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Die Tagung fand unter der Leitung von Pierre Lochak (Ecole Normale Sup�erieure, Paris) und

J

�

urgen Wolfart (Johann Wolfgang Goethe{Universit

�

at, Frankfurt am Main) statt. Im Mittelpunkt

der Vortr

�

age standen Fragen aus dem Bereich der Bely�� Fl

�

achen und der Grothendieck{Teichm

�

uller

Gruppe

d

GT . Dabei wurden unter anderem folgende Schwerpunkte gesetzt:

Galois{Invarianten von Dessins, die Bedeutung der Ecken eines Dessins, explizite Uniformisierung,

Moduli{K

�

orper und De�nitionsk

�

orper, Teichm

�

uller{ und Modulraum, De�nition von

d

GT nach

Drinfeld und andere Beschreibungen dieser Gruppe, Zusammenhang mit Zopfgruppen, die abso-

lute Galois{Gruppe als Untergruppe von

d

GT .

Zwischen den Vortr

�

agen blieb Zeit zu vielen vertiefenden Diskussionen, die allen Teilnehmern

zu neuen Einsichten und/oder Denkans

�

atzen verhalfen. In diesem Zusammenhang ist auch ein

von Pierre Lochak spontan gehaltener

�

Ubersichtsvortrag mit dem Thema

"

Die Grothendieck{

Teichm

�

uller Gruppe: Woher und woin?\zu erw

�

ahnen, der einerseits die Motivation zur Betrach-

tung dieser Gruppe zu erkl

�

aren versuchte und andererseits Ausblicke in die Zukunft (Vermutungen,

ungel

�

oste Probleme) vorstellte.
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Vortragsausz

�

uge

J

�

urgen Wolfart

The arithmetic fundamental group

Some basic concepts were introduced: The topological fundamental group

�

1

top

(X � S) for a compact Riemann surface X (= smooth algebraic projective curve over some

sub�eld k of C ) minus a �nite set S of punctures, its pro�nite completion �̂

top

1

(X�S), and isomor-

phic to that �̂

1

, the algebraic fundamental group �

alg

1

(X � S) = Gal (
=C (X)), where 
 denotes

the maximal sub�eld 
 � C (t) unrami�ed outside S. In more detail the "Lefschetz principle"

was explained, i.e. that for K algebraically closed and S � P

1

(K), S �nite (X = P

1

), we have

even �

s

:= �

alg

1

(X �S)

�

=

Gal (
=K(X)) the "geometric Galois group", meaning that every �nite

covering of P

1

unrami�ed outside S � P

1

(K) may be de�ned over K. This implies in particular

one direction of Bely��'s theorem (if � : Y 7! P

1

is rami�ed above 0; 1;1 only, then Y can be

de�ned over Q ). Finally the short exact sequence

1 7! �

s

7! Gal (
=k(t)) 7! G

k

7! 1

was explained, where G

k

= Gal

�

Q=k

�

and 
 is again maximal unrami�ed outside a �nite set

S � P

1

(k), 
 � k(t), k some number �eld.

J

�

org Zipperer

Bely��'s theorem and its variants

A meromorphic function on a compact, connected Riemann surface with only three critical values

(which can be assumed to be 0; 1;1) is called a Bely�� function. Bely�� 's theorem was proved which

states that on every smooth complete curve de�ned over Q there exists a Bely�� function. Together

with Weil's descent theorem this gives the following characterization: a complete smooth complex

curve X may be de�ned over Q i� there exists a Bely�� function on X .

Moreover the notions of (pre-clean, clean) dessin, meaning a "nice" embedding of a 1{complex

in a Riemann surface were introduced and it was proved that the isomorphism classes of these

combinatorial objects are paramatrized by the transitive permutation representations of the ori-

ented cartographic group C

2

+

. Since C

2

+

�

=

�

1

(P

1

(Q )=(l

1

2

) (l

1

being the loop around 1 on P

1

(Q )

), isormophism classes of clean dessins are in bijection with those of the clean Bely�� functions, thus

giving a combinatorial description of those complex curves which are de�ned over Q .

Finally the following equivalences were proved (which are all consequences of Bely�� 's theorem):

(i) a smooth complete complex curve X is de�ned over Q

, (ii) X

�

=

U=�, for U = H (the upper half{plane), C or S

2

and � a subgroup

of �nite index in cocompact triangle group.

