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The meeting was organized by S. Kudla (College Park, Maryland) and J. Schwermer
(Diisseldorf/Wien).

The functoriality principle, formulated by R. P. Langlands in 1967, has stimulated a
tremendous amount of research in representation theory, automorphic forms and number
theory in the intervening years. The meeting focused on the interplay between local repre-
sentation theory and its global applications in the theory of automorphic forms, especially
functoriality and automorphic L—functions.

The program of 18 lectures emphasized to survey recent developments in both local and
global theory with the hope of fostering new collaborative efforts, particularly among the
younger generation of researchers in these areas. The topics included:

1. Local representation theory
The local Langlands correspondence provides a conjectural parametrization of the
[L-packets of] irreducible admissible representations of the group of F—points G(F)
of a reductive group G over a local field F':
— the case of the general linear group
— classical groups (e.g. construction of square—integrable
representations of classical p—adic groups)

2. Global theory: automorphic representations

The functoriality priniciple predicts many relations among the automorphic forms
on different groups. In particular, one expects that every form on a group G has a
functorial lift to GL(n) for some n. Roughly speaking, the set of forms on G with a
common image are said to form a L-packet. But the actual construction of functorial
lifts and L—packets remains a fundamental open problem:

— Arthur-Selberg and relative trace formulas (e.g. stabilization of the

twisted trace formula, fundamental lemma)
— ”backwards”—functoriality and L—functions, converse theorems
— Integrals of automorphic forms over certain subgroups



3. Interactions of the theory of automorphic forms with (arithmetic) (algebraic) geom-
etry.

The variety of these topics indicates the rigorous activity and diversity of current research
in automorphic forms, and stimulated much fruitful discussion.



Abstracts

Converse Theorems and Liftings
J. CoGDELL & I. PIATETSKI-SHAPIRO.

Langlands functoriality tells us that whenever we have a map of L—groups there should
be an associated lifting of automorphic forms. When the target group is GLy, one method
for establishing such a lift is the Converse Theorem.

In particular, associated to the embedding
“SO2n41 = Span(C) = GL2y(C) = “G Ly,

there should be a lift of automorphic forms from SOs,1(A) to G Ly, (A). We apply the
converse theorem to show that a globally generic cuspidal representation 7 of SOs,41(A)
(over a number field) has a weak lift to an automorphic representation of G Lo, (A).

The converse theorem we use to establish automorphicity of an irreducible admissible
representation IT of GLy(A) requires we show that its twisted L—function L(s,7 x II) is
"nice” for all cuspidal automorphic representations 7 which are of the form 7 = 7’ ® 7,
with 7/ unramified out a fized finite set of places S and 7 a fized idele class character, as 7
runs over cuspidal representations of GL,,(A) with 1 <m < N — 1.

For 7 our cuspidal representation of SOs,1(A) we first control the twisted L—functions
L(s,7 x w) with 7 as above. Then we describe local lifts m, — II, from SOg,,1(k,) to
G Ly, (k,), and then finally apply the converse theorem to IT = QIT,.

The use of the (highly ramified) twist by 7 lets us rule out some extraneous global poles of
L(s,7 x ) and to compensate for the fact that we do not know what the local lift should
be for those finite places v where 7, is ramified.

On the first eigenvalue of Laplacian for locally symmetric manifolds
JIAN — SHU L1

Consider a simple Lie group G with accociated symmetric space X = G/K. For any
lattice T' C G let A(T') be the first positive eigenvalue of the Laplace operator on L*(T'\ X).
Let v(G) be the infimum of all A;(T") as T" runs through all lattices in G. In this talk we
outline a computation of v(G) for groups with Kazhdan’s property 7. We relate v(G)
with another invariant A;(G) which is defined in terms of the unitary representation of G.

For most classical groups and some exceptional groups, we compute \;(G) explicitly, and
prove that v(G) = A\ (G).

Automorphic Green functions associated with the secondary spherical
functions

TAKAYUKI ODA

This is a joint work with Masao Tsuzuki of Sophia University at Tokyo. To explain
the moral of our investigation, we discuss here the typical case G = SU(n,1) and H =
S(U(1)xU(n—1,1)). The associated symmetric domain X = G/K is a complex hyperball



of dimension n, and the orbit X, of a point 0 = eK of X under H is also a complex
hyperball, but of codimension one. Let A be the G—invariant Laplacian on X. Then there
is a unique H—-invariant solution for the eigenvalue problem

Ap=(n*—s%)p, seC,

which is a H x K-invariant spherical function on GG. If we admit the singularity along the
orbit Xy, then the same equation has another solution which has the logarithmic singu-
larity along X,. Among such solutions, we consider the unique one which has the fastest
decay at oo. We call this the secondary spherical function ¢£2).

