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The fun
toriality prin
iple, formulated by R. P. Langlands in 1967, has stimulated a

tremendous amount of resear
h in representation theory, automorphi
 forms and number

theory in the intervening years. The meeting fo
used on the interplay between lo
al repre-

sentation theory and its global appli
ations in the theory of automorphi
 forms, espe
ially

fun
toriality and automorphi
 L{fun
tions.

The program of 18 le
tures emphasized to survey re
ent developments in both lo
al and

global theory with the hope of fostering new 
ollaborative e�orts, parti
ularly among the

younger generation of resear
hers in these areas. The topi
s in
luded:

1. Lo
al representation theory

The lo
al Langlands 
orresponden
e provides a 
onje
tural parametrization of the

[L{pa
kets of℄ irredu
ible admissible representations of the group of F{points G(F )

of a redu
tive group G over a lo
al �eld F :

{ the 
ase of the general linear group

{ 
lassi
al groups (e.g. 
onstru
tion of square{integrable

representations of 
lassi
al p{adi
 groups)

2. Global theory: automorphi
 representations

The fun
toriality prini
iple predi
ts many relations among the automorphi
 forms

on di�erent groups. In parti
ular, one expe
ts that every form on a group G has a

fun
torial lift to GL(n) for some n. Roughly speaking, the set of forms on G with a


ommon image are said to form a L{pa
ket. But the a
tual 
onstru
tion of fun
torial

lifts and L{pa
kets remains a fundamental open problem:

{ Arthur{Selberg and relative tra
e formulas (e.g. stabilization of the

twisted tra
e formula, fundamental lemma)

{ "ba
kwards"{fun
toriality and L{fun
tions, 
onverse theorems

{ Integrals of automorphi
 forms over 
ertain subgroups
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3. Intera
tions of the theory of automorphi
 forms with (arithmeti
) (algebrai
) geom-

etry.

The variety of these topi
s indi
ates the rigorous a
tivity and diversity of 
urrent resear
h

in automorphi
 forms, and stimulated mu
h fruitful dis
ussion.
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Abstra
ts

Converse Theorems and Liftings

J. Cogdell & I. Piatetski{Shapiro.

Langlands fun
toriality tells us that whenever we have a map of L{groups there should

be an asso
iated lifting of automorphi
 forms. When the target group is GL

N

, one method

for establishing su
h a lift is the Converse Theorem.

In parti
ular, asso
iated to the embedding

x

SO

2n+1

= Sp

2n

(C ) ! GL

2n

(C ) =

x

GL

2n

there should be a lift of automorphi
 forms from SO

2n+1

(A ) to GL

2n

(A ). We apply the


onverse theorem to show that a globally generi
 
uspidal representation � of SO

2n+1

(A )

(over a number �eld) has a weak lift to an automorphi
 representation of GL

2n

(A ).

The 
onverse theorem we use to establish automorphi
ity of an irredu
ible admissible

representation � of GL

N

(A ) requires we show that its twisted L{fun
tion L(s; � � �) is

"ni
e" for all 
uspidal automorphi
 representations � whi
h are of the form � = �

0


 �,

with �

0

unrami�ed out a �xed �nite set of pla
es S and � a �xed idele 
lass 
hara
ter, as �

runs over 
uspidal representations of GL

m

(A ) with 1 � m � N � 1.

For � our 
uspidal representation of SO

2n+1

(A ) we �rst 
ontrol the twisted L{fun
tions

L(s; � � �) with � as above. Then we des
ribe lo
al lifts �

v

! �

v

from SO

2n+1

(k

v

) to

GL

2n

(k

v

), and then �nally apply the 
onverse theorem to � = 
�

0

v

.

The use of the (highly rami�ed) twist by � lets us rule out some extraneous global poles of

L(s; � � �) and to 
ompensate for the fa
t that we do not know what the lo
al lift should

be for those �nite pla
es v where �

v

is rami�ed.