, (iii) X is biholomorphic equivalent to a Riemann surface with an equilateral

complex structure.

Hilmar Hauer

Examples. Galois actions

The absolute Galois group G

Q

= Gal(Q=Q) acts on the set of dessins via the action on the de�n-
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ing coe�cients of the corresponding Bely�� pairs. We saw examples of dessins in genus 0 and their

Galois orbits. In addition we proved that G

Q

acts faithfully on the set of dessins in genus 0 resp.

1. We introduced the monodromy group and the cartographic group and showed that they are

invariant under this action (up to conjugacy). In particular, this implies the invariance of the

number of vertices and edges and the genus of a dessin.

Bernhard K

�

ock

Moduli �elds and �elds of de�nition

The moduli �eld of a curve X de�ned over Q is the smallest sub�eld K of Q such that X is

isomorphic to X

�

for all � 2 Aut

�

Q=K

�

. Using Galois descent we proved that X is de�ned over

its moduli �eld, if X has no automorphisms (which holds for "almost all" X) or if X has many

automorphisms (i.e. if the canonical projection X 7! X=Aut(X) is a Bely�� function). Furthermore

we showed that certain "generic" hyperelliptic curves of even genus are not de�ned over their

moduli �eld.

Manfred Streit

Uniformization, equations and Galois actions made explicit

A Bely�� function � is called regular if it determines a Galois cover and uniform if rami�cation

orders do not vary on the �ber �

�1

(x), x 2 P

1

. For regular and uniform Bely�� pairs the univer-

sal covering transformation group can be constructed as a torsion{free subgroup of a cocompact

triangle group. In the regular case of a Bely�� pair the canonical model of the (non{hyperelliptic,

non{trigonal, g > 4) curve is cut out by quadrics, even the canonical ideal is generated by them,

and so the action of the automorpism{group can be used to e�ectively calculate the canonical

model in small genera. Also it can be used to calculate Gal(Q=Q){orbits of special curves, like

the Macbeath{Hurwitz curves.

Walter Gubler

Vertices of dessins and CM-points

Let � : C 7! P

1

be a Bely�� function. Choose p; q resp. r as a multiple of the rami�cation orders

over 0; 1 resp. 1 with 1=p+1=q+1=r < 1. Let � be the triangle group �(p; q; r) and look at the

following diagram:

H

P

1

= �nH

C

?

j

�

�

�

��

�

p

p

p

p

p

p

p

p

p

p

z

9! h

) C

�

=

�

0

nH , � � �

0

= covering group of h

�

0

may not be arithmetic, but we have a "modular embedding theorem" (Cohen, Wolfart):

a) There exists an arithmetic group � acting on H

r

, a Shimura variety

V = �nH

r

such that �

0

is a subgroup of �.

b) There exists an analytic embedding F : H ,! H

r

which is �

0

� �{equivariant.

c) The quotient morphism F : C 7! V is de�ned over Q .

d) F

�

�

�1

(f0; 1;1g)

�

� f special points of the Shimura variety V g.

The goal of the talk was to construct V as a moduli space of abelian varieties with certain gener-

alized complex multiplication.

Georg Hein

Weierstra� points on regular maps

We reported on the following result of Singerman and Watson:
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Let � : X 7! P

1

be a Bely�� map which is Galois, then we have:

a) For genus(X) 2 f2; 3; g all Weierstra� points of X are rami�ed.

b) for genus(X) 2 f4; 5; g the following holds:

(i) all Weierstra� points are rami�ed, or

(ii) all Weierstra� points are rami�ed with respect to a second Bely��

function, or

(iii) X is of genus 5 and the rami�cation indices of � are 2; 6 and 15.

Martin M

�

oller

Further Galois invariants

We introduced a new Galois invariant for a curveX with many automorphisms induced by the trace

of the action of Aut(X) on H

0

(X;


X=Q

). The Eichler trace formula enables us to compute this

invariant when the �xed{point{behaviour of Aut(X) is known. As an example, we studied a class of

curves with

Aut(X) = Z

p

o Z

q

=: G de�ned over Q(�

q

), where this invariant is able to distinguish the

di�erent Galois orbits while the cartographic group is always (G�G)o S

2

.

Niko Naumann

Rigidity and the inverse Galois problem

We prove the most basic rigidity theorem over Q mainly following Serre's Topics in Galois theory.

