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Die Tagung fand unter der Leitung von Hubert Flenner (Bochum), Hanspeter Kraft (Basel)

und Peter Russell (Montreal) statt. Die Vortr�age bezogen sich auf die Gebiete

(1) Algebraische Variet�aten mit einfacher Topologie (Q-azyklische Fl�achen und exotische a�ne

R�aume);

(2) Automorphismen von a�nen und verwandten R�aumen (G-Vektorb�undel, additive Opera-

tionen, Charakterisierungen des A

n

via Automorphismengruppen);

(3) Log-algebraische Variet�aten, insbesondere log-algebraische Fl�achen;

(4) Polynomiale Faserungen und Singularit�aten im Unendlichen;

(5) Einbettungsprobleme, K�urzungsprobleme und das Komplement von Untervariet�aten im

projektiven und a�nen Raum.

Zu den Gebieten 1-4 fanden 90-min�utige

�

Ubersichtsvortr�age von M. Zaidenberg, H. Kraft,

M. Miyanishi und W. Neumann statt. Dar�uber hinaus gab es 21 Vortrge, die �uber aktuelle

Fortschritte auf diesen Gebieten berichteten. Viele der Teilnehmer bereiteten Berichte ber

ihre Ergebnisse vor, die ausgeh�angt wurden und die M�oglichkeit zur Information �uber die

Forschungsinteressen auch denjenigen boten, die keinen Vortrag hielten.
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Shreeram Abhyankar

Characteristic sequences and approximate roots

Certain exponents in Newton's fractional power series expansion lead to characteristic se-

quences, whose importance was recognized by Smith in 1873 and Halphen in 1884. The theory

of approximate roots gives a more direct approach to similar things. A combination of both these

methods provides an e�ective tool for studying various questions of a�ne algebraic geometry

such as the epimorphism theorem, the automorphism theorem, and the jacobian conjecture.

To introduce characteristic sequences, given any monic irreducible polynomial f = f(X;Y )

of degree n in Y with coe�cients in the meromorphic series �eld k((X)) over an algebraically

closed ground �eld k, by Newton's Theorem we can write f(X

n

; Y ) =

Q

1�i�n

[Y � z

i

(X)] where

z

i

= z

i

(X) =

P

j2Z

z

ij

X

j

2 k((X)) with z

ij

2 k. Let Supp

X

z

i

be the X-support of z

i

, i.e., the

set of all integers j for which z

ij

6= 0, and note that this is independent of i. Let m

0

= n. Let

m

1

< � � � < m

h

be the sequence of integers augmented by m

h+1

= 1 and de�ned by putting

m

1

= min(Supp

X

z

1

) and m

i

= min(Supp

X

z

1

n m

0

Z+ � � � + m

i�1

Z) for 2 � i � h + 1. Let

d

h+2

= 1 and for 0 � i � h+ 1 let d

i

= GCD(m

0

; : : : ;m

i�1

). The sequence m = (m

i

)

0�i�h+1

is called the newtonian sequence of characteristic exponents of f relative to n, and the sequence

d = (d

i

)

0�i�h+2

is called the GCD-sequence of f . For i = 0; 1; h+1 let q

i

= m

i

and for 2 � i � h

let q

i

= m

i

�m

i�1

. For i = 0; h + 1 let r

i

= s

i

= q

i

and for 1 � i � h let s

i

= q

1

d

1

+ � � � + q

i

d

i

and r

i

= s

i

=d

i

. The sequence q = (q

i

)

0�i�h+1

is called the di�erence sequence of f , the sequence

s = (s

i

)

0�i�h+1

is called the inner product sequence of f , and the sequence r = (r

i

)

0�i�h+1

is

called the normalized inner product sequence of f .

The approximates roots of f are de�ned by generalizing the completing the square method of

solving quadratic equations put forth by Shreedharacharya in 500 A.D., and it at once leads to

the normalized inner product sequence r = (r

i

)

0�i�h+1

of f which generates the semigroup of f .

Teruo Asanuma

Structure of A

1

-forms of characteristic p > 0

Let k be a �eld and let

�

k be an algebraic closure of k. A commutative k-algebra A is called

an A

1

-form if A


k

�

k is

�

k-isomorphic to a polynomial ring

�

k[x] in one variable. The purpose of

the present article is to study the algebraic structure of A

1

-forms.

It is well-known that every A

1

-form A is purely inseparable, i.e., there exists a �nite purely

inseparable algebraic extension k

0

=k such that A


k

k

0

�

=

k

0

[x], so that it is enough to consider

only the case of purely inseparable A

1

-forms A of characteristic p > 0. We can �nd an integer

e � 0 such that A 


k

k

p

�e

�

=

k

p

�e

[x]. The smallest s of such integers is called the height of A

and is denoted heightA = s.

Let k be a �eld of characteristic p > 0 and let e; �; � be positive integers such that �� � 1

(mod p

e

). We de�ne a k-subalgebra B

�

of a polynomial ring k

p

�e

[x] by

B

�

= k[x

p

e

; u(x)

�

v(x); u(x)v(x)

�

]

such that u(x); v(x)(2 k

p

�e

[x]) satisfy the condition

�u(x)

0

v(x) + u(x)v(x)

0

= 1;

where u(x)

0

and v(x)

0

denote the standard derivative by x. We note that B

�

is uniquely deter-

mined by e; �; f(x); g(x) as a k-algebra.

Theorem. B

�

is an A

1

-form of heightB

�

� e.

An A

1

-form A which is k-isomorphic to some B

�

is called an A

1

-form of B

�

-type.
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Theorem. Let k be a �eld of characteristic p > 2. Then every A

1

-form is of B

2

-type.

The structure of A

1

-forms of ch k = p = 2 is quite di�erent from the case of ch k = p > 2. A

polynomial f(x) 2

�

k[x] is called a p-polynomial if f(x) is of the form

f(x) = a

0

+ x+ a

1

x

p

+ a

2

x

2p

+ � � �+ a

n

x

np

:

Let us set

S = k[x

p

e

; f(x)] (� k

p

�e

[x])

for a p-polynomial f(x) 2 k

p

�e

[x] and an integer e � 0. Then S is an A

1

-form and an A

1

-form

which is k-isomorphic to S is called an A

1

-form of p-polynomial type.

Theorem. Let k be a �eld of characteristic p > 0 and let A be an A

1

-form. Then the following

three conditions are equivalent:

(i) A is generated by two elements over k, i.e., SpecA is a plane curve.

(ii) 


k

(A)

�

=

A, where 


k

(A) denotes the di�erential A-module of A.

(iii) A is of p-polynomial type.

(iv) A is of B

1

-type.

Tatiana Bandman and Leonid Makar-Limanov

A�ne smooth surfaces with C

+

-actions

De�nition. Let X be an a�ne variety and let G(X) be the group generated by all C

+

-actions

on X. Then AK(X) � O(X) is a subring of all the regular G(X)� invariant functions on X.

In this note we are dealing with two problems: 1. To describe the surfaces S with AK(S)

�

=

C ;

2. To �nd a connection between AK(S) and AK(S � C ): If AK(S) = C ; then S is quasihomo-

geneous and may be obtained from a smooth rational projective surface by deleting a divisor of

special form, which is called a \zigzag" ([4], [1]). We denote by A the set of all such surfaces,

and by H those which have only three components in the zigzag.

Theorem 1. For a smooth a�ne surface S with AK(S)

�

=

C the following statements are

equivalent:

1. S is isomorphic to a hypersurface;

2. S is isomorphic to a hypersurface S

0

= f(x; y; z) 2 C

3

jxy = p(z)g; where p is a polynomial

with simple roots only;

3. S admits a �xed-point-free C

+

-action;

4. S 2 H:

If S

1

2 H and S

2

2 A n H; then S

1

� C

k

6' S

2

� C

k

for any k 2 N:

To compute AK(S�C ) one has to consider several cases. (A) AK(S)

�

=

O(S): Then AK(S�

C )

�

=

AK(S): (B) A surface S admits a C

+

-action. Then it possible to de�ne a factor F (S);

which is an a�ne curve � of genus g with k punctures and n multiple points ([2], [3]). It does

not depend on the C

+

-action.