On the �rst eigenvalue of Lapla
ian for lo
ally symmetri
 manifolds

Jian { Shu Li

Consider a simple Lie group G with a

o
iated symmetri
 spa
e X = G=K. For any

latti
e � � G let �

1

(�) be the �rst positive eigenvalue of the Lapla
e operator on L

2

(�nX).

Let 
(G) be the in�mum of all �

1

(�) as � runs through all latti
es in G. In this talk we

outline a 
omputation of 
(G) for groups with Kazhdan's property T . We relate 
(G)

with another invariant �

1

(G) whi
h is de�ned in terms of the unitary representation of G.

For most 
lassi
al groups and some ex
eptional groups, we 
ompute �

1

(G) expli
itly, and

prove that 
(G) = �

1

(G).

Automorphi
 Green fun
tions asso
iated with the se
ondary spheri
al

fun
tions

Takayuki Oda

This is a joint work with Masao Tsuzuki of Sophia University at Tokyo. To explain

the moral of our investigation, we dis
uss here the typi
al 
ase G = SU(n; 1) and H =

S(U(1)�U(n�1; 1)). The asso
iated symmetri
 domain X = G=K is a 
omplex hyperball
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of dimension n, and the orbit X

o

of a point o = eK of X under H is also a 
omplex

hyperball, but of 
odimension one. Let 4 be the G{invariant Lapla
ian on X. Then there

is a unique H{invariant solution for the eigenvalue problem

4� = (n

2

� s

2

)�; s 2 C ;

whi
h is a H �K{invariant spheri
al fun
tion on G. If we admit the singularity along the

orbit X

0

, then the same equation has another solution whi
h has the logarithmi
 singu-

larity along X

0

. Among su
h solutions, we 
onsider the unique one whi
h has the fastest

de
ay at 1. We 
all this the se
ondary spheri
al fun
tion �

(2)

s

.

Let E be an imaginary quadrati
 �eld and � a non-degenerate Hermitian form of Witt

index 1 on an E{ve
tor spa
e with signature (n+; 1�). Then � de�nes a 
ommensurable


lass of arithmeti
 latti
es in G. For su
h a latti
e �, starting with the fun
tion �

(2)

s

, we


an 
onstru
t Poin
ar�e series

G

s

(z) =

X


2�\Hn�

�

(2)

s

(


z

); z 2 �nX:

Our main purpose here is to establish some fundamental properties of G

s

(z).

(Pre{)Stabilization of ellipti
 singular terms in the twisted tra
e formula

J.{P. Labesse

Let G be a 
onne
ted redu
tive group over a number �eld F . Let � be a �nite order

automorphism of G=F . Let L = G�� be the 
oset of � in the semidire
t produ
t G�h�i.

An element Æ 2 L(F ) is said to be ellipti
 if its 
entralizer G

Æ

is redu
tive and if the volume

of the quotient A

L

Z

Æ

(F )nI

Æ

(A

F

) is �nite. Here I

Æ

= (G

Æ

)

0

Z

�

, with Z the 
enter of G, and

A

L

= A

�

G

. The ellipti
 part of the tra
e formula is the distribution

T

e

(�) =

Z

A

G

G(F )nG(A )

X

Æ2L(F )

e

�

0

(x

�1

Æx) dx

with L(F )

e

the subset of ellipti
 elements in L(F ). In the talk we des
ribed the notion of

stable 
onjuga
y, introdu
ed various non abelian 
ohomologi
al obje
ts that des
ribe stable


onjuga
y 
lasses and allow an Fourier inversion formula. This formula is the �rst step

towards the stabilization of all ellipti
 terms. The next step is the transfer to endos
opi


groups.

Periods of Automorphi
 Forms and Appli
ations

Dihua Jiang

Let G be a redu
tive algebrai
 group de�ned over a number �eld F , and Q = L �N

be a 
losed subgroup of G (L redu
tive, N is unipotent). Let  be a 
hara
ter of

N(F )nN(A ) ! C

�

(A is the adeli
 ring of F ), S = Stab

L

( ). Set R = S �N .

