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The meeting was organized by Ulrich Brehm (TU Dresden), Jacob E. Goodman (City

College, City University of New York), Richard M. Pollack (New York University) and J�org

M. Wills (Universit�at Siegen). It was attended by 45 mathematicians from 10 countries. It

featured 11 survey lectures as well as 21 shorter talks. The conference attempted to cover

the whole breadth of the current developments in Discrete Geometry. Some of the main

topics that became apparent were

� triangulated surfaces and the face structure of polytopes,

� �nite packings, parametric density and Wul�-shapes,

� packings, coverings and tilings (periodic and aperiodic),

� combinatorial geometry problems,

� applications of discrete geometry in computer science, biology and biochemistry.

One of the highlights was the announcement of a proof of the three-dimensional Hadwiger-

Gohberg-Marcus covering conjecture by V. Boltyanski. The conference resulted in fruitful

discussions in small groups and productive collaborations among the participants. The

extended plenary problem session on tuesday evening (problems listed at the end of this

volume) stimulated a lot of further discussions and activities.
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Abstracts

Group Actions, Polyhedral Fundamental Domains and Links of Singularities

Ludwig Balke

Consider the following two data. First, you are given a 3{manifold M in terms of a

polyhedron P together with sidepairings. Secondly, there is a function f : M �! C such

that K := f

�1

(0) is a knot or link inM and � :M nK �! S

1

; m 7!

f(m)

jf(m)j

is an open book

�bration.

Assume that each �bre F

t

= f

�1

(t) intersects the boundary of P nicely, i.e. in a graph

whose complement is connected. This gives a good combinatorial description of f and its

monodromy. Vice versa, such a description allows to (re)construct the polyhedron P and

the side pairings.

Examples for this situation arise naturally in the study of fundamental domains for

group actions which give links of certain isolated singularities of complex surfaces.

0� 1 Polytopes with Superexponentially Many Facets

Imre B�ar�any

Answering a question of K. Fukuda and G. M. Ziegler we show that there exist n-

dimensional 0 � 1 polytopes with superexponentially many facets. We give a random

construction. Writing K

N

for the random 0 � 1 polytope with N vertices (in R

n

) the

following holds in the range exp log

2

n < N < expn= logn. The expected number of facets

of K

N

is at least (c logN)

n=4

, where c is a universal constant. In the proof, extensive use

is made of a beautiful result of Dyer, F�uredi, and McDiarmid (Random Structures and

Algorithms, 1992).

This is joint work with Attila P�or.

Discrete Isoperimetry

Ulrich Betke

For the �nite subsets of a lattice � we introduce an energy which somewhat generalizes

the inner energies considered in crystallography. We de�ne a notion of convexity on these

subsets and say that a convex �nite subset with cardinality i is an i{crystal, if its energy

is minimal among the subsets with exactly i elements. We show that we obtain the shape

of a crystal known from crystallography by taking the limit of the shapes of i{crystals

rather than considering only special polytopal subsets as usually done in crystallography.

Moreover we obtain a stability result. We use our results to compare the surface energy

of crystallography to a related function studied in the theory of �nite packings and �nd a

rather di�erent behaviour.

This is joint work with Martin Henk.
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Covering a Square Ring with Strips

Andras Bezdek

Call a closed region between two parallel lines a strip. Let w(K) be the width of the

narrowest strip which covers a given convex region K. w(K) is called the width of K. The

well known Bang's theorem says that if a convex domain K is covered by a collection of

strips, then the sum of the widths of the strips is at least w(K). As a special case we have

that if the unit square is covered by a �nite collection of strips, then the sum of the widths

of the strips is at least 1. We show that the sum remains at least 1 even if one needs to

cover the remainder of the square after cutting an edge-parallel square hole of edge length

1�

1

p

2

= 0:29 : : :. The proof utilizes lemmas of T.Bang (see reference). We prove similar

statements for the regular 2n-sided polygon (n > 1). Showing analogue statements for

general convex regions (in particular for a circle) remains a challenge.

Reference:

T.Bang, A solution of the plank problem, Proc. American Math. Soc., 2 (1951) 990{993.

The Danzer-Gr�unbaum Theorem Revisited

K�aroly Bezdek

The following result that has been conjectured by Erd}os and Klee is due to Danzer and

Gr�unbaum: In the d-dimensional Euclidean space E

d

there can be at most 2

d

points such

that all angles determined by any triple of points are less than or equal to

�

2

In the �rst

part of the talk we prove the following stronger version of Danzer-Gr�unbaum theorem. Let

f(�) be the maximum number of vertices of a convex polyhedron in E

3

such that all angles

between adjacent edges of the polyhedron are less than or equal to �, where 0 < � < �.