Let E be an imaginary quadratic field and ¢ a non-degenerate Hermitian form of Witt
index 1 on an E—vector space with signature (n+,1—). Then ¢ defines a commensurable

class of arithmetic lattices in GG. For such a lattice I, starting with the function ¢§2), we
can construct Poincaré series

Gs(z) = Z 0P (v,), zel\X.

YETNH\T

Our main purpose here is to establish some fundamental properties of G(z2).

(Pre—)Stabilization of elliptic singular terms in the twisted trace formula
J.—P. LABESSE

Let G be a connected reductive group over a number field F. Let © be a finite order
automorphism of G/F. Let L = G x © be the coset of © in the semidirect product G x (©).
An element § € L(F) is said to be elliptic if its centralizer G is reductive and if the volume
of the quotient Ay Z;(F)\I;(Ar) is finite. Here I; = (G?)°Z®, with Z the center of G, and
Ap = AS. The elliptic part of the trace formula is the distribution
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with L(F'), the subset of elliptic elements in L(F'). In the talk we described the notion of
stable conjugacy, introduced various non abelian cohomological objects that describe stable
conjugacy classes and allow an Fourier inversion formula. This formula is the first step
towards the stabilization of all elliptic terms. The next step is the transfer to endoscopic
groups.

Periods of Automorphic Forms and Applications
DIiHUA JIANG

Let G be a reductive algebraic group defined over a number field F', and Q =L - N
be a closed subgroup of G (L reductive, N is unipotent). Let ¢ be a character of
N(F)\N(A) — C* (A is the adelic ring of F), S = Staby,(¢). Set R =S5 - N.

For ¢ € L2, (G) = L?%..(Zc(A)G(F)\G(A)) define
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which is called the period (integral) of ¢ associated to (R, ).

For arithmetic applications, we refer to M. Harris’ paper in ”Motives”, Proc. Symp.
Pure Math 55 (2) (1991). We gave a report on our results on relations between periods
and automorphic L—functions and the lifting of automorphic representations.

Spherical unitary dual for split classical groups
DAN BARBASCH

Let GG be a split group. In this talk I explored the relation between the spherical dual of
real and p—adic groups. The main result is that the parametrizations for split real and split
p—adic groups coincide. A spherical irreducible representation is ”classified” by exhibiting
it as a canonical subquotient of a principal series. The theory of intertwining operators
determines its unitarity (in principle). Formally this is independent of the field. We then
exhibit a correspondence between certain K—types (we call spherical K—types) for real and
p—adic groups where these intertwining operators coincide.

Matrix argument Kloosterman sums and the fundamental lemma
MASAAKI FURUSAWA

This is a joint work with Joseph A. Shalika. We conjecture that both of Jacquet’s relative
trace formulas for GL(2), where he has given another proof for Waldspurger’s result on
the central critical value for L(s,7), generalize to GSp(4). In fact we have proved the
fundamental lemma for the unit elements in the Hecke algebras for the two relative trace
formulas. We have computed the orbital integrals and expressed them explicitly in terms
of the classical GL(2) Kloosterman sums.

As an illustration, let us describe one of the results we obtained. Along the way we
discovered that our orbital integrals may be expressed by the matrix argument Kloosterman
sums.

Theorem. Let F' be a non—archimedean local field whose residual characteristic is not
equal to two. Let w be a prime element in F and Op be the ring of integers in F.
Let ¢ = #(Op/wOr). Let 1 be a character of F whose conductor is Op. Then for
A= (27) € wMy(Or) N GLy(F) and € € O, let
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where Xy = {X € Sym?(F) | XA € GLy(Or)}.

Then,
_ 200 2€d 26 2ey
— L, - - = L
where A =det A, Kl(r,s) = [ (re+ se™')de.
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We have also proved a similar formula for the anisotropic Kloosterman sum and gener-
alized the Davenport—Hasse relation to our case.



On the cohomology with compact support of locally symmetric spaces
BIRGIT SPEH

This is joint work with J. Rohlfs. Let G/Q be a reductive linear connected algebraic group
and S the corresponding adelic locally symmetric space. Let e[P] be a face of its Borel
Serre compactification S,V a rational representation of G(R). We construct a map cor:
Hg(e[P),V) — HE(S,V) explicitly using differential forms. This map is dual to the
restriction res: H*(S,V) = H*(S,V) — H*(e[P],V). This allows us to construct forms
("pseudo Eisenstein forms”) which represent cohomology classes in H¢(S, V') which are
dual to those classes constructed using Eisenstein forms following Harder/Schwermer.