It is known, [1] and [3], that any two surfaces admitting �xed-point-free C -actions with the

same factor have isomorphic cylinders. There are examples, showing that the �xed-point-free

condition is essential.

Theorem 2. Let S

1

, S

2

be smooth a�ne surfaces such that S

1

� C

�

=

S

2

� C : Then either

S

1

�

=

S

2

or AK(S

1

) 6

�

=

O(S

1

); AK(S

2

) 6

�

=

O(S

2

); and F (S

1

)

�

=

F (S

2

):

Theorem 3. If 2g�2+k+n � 1 for a factor F (S) of a surface S; then AK(S�C

k

)

�

=

AK(S)

for any k 2 N:
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Conjecture. If for a smooth a�ne surface S the factor F (S) is simple, then AK(S � C )

�

=

C .
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Daniel Daigle

Locally nilpotent derivations of a�ne domains

Let k be a �eld of characteristic zero. Recall that a k-derivation on a polynomial ring D :

k[X

1

; : : : ;X

n

] ! k[X

1

; : : : ;X

n

] is (i) locally nilpotent if for each f 2 k[X

1

; : : : ;X

n

] there exists

a positive integer s such that D

s

(f) = 0; (ii) triangular if DX

1

2 k and DX

i

2 k[X

1

; : : : ;X

i�1

]

for 2 � i � n. All triangular derivations are locally nilpotent. We discuss the following case of

Hilbert's Fourteenth Problem:

(H14) Let n > 0 be an integer. Is it the case that, given any locally nilpotent derivation

D : k[X

1

; : : : ;X

n

]! k[X

1

; : : : ;X

n

], the k-algebra kern(D) is �nitely generated?

Equivalently: Does every algebraic action of G

a

on A

n

have a �nitely generated ring of

invariants?

It is known (see Freudenburg's talk or [4], [1]) that the answer to (H14) is a�rmative when

n < 4 and negative when n > 4. In the case n = 4, what we currently know is summarized in:

Theorem A (Daigle & Freudenburg [2], [3]).

1. The kernel of any triangular k-derivation of k[X

1

;X

2

;X

3

;X

4

] is �nitely generated as a

k-algebra.

2. Given any integer n � 3, there exists a triangular k-derivation of the ring k[X

1

;X

2

;X

3

;X

4

]

whose kernel cannot be generated by fewer than n elements.

In fact, the �rst part of Theorem A is a corollary of the following related result:

Theorem B (Daigle & Freudenburg [3]). Assume that k is algebraically closed and let R be a

Dedekind domain which is �nitely generated as a k-algebra, or a localization of such a ring. Then

every triangular R-derivation of R[X;Y;Z] has a �nitely generated kernel (as an R-algebra).

We point out that Theorem B becomes false when R is replaced by a polynomial ring in two

variables ([1] gives a counterexample). Note that one step in the proof of Theorem B requires

a result of A. Sathaye [5], which he obtained as an application of his theory of Generalized

Newton{Puiseux Expansions.
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Alexandru Dimca

On the topology of polynomial functions: a D-module approach

In my talk I have reported on some joint work with Morihiko Saito on the topology and

geometry of polynomials. Let 


k

denote the global polynomial k-forms on C

n

and d the usual

exterior di�erential. Let f : C

n

! C be a non constant polynomial. Then we have the following.

Theorem. The cohomology of the general �ber F of f can be computed purely algebraically in

terms of f . More precisely H

k+1

(


�

;D

f

) =

~

H

k

(F; C ) where D

f

! = d! + df ^ !:

Assume now that f : C

n

! C has only isolated singularities and that F is (n�2)-homologically

connected. Let G

0

= 


n

=df ^ d


n�2

denote the algebraic Brieskorn module associated to f . It

is a C [t]-module in a natural way and C. Sabbah have shown that G

0

is of �nite type over C [t]

i� f satis�es strong regularity conditions at in�nity. We have related the topology of the �ber

F

c

= f

�1

(c) to the Kernel and Cokernel of the multiplication by t� c on G

0

. For details see my

web page at: www.math.u-bordeaux.fr.

Gene Freudenburg

Triangular Actions of G

a

on C

n

with Non-Finitely Generated Rings of Invariants

To date, every known counterexample to Hilbert's Fourteenth Problem can be realized as the

ring of invariants of a triangular action of G

m

a

on C

n

for some m � 1 and n � 5. For example,

Nagata's famous �rst counterexample is the �xed ring of a linear triangular G

13

a

-action on C

32

.

More recently, R. Steinberg produced a counterexample as the �xed ring of a linear triangular

G

6

a

-action on C

18

. So far, 18 is the smallest dimension for any linear counterexample. A family

of non-linear counterexamples to H14 was published by P. Roberts in 1990. The importance of

these examples lay not only in lowering the dimension of known counterexamples (G

1

a

-actions

on C

7

), but also in providing counterexamples which were relatively simple to describe.

We imitate Roberts' methods to construct further counterexamples in dimension 5 and 6. In

general, an algebraicG

a

-action on C

n

is obtained by exponentiating a locally nilpotent derivation

on the ring of regular functions O(C

n

). The �xed ring of such an action is the kernel of the

corresponding derivation.

Theorem 3. Let B = C [x; y; s; t; u; v] be the polynomial ring in 6 variables over C , and let D

be the triangular derivation on B de�ned by

D = (x

3

)

@

@s

+ (y

3

s)

@

@t

+ (y

3

t)

@

@u

+ (x

2

y

2

)

@

@v

:

Then the kernel of D is not �nitely generated as a C -algebra.

Theorem 4 (with D. Daigle). Let A = C [a; b; x; y; z] be the polynomial ring in 5 variables over

C , and let d be the triangular derivation on A de�ned by

d = a

2

@

@x

+ (ax+ b)

@

@y

+ y

@

@z

:
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Then the kernel of d is not �nitely generated as a C -algebra.

In fact, d is conjugate to the quotient of D modulo the invariant (y � 1).

Marat Gizatullin

The plane curves producing automorphisms of the three-dimensional a�ne space

Plan of the talk:

1. A parallelism between some additive subgroups of the group Aut(P

2

� C) (where C is a

plane irreducible curve such that dimAut(P

2

�C) =1 ) (*) and some additive subgroups

of Aut(A

3

):

2. Another characterization of the curves having the property (*).

3. A classi�cation of these curves.

4. A conjectural description of generators of the group Aut(A

3

):

1. There is a way of transformation of formulas for action of the additive group G

a

on P

2

�C

(where C satis�es (*) ) into formulas for action of the additive group on A

3

: The algorithm needs

verifying of some cancellations, that is some maps written with the help of rational functions

can be written in terms of polynomials.

2. We start with a de�nition.

De�nition. Let C be an irreducible reduced algebraic curve on the projective plane. The curve

C is said to be exceptionable if there exists a birational morphism � : X ! P

2

such that

(i) the proper preimage C

�

= (�)

�1

[C] is an exceptional curve of the �rst kind,

(ii) the reduced full preimage D = supp (�

�1

(C)) has strong normal crossings,

(iii) the set C

�

\(D�C

�

) is a point Q 2 X; and the open curve C

�

�Q is biregularly isomorphic

to the a�ne line A

1

:

Theorem 1. Let C � P

2

be a plane irreducible curve. C has the property (*) if and only if C

is exceptionable.

Theorem 2. If C is exceptionable and the group Aut

0

(P

2

� C) is not soluble, then the a�ne

surface P

2

� C is completable by a zigzag, this surface is quasi-homogeneous with respect to the

group Aut(P

2

� C) , the number deg(C) belongs to the set of Fibonacci's numbers with odd

indices:

deg(C) 2 f 1; 2; 5; 13; 34; 89; 233; 610; ::: g;

every curve of this family is de�ned by its degree up to a projective transformation. Name of a

member of the family is a Fibonacci curve.