Theorem For any

�

2

� � <

2�

3

we have that f(�) � b

4�

2��3�

c.

The main tool of the proof is the following spherical geometry version of P�al's theorem.

Lemma The spherical area of any spherically convex domain of width ! �

�

2

on S

2

is at

least as large as the spherical area of an equilateral triangle of width !.

In the second part of the talk we give a sharpening of Danzer-Gr�unbaum theorem in

E

d

for very large d under some metric conditions.

Geometry of the Space of Phylogenetic Trees

Louis J. Billera

We consider a continuous space which models the set of all phylogenetic trees having

a �xed set of leaves. This space has a natural metric of nonpositive curvature, giving

a way of measuring distance between phylogenetic trees and providing some procedures

for averaging or combining several trees whose leaves are identical. This geometry also

shows which trees appear within a �xed distance of a given tree and enables construction

of convex hulls of a set of trees.
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This geometric model of tree space provides a setting in which questions that have been

posed by biologists and statisticians over the last decade can be approached in a systematic

fashion. For example, it provides a justi�cation for disregarding portions of a collection of

trees that agree, thus simplifying the space in which comparisons are to be made.

This is joint work with Susan Holmes (Stanford) and Karen Vogtmann (Cornell).

On Recent Contributions to the Theory of Oriented Matroids

J�urgen Bokowski

For uniform oriented matroidsM with n elements, there is in the realizable case a sharp

lower bound L

r

(n) for the number mut(M) of mutations of M : L

r

(n) = n � mut(M)

due to Shannon. Finding a sharp lower bound L(n) � mut(M) in the non-realizable case

is an open problem for rank d � 4: Las Vergnas conjectured 1 � L(n): In the rank 4 case

Richter-Gebert showed L(4k) � 3k + 1 for k � 2: We can show 1 � L(n) for n < 13 and

L(7k + c) � 5k + c for all integers k � 0 and c � 4 (joint work with H.Rohlfs).

The Folkman-Lawrence topological representation theorem for oriented matroids uses

methods that need two chapters in the oriented matroid book by Bj�orner et al. We (joint

work with I.Streinu and S.Mock ) present an elementary proof of the Folkman-Lawrence

topological representation theorem for oriented matroids of rank 3 which is promising also

for the general case.

Solution to the Illumination Problem of Three-Dimensional Compact, Convex

Bodies

Vladimir Boltyanski

Let M � R

n

be a compact, convex body. Denote by c(M) the minimal number of

nonzero vectors, whose directions illuminate the boundary of M . In 1957, I. Gohberg and

A. Markus proved for n = 2 that c(M) = 4 asM is a parallelogram and c(M) = 3 otherwise.

(By particular conditions in the USSR, their article was published only in 1960.) Evidently,

c(M) = 2

n

for n-dimensional parallelotope. By this, Gohberg and Markus formulated (in

other terms) the following

CONJECTURE. c(M) � 2

n

for any compact, convex body M � R

n

, the equality being

hold only for parallelotopes.

The same conjecture was independently formulated by H. Hadwiger in 1957.

M.Lassak proved c(M) � 8 for every centrally symmetric compact, convex body M �

R

3

: H. Martini proved c(M) �

3

4

� 2

n

for every n-dimensional zonotope M distinct from a

parallelotope. V. Boltyanski and P. Soltan proved that Martini's estimate holds for every

n-dimensional zonoid. Later Boltyanski proved that Martini's estimate holds for every

n-dimensional belt body.

Using the functional md introduced by Boltyanski in 1976, we formulate the following

CONJECTURE. c(M) � 2

n

� 2

n�m

for every compact, convex body M � R

n

with

mdM = m � 2:
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Justifying this conjecture, we obtain positive con�tmation of the Gohberg-Markus-

Hadwiger conjecture. If m = 2, the above conjecture means that for every compact,

convex body M � R

n

with mdM = 2 Martini's estimate holds. This result is proved

by the speaker. This implies that to solve the illumination problem for three-dimensional

bodies, it is su�cient to establish c(M) � 7 for every compact, convex body M � R

3

with

mdM = 3: This assertion also is proved by the speaker.