As an example we derive the theorem, due to Hilbert, that S

n

and A

n

have regular G-realizations

over Q. Finally, by way of example, we explain variants and generalization.

Razvan{Dinu Litcanu

Bely�� functions, degrees and heights

The results of this talk try to give an answer to a question of Bogomolov and Szpiro, who had the

intuition that height functions on the moduli space of curves could be obtained using the degree

of Bely�� functions. We de�ne the Bely�� degree of a curve X de�ned over a number �eld as the

minimal degree of a Bely�� function � : X 7! P

1

, and the Bely�� degree of a rational point x 2 X

as the minimal degree of a Bely�� function � : X 7! P

1

such that x 2 �

�1

(f0; 1;1g). We prove

�niteness results for these invariants, results which show that they have some properties of height

functions, but they are not "arithmetic enough". We also give an upper bound for the Bely��

degree of a rational point on the projective line in terms of its algebraic degree and height. The

proofs use, on the one hand, the Grothendieck correspondence between Bely�� pairs and "dessin

d'enfants" and Bely��'s algorithm on the other hand.

Dan Fulea

P

1

minus three points and polylogarithms

There is a tentative, close but speculative parallelism between the "world of the Grothendieck{

Teichm

�

uller{group actions" ("anabelian geometry") and the motivic (and/orK{theoretical) world

("abelian geometry"). The talk tried to present "common" objects, ideas and conjectures. The

starting point is the Knizhnik{Zamolodchikov equation in the (special) form r

KZ

G = 0, where

r :=

d

dz

�

�

A

z

+

B

z�1

�

dz, A;B non{commuting symbols generating the group ring of the free

group with 2 generators F

2

. Its solution leads to the construction of o n e associator, and after

having it and simultaneously the transitive action of the Grothendieck{Teichm

�

uller group on the

set of all associators (Drinfeld 1990) we obtain a huge set of associators. One instance of this
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general solution is given by specializing A;B to the (nilpotent) matrices e

0

; e

1

2 gl

n+1

(Q):

e

0

:=

2

6

6

6

6

6

6

4

0

1

.

.

.

.

.

.

.

.

.

1 0

3

7

7

7

7

7

7

5

; e

1

:=

2

6

6

6

6

6

6

4

0

1 0

.

.

.

.

.

.

0

3

7

7

7

7

7

7

5

The solution r

KZ

L = 0 gives the "polylogarithmic extension" L. Polylogarithms appear naturally

and essentially in K{theory as regulators to the Deligne{Cohomology. A striking parallelism at

conjectural level appears between:

� the (Deligne){Beilinson{Soule conjecture about the graded K{theory pieces K

[j]

n

(F ),

j � n, that (should) \jump only in odd degrees" K

[1]

1

(F ), K

[2]

3

(F ), K

[3]

5

, . . .

� and a conjecture in Drinfeld (1990) about the Lie algebra grt

1

(F ) that also should "only

jump in odd degrees".

Thilo Kuessner

Braids

The braid group B

n

(X) of a space X is de�ned as �

1

of the con�guration space of n{tuples. We

proved the classical presentation of Artin's braid group B

n

(R

2

). Furthermore we showed that the

mapping class groupM(0; n) of the n{punctured sphere can be obtained from Artin's braid group

by quotienting out the sphere relation and the center relation. The moduli space M

0;n

of complex

structures with n marked points on the sphere is the con�guration space of (n � 3){tuples on

P

1

(C )nf0; 1;1g (for n = 4 this correspondence is just the cross{ratio). �

1

(M

0;n

) equals M(0; n).

Finally we discussed various aspects of the stable compacti�cation of M

0;5

and how it may be

described in a combinatorial way.

Alexis Marin

An "elementary proof" of the Uniformization theorem

A Riemann surface is simple if each of its components is either isomorphic to

b

C or elementary (�

isomorphic to D).

Lemma A: Let U and V be two elementary open sets in a compact Riemann surface S = U [V

then S

�

=

b

C .

An open h{polygon is an open set U such that U = Int(U) and such that the boundary of U

is a piecewise analytic curve @U . A closed h{polygon is the closure of an open one. A cell is a

compact h{polygon E with Int(E) elementary. A cell E is peripherical in a closed h{polygon F

if E � F and @E \ @F is an arc.

Lemma A': If a compact h{polygon K = Int

K

(E

1

) [ Int

K

(E

2

) is the union of the relative

interior of two peripherical cells then K is a cell.