Langlands—Shahidi method and functorial lift
HENRY H. KIM

This is a joint work, partly with J. Cogdell & I. Piatetski-Shapiro and partly with
F. Shahidi. T will show that the Langlands—Shahidi method can be used to obtain Lang-
lands’ functorial lift in the following 7 cases, using converse theorem of Cogdell-Piatetski-
Shapiro:

(1) GLy — GL3 (symmetric square: Gelbart—Jacquet lift)
(2) GLy x GLy — G L, (Ramakrishnan’s result)

(3) GLy x GLg — GL(;

(4) GLy — GLg (exterior square)

(5) SO2my1 — GLo,

(6) Span — GLopys

Let H be the above group in the left hand side over a number field F'. Then there is
an L—group homomorphism [ : H* — GL,(C). Langlands’ functoriality predicts that
there is a map from cuspidal representations of H(Arp) to automorphic representations of
GL,(Ar). We construct this map for generic cuspidal representations of H(Ar), using
converse theorem.

In (1), we use GL; x SLy C Sps. We get an L-function L(S, 7, Ad*> ® X) for  cuspidal
representations of GLy(Ap), X a Grossencharacter of F. For (3), we need to consider the
triple L—functions L(s, o X m; X m3) for 7y cuspidal representation of G Ly(Ar), 7o cuspidal
representation of GL3(Ar), o cuspidal representation of GL,(Ar), m =1,2,3,4.

For m = 2, we consider Dy — 2 case in Shahidi (using Spin (10)). For m = 3, we consider
Eg — 1; for m = 4, consider E; — 1.

One application is that we get a new estimate on Fourier coefficients of cuspidal repre-
sentations of G L.

Towards a more local proof of the Langlands conjecture for GL, over p—adic
fields

GUuYy HENNIART

This is a report on joint work with C. Bushnell. Let F' be a finite extension of Q,. The
Langlands conjectures, recently proved by global means using the cohomology of Shimura



varieties, give for each positive integer n a bijection ¢ — 7(o) between the set G%(n)
of irreducible degree n representations of Wy, up to isomorphism, and the set A%(n) of
smooth irreducible supercuspidal representations of G L, (F'), up to isomorphism. The main
property is the preservation of e—factors: if 1 is a fixed non trivial character of F', then
c(c®0',s,0) =e(n(o) x w(c’),s,9), for 0 € G%(n), o’ € G%L(n').

However, the global proofs shed no light on the nature of e-factors, nor do they yield
anything explicit about the correspondence. C. Bushnell and I have a strategy for another
proof, more explicit and local, which uses both the cyclic base change of Arthur and Clozel
and our own (non galois) tame base change.

For that strategy, it remains to get a direct proof of some properties of e-factors for
pairs. The first one is now a theorem.

Let n,n’ be powers of p n # n'. Assume 7 € A%(n), ©' € A%(n/) are inequivalent to
their twists by non—trivial unramified characters.

Theorem There exists ¢ = ¢(m,7’,1) € F* such that, for all tame quasicharacters x of
F*, wxr x 7, s,9) = x(c) te(m x 7', 5,9).

Conjecture 1 €(m x 7', s, 1) behaves well under tame base change, in particular ¢(r, 7', ¢)
is invariant under tame base change.

Conjecture 2 e(m x ', 1/, 1b) = w; w Y™ (¢)G(c, )™ mod p™ power roots of unity,

where G/(c, 1) is some explicit Gauss sum depending on ¢ and ¢ modulo squares.

About the classification of discrete series for classical groups
COLETTE MOEGLIN

The goal of the talk was to explain what are the parameters which can give a classifica-
tion of discrete series for classical groups (case of p—adic fields). One needs an analogon of
the Jordan blocks (used in the classification of unipotent orbits) and an analogon of local
systems on orbits. Such definitions can be given using some properties of reducibility of
certain induced representations and some properties of Jacquet’s modules. But to prove
something, I need an assumption about the points of reducibility of induced of cuspidal rep-
resentations. With this assumption (known in some case and which follows from Arthur’s
conjectures) the result says that the cuspidal support and the above parameters classify
the discrete series. The surjectivity in the theorem is a joint work with Marko Tadic.

A Polya—Hilbert operator for automorphic L—functions
ANTON DEITMAR

In analogy to the case of zeta functions of hyperbolic dynamical systems one seeks to
describe the zeros of an automorphic L—function as the eigenvalues of the generator of a
flow.

We give the flow as central multiplication on GL, (A) and find a suitable space of functions
on which the generator of the flow has as eigenvalues exactly the zeros of the L—function
along the critical line.



As a by product we get a new proof of the meromorphicity of general automorphic L—
functions which gives new insights to their analytic behavior.