Parametric Density | an Overview

K�aroly B�or�oczky, Jr

The notion of parametric density is relatively new, it was introduced by J�org M. Wills

at the early 90's. The notion connects classical problems (for example, L�aszl�o Fejes T�oth's

Sausage Conjecture) with applications (for example, the Wul� shape for crystals and quasi{

crystals), and gives a clear explanation for the shape of various optimal �nite arrangements.

The talk introduces the roots of the theory, summarizes the most important results, ob-

tained by U. Betke, M. Henk, U. Schnell, J.M. Wills and myself. Many yet open problems

are proposed, especially for �nite coverings.

Combinatorial Geometry Problems with Pattern Matching Applications

Peter Bra�

The question for the maximum number of unit distances among n points in the plane

is a typical extremal problem of combinatorial geometry. Such problems have been much

studied, since they are easy to explain, and for the small cases also easy to solve, but turn

out to be quite di�cult in general, and related to a number of questions in graph theory,

geometry and number theory. It recently became apparent that such problems also have

applications, some of them related to pattern matching. This connection appears, since

the most di�cult sets for those pattern matching tasks are such sets in which some simple

fragments of the pattern (like a unit-distance pair or a triangle) occurs very often; thus

for the analysis of pattern matching algorithms it becomes necessary to bound the number

of occurences of these fragments. So the classical `number of unit distances'-bound of

O(n

4

3

) is in an e�ective version the basis of the currently best algorithm for the detection

of congruent subsets in a planar pointset. We present a new bound of O(n

7

4

�(n)) for the

number of congruent triangles among n points in three-dimensional space, which gives

the currently best algorithm for three-dimensional congruent subset detection, and survey

some similar extremal problems motivated by pattern matching applications, among the

question for the maximum number of empty congruent triangles among n points in the

plane, which we conjecture to be O(n).
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Minimal Simplicial Dissections and Triangulations of 3-Polytopes

Ulrich Brehm

When considering minimal triangulations of 3-polytopes the following natural questions

occur:

� Can the minimal number of simplices be reduced if additional interior vertices are

allowed?

� Can a simplicial dissection have fewer vertices than a minimal triangulation?

� Does the minimal number of simplices depend on the realization of the polytope?

All these questions have an a�rmative answer (joint work with A. Below, J. De Loera, F.

Richter-Gebert).

Moreover, when allowing additional vertices the minimal number of simplices for a

triangulation is not even an invariant of the chirotope determined by the given vertices.

An In
ation-Species of Planar Triangular Tilings, which is not Repetitive

Ludwig W. Danzer

It has been conjectured that an in
ation-species of tilings with the following properties

(D) the in
ation posseses a unique inverse,

(M) the protoset of tiles is minimal (with respect to the in
ation), and

(F) the protoset is �nite with respect to translations (i.e. no tile occcurs in in�nitely

many orientations)

necessarily is repetitive, if not even linearly repetitive. The following counterexample will

be presented and explained.

Let A be the rectangular triangle with edge lengths 1, � and �

4

. With x

:

= �

2

we have

x

4

� x� 1 = 0.

De�ne B

:

= �A, C

:

= �B, D

:

= �C, then �D = �(A) [  (B), where � and  are

euclidean isometries. Thus we can de�ne an in
ation by in
(A)

:

= B,: : :, in
(D)

:

=

�(A) [  (B). Then the species

S

:

= S

�

fA;B;C;Dg; in


�

satis�es (D), (M) and (F), but is not of locally �nite complexity. The reason is: The circles

of radius x

4

centered at the midpoints of the hypotenuses of the supertiles in


n

(A) contain

in�nitely many pairwise incongruent clusters of tiles. This implies that S is not repetitive.

Nevertheless for every cluster C, which occurs in S, there is a radius r such that in every

tiling belonging to S in every r-circle a translate of C can be found (\weak repetitiveness").

The proof requires detailed considerations of the eigenvalues and eigenspaces in C

4

of

the in
ation-matrix (whose characteristic polynomial is of course x

4

� x� 1). Presumably
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other equations of type x

n

� x

m

� 1 = 0 will lead to similar examples, provided the largest

root is not a PV-number. In particular, this is the case for n = 5, m = 3, and for n = 6; 7; 8

with m = n� 1.