3. A classi�cation. For every Fibonacci curve C, one can �x a �nite set S(C) of special

exceptionable curves such that #S(line) = 1; #S(conic) = 2; #S(C) = 4; if deg(C) > 2:

Theorem 3. Let E be an exceptionable curve. Then there exist a Fibonacci curve C; a curve

C

0

2 S(C) and an automorphism g 2 Aut(P

2

� C); such that E = g(C

0

):

4. The conjecture. The group Aut(A

3

) is generated by linear a�ne transformations and by all

the additive subgroups corresponding to the additive subgroups of all the groups Aut(P

2

�E) ,

where E runs through the set of all exceptionable curves.
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Rajendra Gurjar

Normal surfaces dominated by P

2

We will discuss some results proved in collaboration with C. Pradeep and D.-Q. Zhang. The

main result is as follows.

Theorem. Let V be a Gorenstein normal surface such that there is a non-constant morphism

f : P

2

! V: Then V is isomorphic to a quotient P

2

=G; where G is a �nite group of automorphisms

of P

2

: We can, in fact, describe all such surfaces. If the fundamental group of V � SingV is

trivial then V is either P

2

; the quadric cone Q := fX

2

+ Y

2

+ Z

2

= 0g � P

3

; or a surface with

exactly two singular points of Dynkin type A

1

an d A

2

: If the fundamental group of V � SingV

is not trivial then V is a quotient of P

2

or Q such that the quotient map is unrami�ed over the

smooth locus of V:

In our proof we use some very general properties of Gorenstein log del Pezzo surfaces of rank 1:

Except for this, our proof is self-contained. We also give a proof of the complete classi�cation of

Gorenstein log del Pezzo surfaces of rank 1 whose smooth locus is simply-connected. Our proof

of the main result suggests a natural conjecture about normal surfaces (which are not necessarily

Gorenstein) dominated by P

2

.

Shulim Kaliman

Polynomials with general C

2

{�bers are variables.

Suppose that X

0

is a smooth a�ne algebraic variety of dimension 3 with H

3

(X

0

) = 0 which

is a UFD and whose invertible functions are constants. Suppose that Z is a Zariski open subset

of X

0

which has a morphism p : Z ! U into a curve U such that all �bers of p are isomorphic

to C

2

. We prove that X

0

is isomorphic to C

3

i� none of irreducible components of X

0

n Z has

non-isolated singularities. Furthermore, if X

0

is C

3

then p extends to a polynomial on C

3

which

is linear in a suitable coordinate system. As a consequence we obtain the fact formulated in the

title of the paper.

Hideo Kojima

A�ne surfaces with logarithmic Kodaira dimension zero

Let S be a smooth a�ne surface de�ned over an algebraically closed �eld k of char(k) � 0

and let (X;B) be an SNC-completion of S. Let (W;C) be an almost minimal model of (X;B).

By contracting (�1)-curves E with (E � C) � 1 successively, we obtain a birational morphism

� : W ! V such that (F � �

�

(C)) > 1 for any (�1)-curve F on W . Put D := �

�

(C) and

S

0

:= V � SuppD. Then S

0

is an a�ne open subset of S and P

n

(S

0

) = P

n

(S) for any n > 0.

We call S

0

a strongly minimal model of S. A nonsingular a�ne surface S is said to be strongly

minimal if there exists a strongly minimal model S

0

of S such that S

0

= S. We obtain the

following result.

Theorem 1. Let S = SpecA be a strongly minimal smooth a�ne surface with �(S) = 0. Then

S is one of the surfaces in the following table, where m(S) is the least positive integer such that

P

m

(S) > 0.
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Type m(S) Pic(S) rank

Z

A

�

=k

�

�

1

(S) (k = C )

(�) 1 Z=(3) 0 Z=(3)

�(8) 1 Z� Z=(2) 0 Z=(2)

O(8) 1 Z� Z=(2) 0 Z=(2)

O(n+ 4;�n)(n � 0) 1 Z=(n+ 2) 0 Z=(n+ 2)

O(4; 1) 1 0 1 Z

O(2; 2) 1 Z 1 Z

O(1; 1; 1) 1 0 2 Z

2

X[2] 2 Z� Z=(4) 0 Z=(4)

H[0; 0] 2 Z 1 Z

H[n;�n](n � 1) 2 Z=(4n) 0 Z=(4n)

H[�1; 0;�1] 2 Z=(2) 1 < y; t > =(yty

�1

t)

Y f3; 3; 3g 3 Z=(9) 0 Z=(9)

Y f2; 4; 4g 4 Z=(8) 0 Z=(8)

Y f2; 3; 6g 6 Z=(6) 0 Z=(6)

By Theorem 1, we obtain the following results.

Theorem 2. Let B � P

2

be a reduced projective plane curve de�ned over C such that �(P

2

�

B) = 0. Then P

g

(P

2

�B) = 1. In particular, �

1

(P

2

�B) is abelian.

Theorem 3. Let T = SpecA be a normal a�ne surface de�ned over k. Assume that �(T ) = 0.

Then T is a rational surface. Further, rank

Z

A

�

=k

�

� 2 and the equality holds if and only if

T

�

=

A

1

�

� A

1

�

.

Mariusz Koras and Peter Russel

Contractible surfaces with quotient singularities

We proved the following :

Theorem. Let S be a normal, contractible, a�ne surface with only quotient singularities. As-

sume that the logarithmic Kodaira dimension �(S) = �1. Then �(S � Sing(S)) = �1, and

either

(i) S is isomorphic to a quotient C

2

==G where G is a �nite group; or

(ii) S � Sing(S) is a�ne ruled, all singularities are cyclic, #(SingS) > 1. In this case the

structure of S can be described.

The theorem is a generalization of the theorem we proved in [1]:

Theorem. For any algebraic action of C

�

on C

3

the quotient C

3

==C

�

is isomorphic to C

2

==!

a

,

where !

a

is a cyclic group.

In the proof we consider 4 cases according to value of � : �1, 0 or 1, 2. The hardest case is

the last one. In this case we prove that in \generic" case there exists a curve L in S such that

S � L is smooth, L is isomorphic to a line C

1

. But this is contradiction since S � L has the

Euler characteristic 0 and the logarithmic Kodaira dimension �1. It is impossible by Sakai,

Kobayashi inequality.

[1] M. Koras, P. Russell: C

�

-actions on C

3

: the smooth locus is not of hyperbolic type. Journal

of Alg. Geometry, 603{694 (1999).
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Hanspeter Kraft

Automorphisms of a�ne n-space

The group Aut(A

n

) of polynomial automorphisms of a�ne n-space A

n

is still a challenging

object for research, even for n = 2 where we have Structure Theorem (due to van der Kulk)

saying that Aut(A

2

) is an amalgamated product of the subgroup of a�ne transformations and the

so-called Jonqui�ere subgroup. This result has a number of interesting consequences for algebraic

group actions on a�ne 2-space A

2

, e. g. that every reductive group action on A

2

is linearizable

(Kambayashi, 1979). The question was raised whether every reductive group action on a�ne

n-space is linearizable.

After a few positive results by Popov-Kraft and Panyushev for semi-simple group actions

in dimension 3 and 4 (in 1984/85) Schwarz discovered in 1989 the �rst counter-examples,

namely non-linearizable action of O(2) on A

4

and of SL(2) on A

7

. These examples appeared

in the joint work of Kraft and Schwarz on reductive group actions with one-dimensional

quotient, following a strategy suggested by Luna. The positive results are:

Theorem 1 (Kraft-Schwarz). Assume that a reductive group G acts on a�ne n-space A

n

such

that dim A

n

==G � 1. Then this action is linearizable in the following cases.

(1) G is a torus;

(2) G

0

is a simple group;

(3) n � 3;

(4) The action is semifree (i.e. the generic orbit is closed and isomorphic to G);

(5) The tangent representation in a �xed point is selfdual.

In case of torus action Koras and Russell recently proved a long-standing conjecture, using

very interesting new ideas and methods:

Theorem 2 (Koras-Russell). Every C

�

-action on A

3

is linearizable.