For � 2 L

2

dis


(G) = L

2

dis


(Z

G

(A )G(F )nG(A )) de�ne

P

R; 

(�) =

Z

Z

0

R(F )nR(A )

� (
)  (r) dr
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whi
h is 
alled the period (integral) of � asso
iated to (R; ).

For arithmeti
 appli
ations, we refer to M. Harris' paper in "Motives", Pro
. Symp.

Pure Math 55 (2) (1991). We gave a report on our results on relations between periods

and automorphi
 L{fun
tions and the lifting of automorphi
 representations.

Spheri
al unitary dual for split 
lassi
al groups

Dan Barbas
h

Let G be a split group. In this talk I explored the relation between the spheri
al dual of

real and p{adi
 groups. The main result is that the parametrizations for split real and split

p{adi
 groups 
oin
ide. A spheri
al irredu
ible representation is "
lassi�ed" by exhibiting

it as a 
anoni
al subquotient of a prin
ipal series. The theory of intertwining operators

determines its unitarity (in prin
iple). Formally this is independent of the �eld. We then

exhibit a 
orresponden
e between 
ertain K{types (we 
all spheri
al K{types) for real and

p{adi
 groups where these intertwining operators 
oin
ide.

Matrix argument Kloosterman sums and the fundamental lemma

Masaaki Furusawa

This is a joint work with Joseph A. Shalika. We 
onje
ture that both of Ja
quet's relative

tra
e formulas for GL(2), where he has given another proof for Waldspurger's result on

the 
entral 
riti
al value for L(s; �), generalize to GSp(4). In fa
t we have proved the

fundamental lemma for the unit elements in the He
ke algebras for the two relative tra
e

formulas. We have 
omputed the orbital integrals and expressed them expli
itly in terms

of the 
lassi
al GL(2) Kloosterman sums.

As an illustration, let us des
ribe one of the results we obtained. Along the way we

dis
overed that our orbital integrals may be expressed by the matrix argument Kloosterman

sums.

Theorem. Let F be a non{ar
himedean lo
al �eld whose residual 
hara
teristi
 is not

equal to two. Let $ be a prime element in F and O

F

be the ring of integers in F .

Let q = #(O

F

=$O

F

). Let  be a 
hara
ter of F whose 
ondu
tor is O

F

. Then for

A =

�

� �


 Æ

�

2 $M

2

(O

F

) \GL

2

(F ) and � 2 O

�

F

, let

K

spl:

(A; �) =

Z

X

A

 [tr(X (

0 1

1 0

) + � � (

0 1

1 0

)A

�1

X

�1 t

A

�1

℄dX

where X

A

= fX 2 Sym

2

(F ) j XA 2 GL

2

(O

F

)g.

Then,

K

spl:

(A; �) = j4j

�1

� fKl(

2�

4

;

2�Æ

4

) +Kl(

2�

4

;

2�


4

)g

where 4 = detA; Kl(r; s) =

R

O

�

F

 (r�+ s�

�1

)d�:

We have also proved a similar formula for the anisotropi
 Kloosterman sum and gener-

alized the Davenport{Hasse relation to our 
ase.
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On the 
ohomology with 
ompa
t support of lo
ally symmetri
 spa
es

Birgit Speh

This is joint work with J. Rohlfs. Let G=Q be a redu
tive linear 
onne
ted algebrai
 group

and S the 
orresponding adeli
 lo
ally symmetri
 spa
e. Let e[P ℄ be a fa
e of its Borel

Serre 
ompa
ti�
ation

�

S; V a rational representation of G(R). We 
onstru
t a map 
or:

H

�

C

(e[P ℄;

~

V ) �! H

�

C

(S;

~

V ) expli
itly using di�erential forms. This map is dual to the

restri
tion res: H

�

(S; V )

�

=

H

�

(

�

S; V ) ! H

�

(e[P ℄; V ). This allows us to 
onstru
t forms

("pseudo Eisenstein forms") whi
h represent 
ohomology 
lasses in H

�

C

(S; V ) whi
h are

dual to those 
lasses 
onstru
ted using Eisenstein forms following Harder/S
hwermer.