Lemma B: If 
 is an open h{polygon in a planar Riemann surface P such that 
 is compact

and 
 � U

1

[ U

2

where the U

i

are are simple and Pn
 is connected then 
 is simple.

Theorem 1: A compact planar Riemann surface is simple.

Lemma C: A compact component X of the boundary of a Riemann surface with boundary has

a neighbourhood isomorphic to a neighbourhood of S

1

in D.

Lemma D: If K is a compact set in a Riemann surface T then there is a compact Riemann

surface S containing an h{polygon V isomorphic to a neighbourhood U of K in T and such that

SnU is a collection of cells. In particular S is planar if T is.

Theorem 2: A connected planar Riemann surface is isomorphic to an open set of

b

C .
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The implications are: A) A

0

)

�

B ) 1

C ) D

�

) 2.

A ) A

0

and C ) D use the construction on the double of an open h{polygon U along C, a

curve of its boundary, of a holomorphic structure making U [C a Riemann surface with boundary.

A;A

0

) C and D ) 2 uses the Montel criterion: if a connected set U in a Riemann surface is a

union of charts C

i

such that for all i; j there is a k with C

k

� (C

i

[ C

j

) then U is a chart.

Leonardo Zapponi

Galois invariants and Strebel di�erentials

There are two central and related questions concerning dessins d'enfants: how far is a valency class

(set of dessins having the same rami�cation data) from being a Galois orbit? Is it possible to give a

combinatorial description of the G

Q

{action? These two questions are really di�cult, and in order

to have some new results, the general strategy is to reduce to special cases (families) of dessins

having some common combinatorial and topological properties. In this talk, we are concerned

with the so{called diameter four trees, a class of dessin d'enfants on the Riemann sphere that

are really simply described from a combinatorial point of view. The aim of the talk is to prove a

conjecture stated by Kotchetkov in 1997, relating the galois action to some arithmetical properties

of the rami�cation indices. The central tool we use is a correspondence between dessins d'enfants

and ribbon graphs. These last objects can be considered as a generalization (continuous) of the

concept of dessins d'enfants. They arise from the theory of Strebel di�erentials and were used in

order to perform a cellular decomposition of the moduli space of curves.

Gregory Ginot

Braided categories and the Grothendieck{Teichm

�

uller group

The main goal of the talk was to give Drinfeld's description of

d

GT , the Grothendieck{Teichm

�

uller{

group. The expos�e split into two parts: In the �rst one, the de�nition of braided categories was

given: roughly speaking one considers a category with a tensor product which is neither commuta-

tive nor associative, but endowed with natural families of isomorphisms satisfying some relations

(triangle, pentagon, hexagon) as substitute for the lack of associativity and commutativitiy. Then

we described the category of braid (and pro�nite braid) which is braided and in fact has some

universal properties which we brie
y mentioned. In the second part

d

GT was de�ned following

Drinfeld as a "subgroup" of

b

Z�

^

F

2

(with a di�erent product!). The idea of Drinfeld, that is to

make pure braid groups K

n

"act" on a braided category, was explained. In fact we sketched the

proof that the 3 equations describing

d

GT come from the fact that one wants to �nd an action which

carries the structure of a braided category into another structure of braided category. Finally we

used this categorical construction to explain the action of

d

GT on braid groups.

David J. Green

The Grothendieck{Teichm

�

uller group again

A second description of the pro�nite Grothendieck{Teichm

�

uller group

d

GT was given, this time as

a group of automorphisms of the pro�nite completion of the free group on two generators. The

embedding of Gal(Q=Q) in

d

GT was constructed explicitly and shown to be an injective group

homomorphism. In particular, it was stressed that automorphisms coming from Gal(Q=Q) satisfy

the pentagon relation. The two{level principle of Grothendieck was mentioned brie
y.