Using the results of Kraft-Schwarz and Theorem 2 one obtains the following:

Corollary. 1. Assume that G is reductive, non-�nite and that G is connected in case G

0

'

C

�

. Then every G-action on A

3

is linearizable.

2. Assume that G is reductive, non-�nite and that G

0

is not a torus. Then every G-action

on A

4

is linearizable.

The counter-examples are based on ideas of Bass andHaboushwho studiedG-vector bundles

over representation spaces. It turned out that there exist non-trivial G-vector bundles and that

the underlying G-action is non-linearizable. Masuda,Moser-Jauslin and Petrie introduced

a new method to construct non-trivial vector bundles and were able to produce the �rst families

of non-linearizable actions and also non-linearizable actions for certain �nite groups. On the

other hand the proved the following result:

Theorem 3 (Masuda-Moser-Jauslin-Petrie). If G is commutative reductive group, then every

G-vector bundle over a representation space is trivial.

There are no non-linearizable actions of a commutative reductive group known so far!

The construction of counter-examples via non-trivial G-vector bundles has as a consequence

that all these actions are holomorphically linearizable. However, there is a very nice idea due

to Asanuma, using non-recti�able embeddings of C into C

2

which �nally lead to the following

result:

Theorem 4 (Derksen-Kutzschebauch). For every reductive complex Lie group G there are faith-

ful non-linearizable actions on A

n

for all n � N

G

.
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There are more results in other settings, i.e. in positive characteristics (Asanuma), for real

algebraic actions (Asanuma), for special actions (Jurkievich), for Jonqui�ere-actions (Kraft-

Kutzschebauch), for actions on quadrics (Doebeli, M. Masuda) and, of course, in the

C

1

-setting.

Frank Kutzschebauch

Holomorphic automorphisms of C

n

Our talk was concentrated around the following two problems:

Holomorphic Linearization Problem: Let G be a complex reductive group acting holomor-

phically on C

n

. Can one conjugate the resulting subgroup of the holomorphic automorphism

group of C

n

by a single automorphism into the general linear group GL

n

(C ) � Aut

hol

(C

n

), i.e.,

is every holomorphic action of a reductive group on C

n

linearizable?

Holomorphic Embedding Problem: How many equivalence classes of proper holomorphic

embeddings of C

k

into C

n

(0 < k < n) do exist?

Here we call two proper holomorphic embeddings �

1;2

: C

k

,! C

n

equivalent if there are two

holomorphic automorphisms � of C

n

and � of C

k

such that �

1

� �(z) = � � �

2

(z) 8z 2 C

k

.

In the talk we explained the method of Asanuma (which works in any category) to construct

counterexamples to the holomorphic linearization problem using embeddings non-equivalent to

the standard embedding. Using this method and the existence of non-standard holomorphic

embeddings of C into C

2

we were able to prove the following theorem (see [1]):

Theorem. Let G be a complex reductive group (not the trivial group). Then there exists an N

such that for all n � N there is a nonlinearizable e�ective action of G on C

n

.

Together with an overview over the known results about holomorphic embeddings we illus-

trated the proof of the above theorem in the cases G = C

�

and G = Z=2Z. Also we announced

the following result proving the existence of families of embeddings leading to families of non-

conjugate group actions.

Theorem. There is a holomorphic map F : C � C ! C

3

such that for each �xed w 2 C the

map F (w; �) : C ! C

3

is a proper holomorphic embedding and for di�erent w those embeddings

are non-equivalent.

[1] H. Derksen, F. Kutzschebauch: Nonlinearizable holomorphic group actions. Math. Ann. 311,

41{53 (1998).

Vladimir Lin

Holomorphic self-mappings of non-degenerate binary forms

We study holomorphic self-mappings F : F

n

! F

n

of the non-singular a�ne algebraic va-

riety F

n

consisting of all complex projective binary forms f(x; y) = z

0

x

n

+ z

1

x

n�1

y + � � � +

z

n�1

xy

n�1

+ z

n

y

n

with non-zero discriminant (projective means that we identify proportional

forms). There is the natural one-to-one correspondence F

n

3 f $ Z

f

� C P

1

, where Z

f

= f[x :

y] 2 C P

1

j f(x; y) = 0g is the zero set of f , #Z

f

= n.

De�nition. A map F : F

n

! F

n

is said to be tame if there exists a holomorphic map T : F

n

!

Aut C P

1

= SL (2; C )=f�Ig such that Z

F (f)

= T (f)(Z

f

) for each f 2 F

n

. For instance, any



11

holomorphic matrix function A = (a

ij

)

2

i;j=1

2 SL(2;O(F

n

)) determines the tame map F

n

3

f 7! f

A

2 F

n

, where the form f

A

is obtained from f by the unimodular linear change of

variables x; y with the variable coe�cients a

ij

(f) depending holomorphically on f itself, i. e.,

f

A

(x; y) = f(a

11

(f)x+ a

12

(f) y; a

21

(f)x+ a

22

(f) y).

A continuous map F : X ! Y of arcwise connected topological spaces is called cyclic if the

image F

�

(�

1

(X)) of the induced homomorphism F

�

: �

1

(X)! �

1

(Y ) of the fundamental groups

is a cyclic group.

Theorem. For n > 4 all non-cyclic holomorphic mappings F

n

! F

n

are tame.

Remarks. Every F

n

(n � 2) admits non-tame cyclic non-constant regular self-mappings; how-

ever for n � 3 all such mappings are, in a sense, degenerate. The fundamental group �

1

(F

n

)

is known to be the sphere braid group B

n

(S

2

) on n strings. B

2

(S

2

)

�

=

Z

2

; B

n

(S

2

) is non-

commutative for n � 3 and in�nite for n � 4. V. Danilov's and M. Gizatullin's results on

biregular automorphisms of the complement C P

2

n C of a non-singular conic C � C P

2

imply

that every biregular automorphism of F

2

�

=

C P

2

n C is tame (and certainly cyclic, for all con-

tinuous self-mappings of F

2

are such). For n � 3 every homeomorphism of F

n

is non-cyclic.

I have learned from M. Gizatullin amazing Gotthold Eisenstein's example (1844) of a non-tame

involutive biregular automorphism of the space F

3

. Seemingly, F

4

admits non-tame non-cyclic

regular self-mappings (to my best knowledge no examples of such kind are known).

Leonid Makar-Limanov

Locally nilpotent derivations of a�ne domains

We show that any locally nilpotent derivation of an a�ne domain is equivalent to a restriction

of a Jacobian type derivation of a polynomial ring.

Let C be the �eld of complex numbers and let C

n

be the ring of polynomials over C in n

variables. Any n � 1 elements f

1

; :::; f

n�1

of C

n

determine the Jacobian derivation �

f

1

;:::;f

n�1

where �

f

1

;:::;f

n�1

(g) is equal to the determinant J(f

1

; :::; f

n�1

; g) of the Jacobi matrix of the

elements f

1

; :::; f

n�1

; g.

Let I be a prime ideal of C

n

, let R = C

n

=I, and let @ be a locally nilpotent derivation of R.

Let us denote by � the projection of C

n

on R. Finally let us recall that two locally nilpotent

derivations are called equivalent if their kernels coincide. Then the following is true. It is possi-

ble to �nd elements P

i

2 I and r

i

2 C

n

so that the derivation �(�(r)), where �(r) is the Jacobian

derivation J(P

1

; : : : ; P

k

; r

k+1

; :::; r

n�1

; r), is de�ned on R and is equivalent to @.

Kayo Masuda and Masayoshi Miyanishi

�

Etale endomorphisms of algebraic surfaces with G

m

-actions

Let X be an A

1

�

-�ber space, namely, a smooth algebraic surface de�ned over the complex �eld

C , endowed with a surjective morphism � : X ! B such that B is a smooth projective curve and

the general �ber of � is isomorphic to A

1

�

= C

�

. The famous Jacobian Conjecture is equivalent

to ask whether or not an �etale endomorphism ' of the a�ne plane A

2

is an automorphism. We

generalize this as follows:

Generalized Jacobian Problem. Let X be an A

1

�

-�ber space and let ' : X ! X be an �etale

endomorphism. Then is ' an automorphism?