Langlands{Shahidi method and fun
torial lift

Henry H. Kim

This is a joint work, partly with J. Cogdell & I. Piatetski{Shapiro and partly with

F. Shahidi. I will show that the Langlands{Shahidi method 
an be used to obtain Lang-

lands' fun
torial lift in the following 7 
ases, using 
onverse theorem of Cogdell-Piatetski-

Shapiro:

(1) GL

2

�! GL

3

(symmetri
 square: Gelbart{Ja
quet lift)

(2) GL

2

�GL

2

�! GL

4

(Ramakrishnan's result)

(3) GL

2

�GL

3

�! GL

6

(4) GL

4

�! GL

6

(exterior square)

(5) SO

2n+1

�! GL

2n

(6) Sp

2n

�! GL

2n+1

(7) SO

2n

�! GL

2n

.

Let H be the above group in the left hand side over a number �eld F . Then there is

an L{group homomorphism l : H

�

�! GL

n

(C ). Langlands' fun
toriality predi
ts that

there is a map from 
uspidal representations of H(A

F

) to automorphi
 representations of

GL

n

(A

F

). We 
onstru
t this map for generi
 
uspidal representations of H(A

F

), using


onverse theorem.

In (1), we use GL

1

� SL

2

� Sp

4

. We get an L{fun
tion L(S; �; Ad

2


X ) for � 
uspidal

representations of GL

2

(A

F

);X a Gr�ossen
hara
ter of F . For (3), we need to 
onsider the

triple L{fun
tions L(s; ���

1

��

2

) for �

1


uspidal representation of GL

2

(A

F

), �

2


uspidal

representation of GL

3

(A

F

), � 
uspidal representation of GL

m

(A

F

), m = 1; 2; 3; 4.

For m = 2, we 
onsider D

5

� 2 
ase in Shahidi (using Spin (10)). For m = 3, we 
onsider

E

6

� 1; for m = 4, 
onsider E

7

� 1.

One appli
ation is that we get a new estimate on Fourier 
oeÆ
ients of 
uspidal repre-

sentations of GL

2

.

Towards a more lo
al proof of the Langlands 
onje
ture for GL

n

over p{adi


�elds

Guy Henniart

This is a report on joint work with C. Bushnell. Let F be a �nite extension of Q

p

. The

Langlands 
onje
tures, re
ently proved by global means using the 
ohomology of Shimura
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varieties, give for ea
h positive integer n a bije
tion � ! �(�) between the set G

0

F

(n)

of irredu
ible degree n representations of W

F

, up to isomorphism, and the set A

0

F

(n) of

smooth irredu
ible super
uspidal representations ofGL

n

(F ), up to isomorphism. The main

property is the preservation of �{fa
tors: if  is a �xed non trivial 
hara
ter of F , then

�(� 
 �

0

; s;  ) = �(�(�)� �(�

0

); s;  ), for � 2 G

0

F

(n), �

0

2 G

0

F

(n

0

).

However, the global proofs shed no light on the nature of �{fa
tors, nor do they yield

anything expli
it about the 
orresponden
e. C. Bushnell and I have a strategy for another

proof, more expli
it and lo
al, whi
h uses both the 
y
li
 base 
hange of Arthur and Clozel

and our own (non galois) tame base 
hange.

For that strategy, it remains to get a dire
t proof of some properties of �{fa
tors for

pairs. The �rst one is now a theorem.

Let n; n

0

be powers of p n 6= n

0

. Assume � 2 A

0

F

(n); �

0

2 A

0

F

(n

0

) are inequivalent to

their twists by non{trivial unrami�ed 
hara
ters.

Theorem There exists 
 = 
(�; �

0

;  ) 2 F

�

su
h that, for all tame quasi
hara
ters � of

F

�

, !(�� � �

0

; s;  ) = �(
)

�1

�(� � �

0

; s;  ).

Conje
ture 1 �(���

0

; s;  ) behaves well under tame base 
hange, in parti
ular 
(�; �

0

;  )

is invariant under tame base 
hange.

