)

Author: Anusch Taraz
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