We consider the generalized Jacobian problem for the following three A

1

�

-�ber spaces:
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(1) Platonic A

1

�

-�ber spaces,

(2) A weighted hypersurface x

m

1

1

+ x

m

2

2

+ x

m

3

3

= 0 in the a�ne 3-space A

3

with its singular

point (0; 0; 0) deleted o�,

(3) An a�ne algebraic surface with an unmixed G

m

-action and its unique �xpoint deleted o�.

Of particular interest is the case of Platonic A

1

�

-�ber spaces. A Platonic A

1

�

-�ber space is

written as A

2

=G with the unique singular point deleted o�, where G is a non-cyclic small �nite

subgroup of GL(2; C ), and the generalized Jacobian problem is equivalent to asking whether

or not an �etale endomorphism  : A

2

! A

2

is an automorphism whenever  commutes with

a linear action of the �nite group G on A

2

. The problem in the Platonic case is unsolved at

present, however, we can show that ' is an automorphism in most cases above. But, the gen-

eralized Jacobian problem does not necessarily have a positive answer. In fact, there exists a

counterexample: we can construct an A

1

�

-�ber space X and an �etale endomorphism ' which

preserves the A

1

�

-�bration but is not an automorphism.

Masayoshi Miyanishi

Log algebraic surfaces

A log algebraic surface (or more precisely, log projective surface) is a pair (V ;�) of a normal

projective surface V and a reduced e�ective (Weil) divisor � on V satisfying the following

conditions:

(1) K

V

+� is a Q-Cartier divisor.

(2) If f : V ! V is the minimal resolution of singularities, then the proper transform � of �

is a divisor with simple normal crossings and

K

V

+� = f

�

(K

V

+�) +

n

X

j=1

a

j

E

j

with a

j

2 Q and 0 � a

j

> �1, where fE

j

g

1�j�n

is the set of irreducible exceptional curves

of f .

Let � =

P

r

i=1

C

i

be the irreducible decomposition and let D =

P

r

i=1

C

i

+

P

n

j=1

E

j

. Then the

above conditions are equivalent to the following conditions:

(i) D is a divisor with simple normal crossings.

(ii) V has only quotient singularities.

(iii) If V has a singular point on �, say P , then the dual graph of exceptional curves of a

minimal resolution of (V ; P ) is a linear chain such that � meets only one of the end

components of the linear chain, the intersection being at a single point and transverse.

We call f : (V;�) ! (V ;�) the minimal resolution of (V ;�). An irreducible curve C on a

log projective surface (V ;�) is called a log exceptional curve of the �rst kind if (K

V

+� �C) < 0

and (C)

2

< 0. This is an analogy of an exceptional curve of the �rst kind, i.e., (�1) curve, on

a nonsingular projective surface. A log projective surface (V ;�) is called relatively minimal if

there are no log exceptional curves of the �rst kind on V .

Given a log projective surface (V ;�), there exists a birational morphism � : V ! W onto a

normal projective surface W such that

(1) (W;�) is a log projective surface, where � = �

�

(�);

(2) (W;�) is relatively minimal.

The construction of relatively minimal models is done by the theory of peeling applied to the

minimal resolution (V;D). In the lecture, we state structure theorems, especially in the case of

log Kodaira dimension �1, for relatively minimal log projective surfaces.
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Lucy Moser-Jauslin

Relative cohomology of polynomial maps from C

n

to C

q

(On the work of Ph. Bonnet, thesis student of L. Moser-Jauslin and R. Moussu at the Uni-

versit�e de Bourgogne.) Consider the following theorm due to Gavrilov:

Theorem (Gavrilov 1998). Let f : C

2

! C be a non constant polynomial such that all �bers

are connected and having only isolated singularities. Suppose ! is a polynomial 1-form on C

2

which is relatively exact (i.e., it is exact on all generic �bers). Then ! is of the form dR+Qdf

for some polynomials R and Q.

Bonnet (1999) gave an algebraic proof of this result. This proof allows one to generalize to

a result when there are non-isolated singularities as well. Bonnet and Dimca then studied this

result by giving the module structure of the �rst cohomology group of a truncated de Rham

complex. A generalization to higher dimensions is given by

Theorem. Suppose f : C

n

! C

q

is a polynomial application such that

(i) The complement of the image is of codimension � 3 in C

q

;

(ii) codimf� 2 C

q

jf

�1

(�) is disconnectedg � 2;

(iii) the codimension of the singular set � 2 in C

n

.

Then any relatively exact form ! is of the form ! = dR+

P

q

i=1

h

i

df

i

, where f = (f

1

; : : : ; f

q

).

A consequence of this result is: If f satis�es the hypotheses of the theorem and if there exist

n� q relatively exact 1-forms !

i

such that !

1

^ : : :^!

n�q

^df

1

^ : : :^df

q

= dx

1

^ : : :^dx

n

, then

there exist polynomials R

1

; : : : ; R

n�q

such that dR

1

^: : :^dR

n�q

^df

1

^: : :^df

q

= dx

1

^: : :^dx

n

.

Andr

�

as N

�

emethi

The monodromy representation of polynomial maps (the Thom{Sebastiani con-

struction)

Let f : C

n

! C be a polynomial map. If �

f

= fc

1

; : : : ; c

s

g denotes the set of bifurcation

points, then f : f

�1

(C n �

f

) ! C n �

f

is a locally trivial �bration. Fix c

0

2 C n �

f

and set

F = f

�1

(c

0

). Our main object is the homological monodromy representation

�

f

: �

1

(C n �; c

0

)! Aut(H

�

(F)):

If we �x a star of f with endpoints fc

1

; : : : ; c

s

g and basepoint c

0

, then this provides in a

natural way a generator set f

1

; : : : ; 

s

g for �

1

(C n �

f

; c

0

) and also a direct sum decomposition

H

�

(F) = �

i

V

�

(c

i

), where V

�

(c

i

) denotes the group of vanishing cycles associated with the non-

regular value c

i

2 �

f

. With respect to this decomposition, �

f

(

i

) has the form:

�

f

(

i

) =

0

B

B

B

B

B

B

B

@

1

.

.

.

m

i1

� � � m

ii

� � � m

is

.

.

.

1

1

C

C

C

C

C

C

C

A

(�)

The monodromy at in�nity �

f

(

s

) � � � � � �

f

(

1

) is denoted by m

1

(f).

If we have two polynomials f : C

n

! C and g : C

m

! C , then one can consider h = f � g :

C

n+m

! C de�ned by h(x; y) = f(x) + g(y). If H; F; G are the generic �bers of h; f; g

respectively, then using an earlier result of the author, we have:
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a) �

h

� �

f

+�

g

,

b) H = F �G (homotopy type), in particular (over a �eld)

H

q+1

(H) = �

r+s=q

H

r

(F)
H

s

(G):

(We will use the notation 
 for this graded tensor product.)

c) m

1

(h) = m

1

(f)
m

1

(g).

In this talk we discussed how one can recover �

h

from �

f

and �

g

. For example, if �

g

= f0g,

hence �

h

= �

f

, and we �x a tautologically identical pair of stars for f and h, then with respect

to these stars (and with the notation (�) of �

f

(

i

)):

�

h

(

i

) =

0

B

B

B

B

B

B

B

B

B

@

1
 1

.

.

.

1
 1

m

i1


 1 � � � m

i;i�1


 1 m

ii


m � � � m

is


m

.

.

.

1
 1

1

C

C

C

C

C

C

C

C

C

A

;

where m is the monodromy operator of g (= �

g

(positive generator of �

1

(C n �

g

))). This result

is obtained in a joint work with A. Dimca.

Walter Neumann

Polynomial �brations and singularities at in�nity

This talk surveyed results on the topology of polynomial maps f : C

n

! C . Most of the results

apply if C

n

is replaced by a homologically acyclic variety. A convenient reference for most of

the content of the talk is the paper \Unfolding singularities at in�nity" by Paul Norbury and

the speaker, which will appear in Math. Annalen.