Construction of square—integrable representations of classical p—adic groups
MARKO TADIC

In the talk we reviewed some methods of construction of square—integrable representa-
tions of classical p—adic groups, and talked about joint work with C. Moeglin (”Construc-
tion of discrete series of classical p—adic groups”). C. Moeglin attached to each discrete
series an admissible triple (which is a combinatorial object modulo cuspidals and cuspidal
reducibilities), and showed injectivity. In the joint work surjectivity is shown. The proof
of surjectivity reduces to the proof of square integrability of certain representations. We
illustrated the arguments used in the paper in some examples. The proof is modulo a basic
assumption, which is expected to hold in general (in the generic case it is known that it
holds by F. Shahidi’s work).

The above classification of discrete series (modulo cuspidals and cuspidal reducibilities) also
gives a classification of the non—unitary duals modulo cuspidals and cuspidal reducibilities.

An endoscopic lift for Spin;
NADYA GUREVICH

We consider the theta correspondence associated to the dual pair of type (4; x Cy, Bs)
inside E7 and obtain a new example of functorial lift (on the level of unramified represen-
tations).

We also consider another theta—correspondence associated to the dual pair of type (A; X
Cy, A1 x Ay) in Dg and show that these two pairs fit into a tower, and the standard property
of a tower of theta—correspondences holds.

Howe correspondence for discrete series
GORAN Muilc

In this talk I explain Howe lifts of discrete series for symplectic orthogonal dual pairs.
More precisely, T use the classification of discrete series for Sp(n, F') in semisimple rank, due
to Moeglin and Tadié¢ in order to describe the first occurance in a fixed tower V,,r < 0,
the structure of each lift and the asymptotic properties of matrix coefficients of lifts of
discrete series Sp(n, F') to O(V,); r > 0. I need the same assumption about the points
of reducibility of representations induced from supercuspidals in rank-one case that is
described in Moeglin’s talk. In fact, there is no assumption for discrete series of Sp(n, F')
that are subquotients of representations induced from supercuspidal representations having
Whittaker models.



Toric varieties and modular forms
PAauL GUNNELLS

Let £ > 1 be an integer, let N = Z9 be a lattice, and let M = Homgz(N,Z). Let
deg : N — (1/0)Z be a piecewise-linear function that is linear on the cones of some N-—
rational complete fan ¥ < N @ R. Let 7 € H and let g = e*™7. We define fy gy : H — C
by

fN,deg(C): Z Z(—I)COdimCCL.C.( Z g<m,n>62m'deg(n))‘

meM CeX neCAN

Here the a.c. denotes analytic continuation, and <, > is the pairing between M and N.
Then under certain mild conditions on deg, we show that fx 4., is a holomorphic modular
form of weight d on the group T'y(¢).

By considering all possible pairs (N, deg) we obtain a subring .J;(¢) of the modular forms
of level /. We show that this subring is stable under the Hecke operators, Atkin—Lehner
lifting, and the Fricke involution. Moreover, we show that,modulo Eisenstein series, J; (/)
is isomorphic to the C—span of those cuspidal eigenforms whose L—functions do not vanish
at the center of the critical strip.

This is joint work with Lev Borisov.

On the singularities of residual Eisenstein series
JENS FRANKE

Let f € Ay(Ap(R)TP(Q)Np(A)\G(A)) be a square integrable automorphic form and

(ES(F )9 = > exp((\+pp)- Hp(vg))f(vg) A€ (r)c
+EPONG(Q)

its Langlands Eisenstein series. The conventions are made such that iap is the unitary axis.

If H is a singular hyperplane of ES(f, \) which meets a5, + idp (the tube domain over
the closed positive Weyl chamber), then H is real and meets a}, (the interior of the positive
Weyl chamber).

This fact is well known for cuspidal f. In the general case, I prove it using a filtration
on the space of automorphic forms.

Integrals of Borcherds forms
STEPHEN KUDLA

A basic quantity in Arakelov theory is the real number, associated to a non—zero mero-
morphic function f:

K(f) =~y [ sl

X



where X ~ T'\'{ is a uniformized curve of genus g > 2 and p is the hyperbolic volume term.
When X is a Shimura curve associated to an indefinite division algebra over Q, meromor-
phic functions f = W(F) can be constructed by the method of Borcherds, beginning with
a meromorphic vector valued form F' of weight % with g—expansion of the form

F(r) = ZZC¢(m)qm ¢, cy(m) € Z for m <0.
¢ m
Then U(F) has weight k£ = ¢(0); and

KU(P) =~ [ 10gI9(Z, Py du)

=D csl=m)Ky(m)

¢ m>0

where K,(m) is given by writing the Eisenstein series of weight 2 attached to ¢
1
E(r,5.6%) = %:b¢(m, v)g™.

Then
Ky(m) = lim by(m,v) ifm#0
V—00

K,(0) = %(109(277) +T(1)).

Berichterstatter: Joachim Schwermer (Wien)
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