Bernhard Hanke, Dieter Kotschik

Moduli space of curves

Let S be a closed smooth real surface of genus g. Denote by C the set of complex structures

on S compatible with a given orientation. The di�eomorphism group G = Diff

+

(S) acts on C
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via pull{back. The moduli space is M

g

= C=G. Let G

0

� G denote the path component of the

identity. The Teichm

�

uller space is T

g

= C=G

0

. The mapping class group T

g

:= G=G

0

acts properly

discontinously on T

g

with �nite isotropy groups. Hence M

g

= T

g

=T

g

is a rational K(T

g

; 1) since

Teichm

�

ullers theorem states T

g

�

=

R

6g�6

. This is shown introducing Fenchel{Nielsen coordinates

depending on a pants decomposition of S and the fact that C

�

=

Met

�1

, where Met

�1

is the

space of hyperbolic metrics on S. The moduli space has functorial properties with respect to

families of curves, making it a coarse moduli space. Simple examples show that it cannot be a �ne

moduli space due to the presence of non{trivial automorphisms of curves. It can be constructed

algebraically via geometric invariant theory as a variety de�ned over Q . Let H

g;N;d

be the Hilbert

scheme of curves of degree d = 2n(g � 1) and genus g in P

N

, where N + 1 = dimH

0

(C; nK)

for n � 3. Then for some suitable subvariety K � H

g;N;d

we have M

g

= K=PGL

n+1

. This

moduli space can be compacti�ed by allowing curves with nodal singularities and �nitely many

automorphisms. This compacti�cation is closely related to the Fenchel{Nielsen coordinates, and is

a projective variety and a moduli space for families of stable curves. One can think of the moduli

space as a stack, i.e. a �bered category in the sense of Grothendieck.

Ivan Kausz

The Teichm

�

uller modular group and geometry at in�nity

Teichm

�

uller space is a �ne moduli space for marked n{pointed Riemann surfaces of genus g over

complex analytic spaces. The mapping class group of a n{pointed 2{dimensional compact mani-

fold of genus g acts propertly discontinously on Teichm

�

uller space. We considered three possible

interpretations of the quotient with respect to this action: In the category of topological spaces,

of orbifolds and of analytic stacks. For each of these interpretations there exists a concept of fun-

damental group. In the orbifold{ and stack{interpretation this fundamental group coincides with

the mapping class group. This is not true for general g; n in the topological{space{interpretation.

We also showed that Dehn{twists correspond to loops around divisors at in�nity.

Oliver B

�

ultel

On the Teichm

�

uller tower and complexes of cut systems

The main goal of this talk was to introduce into ideas of Hatcher, Lochak and Schneps to de�ne

a

d

GT{like group that acts on all Teichm

�

uller mapping class groups �

m

g;n

simultaneously. This

is achieved by appealing to methods of Hatcher/Thurston who constructed and analysed a 2{

dimensional cell complex of curve decompositions. Firstly one shows that this cell complex is

simply connected, secondly one shows that the structure of two cells put further conditions on the

pro�nite words in

d

GT forcing one to consider a subgroup. This subgroup is than shown to act on

all

^

�

m

g;n

{ the main result of the Lochak/Hatcher/Schneps paper.

Volker Braungardt

Elements of �nite order in �

g;n

, special loci

Fixed point sets of torsion mapping classes in T

g;n

correspond to loci of symmetric curves in M

g;n

.

These loci admit �nite{to{�nite correspondences to other moduli spaces M


;�

and play a promi-

nent role in Grothendieck's "Lego{Teichm

�

uller{game".

Carl{Friedrich B

�

odigheimer

Cell decomposition of moduli and Teichm

�

uller space

The talk started with an overiew of various uniformization methods: almost all of them give a

speci�c graph (and thus a dessin d'enfant) on the surface to be uniformized. The isomorphism

type of this graph determines a cell in the moduli or Teichm

�

uller space consisting of all surfaces

whose graph has this isomorphism type. Very often, the center of a cell is an "arithmetic" surface.

This general feature of most uniformization methods was then exampli�ed following Bowditch,
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Epstein and Penner and their method of "ideal triangulations" and "decorated Teichm

�

uller space".

The background is the uniformization by Fuchsian groups � � PSL

2

(R). The decoration consists

of a horocycle in the universal covering (Poincar�e disc) D 7! F = D =� of the surface F around each

puncture P

1

; : : : ; P

n

of F . A horocycle is determined by a point w in the light-cone L above D and

tangent to the hyperboloid. The points w

1

; : : : ; w

n

in Minkowski space give the extra continuous

parameters in the decorated version of the Teichm

�

uller space. Each conjugacy class of a Fuchsian

group � gives an ideal triangulation induced by geodesics between punctures P

1

; : : : ; P

n

.

In this cell decomposition of the Teichm

�

uller space the barycenters are arithmetic, i.e. the

Fuchsian group � is conjugate to a �nite{index{subgroup in PSL

2

(Z).
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