Conje
ture 2 �(� � �

0

; 1=�;  ) � !

�Y n

�

!

�Y n

0

�

0

(
)G(
;  )

nn

0

mod p

th

power roots of unity,

where G(
;  ) is some expli
it Gauss sum depending on  and 
 modulo squares.

About the 
lassi�
ation of dis
rete series for 
lassi
al groups

Colette Moeglin

The goal of the talk was to explain what are the parameters whi
h 
an give a 
lassi�
a-

tion of dis
rete series for 
lassi
al groups (
ase of p{adi
 �elds). One needs an analogon of

the Jordan blo
ks (used in the 
lassi�
ation of unipotent orbits) and an analogon of lo
al

systems on orbits. Su
h de�nitions 
an be given using some properties of redu
ibility of


ertain indu
ed representations and some properties of Ja
quet's modules. But to prove

something, I need an assumption about the points of redu
ibility of indu
ed of 
uspidal rep-

resentations. With this assumption (known in some 
ase and whi
h follows from Arthur's


onje
tures) the result says that the 
uspidal support and the above parameters 
lassify

the dis
rete series. The surje
tivity in the theorem is a joint work with Marko Tadi
.

A Polya{Hilbert operator for automorphi
 L{fun
tions

Anton Deitmar

In analogy to the 
ase of zeta fun
tions of hyperboli
 dynami
al systems one seeks to

des
ribe the zeros of an automorphi
 L{fun
tion as the eigenvalues of the generator of a


ow.

We give the 
ow as 
entral multipli
ation on GL

n

(A ) and �nd a suitable spa
e of fun
tions

on whi
h the generator of the 
ow has as eigenvalues exa
tly the zeros of the L{fun
tion

along the 
riti
al line.
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As a by produ
t we get a new proof of the meromorphi
ity of general automorphi
 L{

fun
tions whi
h gives new insights to their analyti
 behavior.

Constru
tion of square{integrable representations of 
lassi
al p{adi
 groups

Marko Tadi

�




In the talk we reviewed some methods of 
onstru
tion of square{integrable representa-

tions of 
lassi
al p{adi
 groups, and talked about joint work with C. Moeglin ("Constru
-

tion of dis
rete series of 
lassi
al p{adi
 groups"). C. Moeglin atta
hed to ea
h dis
rete

series an admissible triple (whi
h is a 
ombinatorial obje
t modulo 
uspidals and 
uspidal

redu
ibilities), and showed inje
tivity. In the joint work surje
tivity is shown. The proof

of surje
tivity redu
es to the proof of square integrability of 
ertain representations. We

illustrated the arguments used in the paper in some examples. The proof is modulo a basi


assumption, whi
h is expe
ted to hold in general (in the generi
 
ase it is known that it

holds by F. Shahidi's work).

The above 
lassi�
ation of dis
rete series (modulo 
uspidals and 
uspidal redu
ibilities) also

gives a 
lassi�
ation of the non{unitary duals modulo 
uspidals and 
uspidal redu
ibilities.

An endos
opi
 lift for Spin

7

Nadya Gurevi
h

We 
onsider the theta 
orresponden
e asso
iated to the dual pair of type (A

1

� C

2

; B

3

)

inside E

7

and obtain a new example of fun
torial lift (on the level of unrami�ed represen-

tations).

We also 
onsider another theta{
orresponden
e asso
iated to the dual pair of type (A

1

�

C

2

; A

1

�A

1

) inD

6

and show that these two pairs �t into a tower, and the standard property

of a tower of theta{
orresponden
es holds.

Howe 
orresponden
e for dis
rete series

Goran Mui


In this talk I explain Howe lifts of dis
rete series for symple
ti
 orthogonal dual pairs.