The talk was in three sections. The �rst part described results valid with no extra assump-

tions. The underlying result is due to Broughton in the 1980's, who described a splitting of

the homology of a regular (i.e., generic) �ber of f as the sum of the groups of vanishing cycles

for the irregular �bers. This splitting has a strong relationship with monodromy, that has been

explored by several authors. An attractive consequence of this has been observed by Dimca and

Nemethi: the splitting together with the monodromy at in�nity together determine the complete

homological monodromy.

If f has only isolated singularities then more can be said. There is a natural concept of \Milnor

Fiber at in�nity" at a point at in�nity where a �ber is irregular. I think this concept appears

�rst in Suzuki's paper proving the Abhyankar-Moh-Suzuki theorem. The Broughton splitting

of (co)homology re�nes to a sum of groups H

�

(F; @F ), summed over all Milnor �bers F for f

(both Milnor �bers at in�nity and Milnor �bers of singularities of �bers). Again, this splitting

connects with monodromy. In addition, it relates to the \Seifert linking form at in�nity" in a

way that is useful for computation.

Finally, when n = 2, the Milnor �bers at in�nity together with the local monodromy that

appears there can be read o� from the splice diagrams at in�nity for irregular �bers in a way

that is similar to the description of the local topology of plane curve singularities by splice di-

agrams. But a complete description of the monodromy (and hence of the global topology) of

f : C

2

! C still needs an e�cient way of relating the descriptions of the monodromies around

each irregular �ber to a �xed reference �ber. We illustrated this by the example of for the

Brian�con polynomial. In this case, since there are two irregular �bers, computing the com-

plete geometric monodromy reduces to the problem of solving an equation in the mapping class
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group of the �ber of the form h

1

h

2

= h

1

, where the conjugacy classes of h

1

; h

2

; h

1

are de-

scribed explicitly. We have a solution to this equation which is conjecturally the only solution,

and therefore the solution that actually describes the global topology for Brian�con's polynomial.

Stepan Orevkov

What is the Milnor �ber for nonisolated singularities?

Peter Russell

Some formal aspects of the theorems of Mumford{Ramanujam

One can formally de�ne the \fundamental group" �(�) of a weighted tree, e.g. of

� the dual graph �

D

of a normal crossing divisor without circuits

and all components isomorphic to P

1

on a non-singular algebraic surface X

by using the presentation given by Mumford. �(�) is invariant under formal blowing up and

down of � (corresponding to blowing up and down on X in (�)), and under a dual formal anti

blowing up and anti blowing down. (This operation has a geometric meaning for 4-manifolds,

but not for algebraic surfaces. It is nevertheless quite useful in the formal approach.)

� We give a fairly explicit description of normal forms for trees with �(�) = 1, allowing both

blowing up and down and anti blowing up and down.

� We give a quite precise classi�cation, allowing blowing up and down only, of trees with

�(�) = 1 and such that (the intersection form of ) � satis�es the Hodge index condition.

We recuperate

Mumford's theorem: If �(�) = 1 and � is negative de�nite, then � blows down to the empty

tree.

On an algebraic surface, the Hodge index theorem holds, and 0-curves move in a pencil.

Hence:

� If � = �

D

is as in (�), then � satis�es the Hodge index condition and (Ramanujam): If v in

� has non-negative weight, then any branching vertex in � with weight �1 is a neighbour

of v.

As an immediate consequence we obtain

Ramanujam's theorem: If � = �

D

is as in (�), connected, not negative de�nite and with

�(�) = 1, then � is equivalent, under blowing up and blowing down, to the tree with a single

vertex of weight 1.

The following results are now valid in arbitrary characteristic.

Theorem: With X and D as in (�), put S = XnD and suppose �(�

D

) = 1. If S is a�ne, or

if PicS = 0 and D is connected, then S ' A

2

.

Over C ; �(�

D

) is the fundamental group at in�nity of S (Mumford). It can be shown in

general that �(�) is residually �nite. Hence �(�) could throughout be replaced by its pro�nite

completion �̂(�). �̂(�

D

) can be interpreted geometrically in some cases as an algebraic funda-

mental group by results of Grothendieck{Murre.



16

Fumio Sakai

De�ning equations of rational cuspidal curves with one place at in�nity (after

K. Tono)

I reported on recent results of my student Keita Tono. Let C � P

2

be a rational cuspidal

plane curve. We say that C has one place at in�nity if there is a line ` meeting C at one point P .

Such a curve C is of AMS type (resp. LZ type), if C n P is smooth (resp. if C n P is singular).

Let us introduce a polynomial a�ne transformation:

�

a

:

�

x

y

�

!

 

y +

P

k

i=1

a

i

x

i

x

!

Theorem 1. Let C be a rational cuspidal plane curve with one place at in�nity. Then, up to

the projective equivalence, C is de�ned by the equation:

F � �

a

1

� � � � � �

a

s

;

where (i) F = x (if C is of AMS type) and F = y

n

+ x

m

(if C is of LZ type) with relatively

prime integers n;m such that n > m � 2, (ii) s � 0, (iii) deg(�

a

i

) � 2 except possibly if i = 1

and if C is of LZ type.

Set k

i

= deg(�

a

i

), and d

i

= deg(F )

Q

i

j=1

k

j

. Then deg(C) = d

s

and the curve de�ned by the

above equation has a cusp with the following multiplicity sequence: ((k

s

�1)d

s�1

; (d

s�1

)

2(k

s

�1)

; : : : )

Corollary. Let C be a rational cuspidal curve with one place at in�nity of degree d. Then, one

has the inequality: d � 2�, where � is the maximal multiplicity of cusps on C.

Theorem 2. A rational bicuspidal curve C is of LZ type if and only if the log-Kodaira dimension

of the complement of C is equal to one.

Stefan Schr

�

oer

Quotient presentations for toric varieties

This is a joint work with A. A'Campo{Neuen and J. Hausen. The projective space P

n

is the

quotient of A

n

�0 by the diagonal G

m

-action. Introducing the concept of quotient presentations,

we generalize this to arbitrary toric varieties.

Roughly speaking, a quotient presentation for a toric variety X is a quasia�ne toric variety

^

X, together with a surjective a�ne toric morphism q :

^

X ! X inducing a bijection on invariant

Weil divisors. From another point of view, this amounts to the choice of homogeneous coordinates

S = �(

^

X;O

^

X

).

We show that quotient presentations correspond to subgroups � � WDiv

T

(X) of invariant

Weil divisors. These subgroups are not arbitrary. Rather, they generalize the notions of ample

sheaves or ample families of sheaves. The special cases that � is the group of all invariant

Weil divisors or the group of all invariant Cartier divisors were studied by Cox and Kajiwara,

respectively.

Relating quotient presentations to geometric invariant theory, we show that X is a free quo-

tient of

^

X with respect to a suitable group action precisely if the subgroup � comprises invariant

Cartier divisors. Geometric quotient correspond to Q-Cartier divisors. At this point, nonsepa-

rated toric varieties enter the scene, because quotients by group actions tend to be nonseparated.

As an application of quotient presentations, we express quasicoherent sheaves on toric varieties

in terms of multigraded modules over homogeneous coordinate rings. Furthermore, we describe

the set of morphisms into a given toric variety in terms of sheaf data related to homogeneous

coordinates.
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Masakazu Suzuki

Inverse of the semi-group theorem on the a�ne plane curves with one place at in-

�nity

This is a joint work with M. Fujimoto. Let C be an irreducible a�ne algebraic curve with

one place at in�nity de�ned by a polynomial equation f(x; y) = 0 in the complex a�ne plane C

2

of degree m and n with respect to x and y respectively. It is known that, by a transformation

of the coordinates by a polynomial automorphism in C

2

, it reduces to one of the following two

cases:

(A) m = 1; n = 0 (In this case, C is a line);

(B) m = pd; n = qd; (p; q) = 1; 1 < q < p.

In the followings, we consider the latter case (B). A pair (M;E) of a projective surface M and

a curve E on M such that M �E

�

=

C

2

is called a compacti�cation of C

2

and E the boundary.