More pre
isely, I use the 
lassi�
ation of dis
rete series for Sp(n; F ) in semisimple rank, due

to Moeglin and Tadi�
 in order to des
ribe the �rst o

uran
e in a �xed tower V

r

; r � 0,

the stru
ture of ea
h lift and the asymptoti
 properties of matrix 
oeÆ
ients of lifts of

dis
rete series Sp(n; F ) to O(V

r

); r � 0. I need the same assumption about the points

of redu
ibility of representations indu
ed from super
uspidals in rank{one 
ase that is

des
ribed in Moeglin's talk. In fa
t, there is no assumption for dis
rete series of Sp(n; F )

that are subquotients of representations indu
ed from super
uspidal representations having

Whittaker models.
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Tori
 varieties and modular forms

Paul Gunnells

Let ` � 1 be an integer, let N

�

=

Z

d

be a latti
e, and let M = Hom

Z

(N;Z). Let

deg : N �! (1=`)Z be a pie
ewise{linear fun
tion that is linear on the 
ones of some N{

rational 
omplete fan � < N 
 R. Let � 2 H and let g = e

2�i�

. We de�ne f

N;deg

: H ! C

by

f

N;deg

(
) =

P

m2M

P

C2�

(�1)


odimC

a:
:(

P

n2C^N

g

<m;n>

e

2�ideg(n)

).

Here the a:
: denotes analyti
 
ontinuation, and <;> is the pairing between M and N .

Then under 
ertain mild 
onditions on deg, we show that f

N;deg

is a holomorphi
 modular

form of weight d on the group �

1

(`).

By 
onsidering all possible pairs (N; deg) we obtain a subring J

1

(`) of the modular forms

of level `. We show that this subring is stable under the He
ke operators, Atkin{Lehner

lifting, and the Fri
ke involution. Moreover, we show that,modulo Eisenstein series, J

1

(`)

is isomorphi
 to the C {span of those 
uspidal eigenforms whose L{fun
tions do not vanish

at the 
enter of the 
riti
al strip.

This is joint work with Lev Borisov.

On the singularities of residual Eisenstein series

Jens Franke

Let f 2 A

2

(A

P

(R)

+

P (Q)N

P

(A )nG(A )) be a square integrable automorphi
 form and

(E

G

P

(f; �))(g) =

X


2P (Q)nG(Q)

exp((� + �

P

) �H

P

(
g))f(
g) � 2 (

�

a

P

)

C

its Langlands Eisenstein series. The 
onventions are made su
h that i

�

a

P

is the unitary axis.

If H is a singular hyperplane of E

G

P

(f; �) whi
h meets

�

a

+

P

+ i

�

a

P

(the tube domain over

the 
losed positive Weyl 
hamber), then H is real and meets

�

a

+

P

(the interior of the positive

Weyl 
hamber).

This fa
t is well known for 
uspidal f . In the general 
ase, I prove it using a �ltration

on the spa
e of automorphi
 forms.

Integrals of Bor
herds forms

Stephen Kudla

A basi
 quantity in Arakelov theory is the real number, asso
iated to a non{zero mero-

morphi
 fun
tion f :

K(f) = �

1

vol(X)

Z

X

log jf j

2

�

9



where X ' �nH is a uniformized 
urve of genus g � 2 and � is the hyperboli
 volume term.

When X is a Shimura 
urve asso
iated to an inde�nite division algebra over Q , meromor-

phi
 fun
tions f = 	(F ) 
an be 
onstru
ted by the method of Bor
herds, beginning with

a meromorphi
 ve
tor valued form F of weight

1

2

with q{expansion of the form

F (�) =

X

�

X

m




�

(m)q

m

� �; 


�

(m) 2 Z for m � 0:

Then 	(F ) has weight k = 


0

(0); and

K(	(F )) = �

1

vol(X)

Z

X

log j	(Z; F )y

k=2

j

2

d�(z)

=

X

�

X

m�0




�

(�m)K

�

(m)

where K

�

(m) is given by writing the Eisenstein series of weight

3

2

atta
hed to �

E

0

(�;

1

2

; �

3

2

) =

X

m

b

�

(m; v)q

m

:

Then

K

�

(m) = lim

v!1

b

�

(m; v) if m 6= 0

K

�

(0) =

1

2

(log(2�) + �

0

(1)):

Beri
hterstatter: Joa
him S
hwermer (Wien)
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