The unique intersection point P of the closure C in M with E is called the point at in�nity of

C in M . Starting from the compacti�cation (M

0

; E

0

) with M

0

= P

2

; E

0

=the line at in�nity,

blow up the point at in�nity of C successively, until the closure C intersects the boundary curve

E transversely at a regular point of E. Let us denote by (M;E) the compacti�cation thus

obtained, and by E

i

(1 � i � T ) the proper image of the curve appeared by i-th blowing up in

M . Then, the dual graph �(E) of E is of the form:

E

j

0

(E

1

)

b b b

E

i

1

b

b

b

b

E

j

1

(E

0

)

b b

E

i

2

b

b

b

b

E

j

2

b

� � � � � �

b

E

i

h

(E

T

)

b

b

b

b

E

j

h

C

Denote by �

k

the order of the pole of f on E

j

k

for 0 � k � h and call f�

0

, �

1

, � � � , �

h

g the

�-sequence of C (or of f). Note that we have �

0

= n; �

1

=m: On the other hand, setting

L

k

=

[

i

k�1

<i�i

k

E

i

; (1 � k � h);

we call L

k

(resp. �(L

k

)) the k-th branch of E (resp. of �(E)), where i

0

= �1.

L

k�1

b b b b b b b

�m

r

�m

r�1

�m

1

�n

1

�n

s�1

�n

s

E

i

k

E

j

k

L

k+1

(k-th branch L

k

),

where L

0

= the closure of the y-axis, L

h+1

= C and �m

i

, �n

i

are the self-intersection number

of the corresponding irreducible component of E in M . Set p

1

= p, q

1

= q. For 2 � k � h,

de�ne the positive integers p

k

, a

k

, q

k

, b

k

such that (p

k

; a

k

) = 1; (q

k

; b

k

) = 1; 0 < a

k

< p

k

; 0 <

b

k

< q

k

, by the following continuous fractions :

p

k

=a

k

= (m

1

� 1=(m

2

� 1=(� � � � 1=m

r

) � � � ); q

k

=b

k

= (n

1

� 1=(n

2

� 1=(� � � � 1=n

s

) � � � ):
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In case there is no vertex between the two branching vertices corresponding to E

i

k�1

and

E

i

k

(k > 1; r = 0), we set p

k

= 1; a

k

= 0. The sequence (p

1

; q

1

); � � � ; (p

h

; q

h

) thus ob-

tained from the dual graph �(E) is called the (p; q)-sequence of C (or of f). Then, setting

d

k

= gcdf�

0

; �

1

; � � � ; �

h�1

g(1 � k � h+ 1), we have the following relations:

(1) q

k

= d

k

=d

k+1

; d

h+1

= 1,

(2) d

k+1

p

k

=

�

�

1

(k = 1)

q

k�1

�

k�1

� �

k

(2 � k � h);

.

Thus, the �-sequence is determined by the weighted dual graph �(E), and conversely it deter-

mines the dual graph with weights ([3]). Now, the semi-group theorem of Abhyankar-Moh (An

algebro-geometric proof is also given in [3]) asserts that

(3) q

k

�

k

2 N�

0

+ N�

1

+ � � � N�

k�1

(1 � k � h).

Conversely, Sathaye and Stenerson ([2]) proved that, a given sequence of h+1 natural numbers

�

0

, �

1

, �

2

, � � � , �

h

(h � 1), is the �-sequence of an a�ne plane curve with one place at in�nity,

if it satis�es the conditions : q

k

� 2(1 � k � h), d

h+1

= 1, �

k

< q

k�1

�

k�1

(2 � k � h) and the

above condition (3), where d

k

= gcdf�

0

; � � � ; �

k�1

g (1 � k � h), q

k

= d

k

=d

k+1

(1 � k � h), By

this criterion, one can generate a list of the �-sequences of the curves with one place at in�nity,

of a given genus for example, by computer ([3]).

Nakazawa and Oka ([1]) gave the classi�cation of de�ning equations of the curves with one

place at in�nity of genus � 16, calculating by hand.

We give a new proof to the Nakazawa-Oka's result, giving algorithms to compute the numbers

of the parameters of the de�ning equations of the curves with one place at in�nity corresponding

to each �-sequence, and to determine the family of de�ning equations of these curves using these

parameters. We implemented the algorithm on a computer algebra system Risa/Asir. The

parameter space is of type (C

�

)

�

� C

�

for each �-sequence.

Example. The image of a non-constant polynomial mapping from C to C

2

is called a polynomial

curve. Sathaye-Stenerson ([2]) conjectured that there is no polynomial curve which has the �-

sequence f6; 22; 17g. The parameter space of the curves with one place at in�nity for this

�-sequence is (C

�

)

2

� C

34

. The de�ning equation of these curves is of the form :

f = (g

2

2

+ a

2;1;0

x

2

y) + c

5;0;0

x

5

+ c

4;0;0

x

4

+ c

3;0;0

x

3

+ c

2;0;1

x

2

g

2

+ c

2;0;0

x

2

+ c

1;1;0

xy + c

1;0;1

xg

2

+

c

1;0;0

x+ c

0;1;0

y + c

0;0;1

g

2

+ c

0;0;0

, where

g

2

= (y

3

+ a

11;0

x

11

) + c

10;0

x

10

+ c

9;0

x

9

+ c

8;0

x

8

+ (c

7;1

y + c

7;0

)x

7

+ (c

6;1

y + c

6;0

)x

6

+ (c

5;1

y +

c

5;0

)x

5

+ (c

4;1

y + c

4;0

)x

4

+ (c

3;2

y

2

+ c

3;1

y + c

3;0

)x

3

+ (c

2;2

y

2

+ c

2;1

y + c

2;0

)x

2

+ (c

1;2

y

2

+ c

1;1

y +

c

1;0

)x+ c

0;2

y

2

+ c

0;1

y + c

0;0

,

a

���

2 (C

�

) and c

���

2 C . The genus of the regular curves in this family is 28.
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(1999).

J

�

org Winkelmann

A Remark on Hilbert's 14th problem

The fourteenth of Hilbert's famous problems [5] is the following.
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Let K=L and L=k be �eld extensions, and A � K be a �nitely generated k-algebra. Does this

imply that A \ L is also a �nitely generated k-algebra?

This problem was motivated by the following special case:

Let k be a �eld and G � GL(n; k) a subgroup. Is the ring of invariants k[x

1

; : : : ; x

n

]

G

a �nitely

generated k-algebra?

For reductive groups this is indeed the case. This was already shown by Hilbert. However,

for non-reductive groups there is the celebrated counterexample of Nagata ([6]). Popov deduced

from Nagata's example that for every non-reductive algebraic group G there exists an a�ne G

variety such that the ring of invariants is not �nitely generated [9]. In 1990, a new counterexam-

ple was found by Roberts [11]. Later, further counterexamples were obtained by Deveney and

Finston [3] and by A'Campo-Neuen [1]. Recently, Daigle and Freudenburg constructed examples

in dimension 6 and 5 ([2],[4]).

Reformulated in a more geometric fashion, Hilbert's 14th problem ask whether the ring of

invariant functions is necessarily isomorphic to the ring of regular functions on some a�ne

variety.

From this point of view it is maybe not too surprising that the answer is negative in general.

Quotients of a�ne varieties by actions of (non-reductive) algebraic groups are often quasi-a�ne

without being a�ne, and for arbitrary quasi-a�ne varieties the ring of regular functions is

not necessarily �nitely generated (see e.g. [7],[8],[10]). Thus even if the ring of invariants is not

isomorphic to the ring of regular functions on an a�ne variety it nevertheless may be isomorphic

to the ring of regular functions on a quasi-a�ne variety. Indeed, this is always the case. We can

show that the a k-algebra occurs as the ring of invariants for some a�ne G-variety if and only

if it is isomorphic to the algebra of regular functions on some quasi a�ne variety.

Theorem. Let k be a �eld and R an integrally closed k-algebra.

Then the following properties are equivalent:

� There exists an irreducible, reduced k-variety V and a subgroup G � Aut

k

(V ) such that

R ' k[V ]

G

.

� There exists a quasi-a�ne irreducible, reduced k-variety V such that R ' k[V ].

� There exists an a�ne irreducible, reduced k-variety V and a regular action of G

a

= (k;+)

on V de�ned over k such that R ' k[V ]

G

a

.

If char(k) = 0, these properties are furthermore equivalent to the following:

� There exists a �nitely generated, integrally closed k-algebra A and a locally nilpotent deriva-

tion D on A such that R ' kernD.

This result is based on the following more general theorem.

Theorem. Let k be a �eld, V an irreducible, reduced, normal k-variety, and L a sub�eld of the

function �eld k(V ), containing k. Let R = k[V ] \ L.

Then there exists a �nitely generated k-subalgebra R

0

of R such that

� The quotient �elds of R and R

0

coincide.

� For every prime ideal p of height one in R the prime ideal p \ R

0

of R

0

also has height

one.

� There is an open k-subvariety 
 � Spec(R

0

) such that R = k[
] (as subsets of Q(R)).

These results can be used to construct some \quasi-a�ne" quotient for a group action on an

algebraic variety.

Theorem. Let k be a �eld, V an irreducible, reduced, normal k-variety and G � Aut(V ).

Then there exists a quasi-a�ne k-variety Z and a rational map � : V ! Z such that

� The rational map � induces an inclusion �

�

: k[Z] � k[V ].
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� The image of the pull-back �

�

(k[Z]) coincides with the ring of invariant functions k[V ]

G

.

� For every a�ne k-variety W and every G-invariant morphism f : V ! W there exists a

morphism F : Z ! W such that F � � is a morphism and f = F � �.

We may also translate our results in the language of category theory and deduce the following.

Theorem. For a �eld k let V

k

denote the category whose objects are irreducible reduced normal

k-varieties and whose morphisms are those dominant rational maps for which the pull-back of

every regular function is again regular. Let Q

k

denote the full sub-category whose objects consist

of all quasia�ne such varieties.

Then for every object V 2 V

k

and every subgroup G � Aut

V

k

(V ) the functor Mor

V

k

(V; �)

G

is

representable in the category Q

k

.
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Mikhail Zaidenberg

A�ne varieties with simple topology

The survey covers the following subjects:

I. Acyclic surfaces:

1) Generalities: main examples, a�nes (Fujita's Lemma), recognizing acyclicity by com-

pletion; rationality (Gurjar{Shastri theorem), examples of Pham{Brieskorn nonrational con-

tractible surfaces; tom Dieck{Petrie line arrangements.

2) Characterizations of C

2

: Ramanujam's Theorem; existence of a cylinder.

3) Classi�cation according to log-Kodaira dimension: Miyanishi{Sugie{Fujita Theorem, Fu-

jita's classi�cation (�� = 0); Gurjar{Miyanishi's list of surfaces with �� = 1.

4) Acyclic curves on acyclic surfaces: Theorems of Abhyankar{Moh{Suzuki, Lin{Zaidenberg,

Zaidenberg, and Gurjan{Miganishi; characterization of C

2

, of surfaces with �� = 1; tom Dieck{

Petrie examples; Kaliman-Makar-Limanov embedding theorem.

5) Deformations: Log-general type surfaces: the rigidity conjecture (Flenner{Z.)
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6) Rational Cuspidal Plane curves: P

2

n C is a Q-acyclic () C is a rational cuspidal curve;

the rigidity conjecture; (d, d-2), (d, d-3), (d, d-4)-curves (Flenner{Z., Fenske); other series

(unicuspidal, 2-cuspidal curves, tom Dieck's list); Orevkov's estimates.

7) Abhyankar-Suthaye Embedding Problem for planes in C

3

: Sathaye{Wright and Kaliman-Z.

Theorem, Russell{Sathayer's Theorem.

II. Acyclic 3- and 4-folds:

1) A�ne modi�cations: de�nitions; main properties; Davis' presentation. Examples: tom

Dieck{Petrie surfaces, Russell's cubic, Kaliman-Z. hypersurfaces u

m

v � p�x = 0. Kaliman-Z.

Theorem on preservation of topology. Dimca{Ramanujam's version of h-cobordism theorem.

2) Exotic C

n

's: de�nition; examples's; Makar-Limanov's theorem on exoticity of Russell's

cubic; Iitaka{Fujita's Strong Cancellation Theorem.

3) Characterization of C

3

: Miyaniski's Theorem; Kaliman-Z. Theorem on existence of a

cylinder; Kaliman's Theorem on a variable and conditions of exoticity of an acyclic 3-fold.

4) Makar-Limanov's Invariant: Locally nilpotent derivations and C

+

-actions; Aut

+

(X);

Kaliman{Z. Theorem on in�nite transitivity of the action of Aut

+

(X) on Reg(X) with X =

(uv � p�x = 0).

5) Exotic examples of exotic 4-folds:

Theorem. (Kaliman-Z.) The 4-fold X

k;l;m

� C

5

with the equation

u

m

v �

(xz + 1)

k

� (yz + 1)

l

� z

z

= 0

is an exotic C

4

, where m � z , k > l � 3, (k; l) = 1.

Corollary. Miyenishi's characterization of C

3

cannot be extended to dimension 4.

This leads to the following question: Is the 4-fold X

k;l;1

with (k; l) = 1; k; l � 2 an exotic C

4

?

D.-Q. Zhang

Part I: Open Algebraic Varieties and their Fundamental Groups

Part II: Automorphisms of Finite Order on Rational Surfaces

We assume that X is a normal projective variety with at worst log terminal singularities

de�ned over C . Set X

0

:= X n SingX.

Problem 1. Suppose that dimX = 2, X is simply connected and X has only one quotient

singularity and no other singularity. Is �

1

(X

0

) = (1) ?

Remark 2. (1) The answer to 2 is yes if X is a rational surface and the logarithmic Kodaira

dimension �(X

0

) � 1 (cf. [Gurjar and Z., Math. Ann.]).

(2) There are examples of rational surfaces with two or more quotient singularities so that

�

1

(X

0

) is in�nite.

Suppose that X is Q-Fano, i.e., the anti-canonical divisor �K

X

is an ample Q-Cartier divisor.

Conjecture 3. If X is Q-Fano, then �

1

(X

0

) is �nite.

Remark 4. (1) When dimX = 2, the answer to 3 is yes; (cf. [Gurjar and Z., J. Math. Sci. U

Tokyo]). There are other proofs by Fujiki-Kobayashi-Lu and by Keel-McKernan.

(2) When the Fano index r(X) > dimX � 2, 3 is proven; (cf. [Z.; Osaka J. Math.]).
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(3) There are counter-examples to 3 when X has log canonical singularities [Z., Trans AMS,

1996].

Clearly, 3 would imply the following

Theorem 5 (Takayama, JAG, 2000). If X is Q-Fano, then �

1

(X) is �nite.

Remark 6. Campana and Kollar{Miyaoka{Mori have shown independently that 5 would

follow from the following, which they proved when dimX � 3.

Conjecture 7. If X is Q-Fano, then X is rationally connected.

In a paper with I. Shimada [Nagoya Math. J.] and a paper with J. Keum, we have determined

�

1

(X

0

) where X is either a K3 surface or an Enriques surface with at worst Du Val singularities.

Corollary. Suppose that X has at worst c singularities of type A

p�1

with p a �xed prime

number. Then �

1

(X

0

) is soluble. It is �nite unless (p; c) = (2; 8); (2; 16) or (3; 9).

In a paper with an Appendix by I. Dolgachev, we apply the latest Mori theory of extremal

ray in NE(X)

G

and obtain a very short list of all minimal pairs (X;G) of a smooth projective

rational surface with an e�ective �nite group G-action, especially for groups of prime order.

The �rst study of such G was done by Kantor over one hundred years ago, and later by Manin,

Gizatullin, Iskovskih, et al.

Berichterstatter: Stefan Schr�oer
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