Folding and Unfolding Linkages, Paper, and Polyhedra

Erik Demaine

I will discuss several recent results in the theme of the title. For linkages, my focus will

be on the latest result: any simple polygon can be convexi�ed while maintaining all the

edge lengths and never crossing any edges (joint work with Robert Connelly and G�unter

Rote). For paper, I will describe two results: (1) every polyhedron can be folded/wrapped

out of a large enough piece of paper (joint work with Martin Demaine and Joseph Mitchell);

and (2) folding a piece of paper 
at and making one complete straight cut su�ces to make

any embedded planar graph of cuts (joint work with Martin Demaine and Anna Lubiw,

and with Marshall Bern, David Eppstein, and Barry Hayes). Finally, for polyhedra, I

will describe two bodies of research: (1) unfolding nonconvex polyhedra, in particular a

simplicial polyhedron that cannot be cut along its edges and unfolded into a simple planar

polygon (joint work with Marshall Bern, David Eppstein, Eric Kuo, Andrea Mantler,

and Jack Snoeyink); and (2) folding a polygon and gluing together its boundary to form a

convex polyhedron (joint work with Martin Demaine, Anna Lubiw, and Joseph O'Rourke).

Topological Persistence and Simpli�cation

Herbert Edelsbrunner

We formalize a notion of topological persistence within the framework of �ltrations,

which are histories of growing simplicial complexes. We classify a topological change that

happens during growth as either a feature or noise depending on its life-time or persistence

within the �ltration. We give fast algorithms for computing persistence and experimental

evidence for their speed and utility.

(collaboration with David Letscher and Afra Zomorodian)

On the Moment Theorem

G�abor Fejes T�oth

For a domain D, a point p and a function f the integral

M

f

(D; p) =

Z

D

f(px)dx

is called the moment of D with respect to p taken with the function f . Here px denotes

the distance of xto p. The Moment Theorem of L�aszl�o Fejes T�oth states the following:
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Let H be a convex polygon in E

2

with at most six sides and f a non-increasing function

de�ned for non negative reals. Let p

1

; : : : ; p

n

be distinct points and let D

i

be the Dirichlet

cell of p

i

relative to H. Then we have

n

X

i=1

M

f

(D

i

; p

i

) � nM

f

(H

n

; o);

where H

n

is a regular hexagon of area a(H

n

) = a(H)=n centered at o.

We establish a stability criterion to this theorem and also extend it to the case when

n � 2 and H is an arbitrary convex body. The problem of �nding a stability version of

the Moment Theorem was raised by Peter Gruber, who independently proved a theorem

analogous to mine.

On Helly Numbers for Hyperplane Transversals to Convex Sets

Jacob E. Goodman

We present three recent results on Hadwiger's problem of �nding the Helly number for

line transversals to disjoint unit disks in the plane, and about its generalizations, both

to higher dimensions and to arbitrary compact convex sets. One of these corrects a 40-

year old error, while another constitutes the �rst Helly-type theorem known for hyperplane

transversals to compact convex sets of arbitrary shape in dimension greater than two. This

is joint work with Boris Aronov, Richard Pollack, and Rephael Wenger.

Let, as usual, T (k) (resp. T ) denote the assertion that every k (resp. all) of a family of

given convex sets have a common transversal of a given dimension, and let the minimum

k for which T (k)) T be called the Helly number of such a family. We prove

(1) There exist arbitrarily large collections of disjoint unit disks in the plane for which

T (4) does not imply T for line transversals, contradicting a claim to the contrary going

back to 1958;

(2) The Helly number for hyperplane transversals to collections of d+ 3 or more sepa-

rated unit balls in R

d

is at least d+ 3;

(3) The Helly number for hyperplane transversals to �nite collections of su�ciently

many �-separated compact convex sets in R

d

is at most 2d+ 2.

Here, a �nite collection of compact convex sets in R

d

is \�-separated" if any k of the

sets can be separated from any other d� k of them by a hyperplane whose distance from

each is at least �D=2, where D is the maximum of the diameters of all the sets in the

collection; the size of the collection needed depends on � as well as on the dimension.
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A Conjecture of J.M. Wills and View-Obstruction

Rajinder Hans-Gill

Wills (1968) considered the function

�(n)

:

= inf

k

1

;:::;k

n

2N

max

x2[0;1]

min

1�i�n

kk

i

xk

where the in�mum is taken over n-tuples of positive integers (k

i

)

n

i=1

, and k�k denotes the

distance to the nearest integer.

Wills showed that �(1) =

1

2

, �(2) =

1

3

and

1

2n

� �(n) �

1

n+1

for all n. He conjectured

that �(n) =

1

n+1

.

Several proofs are now known for n = 2; 3; 4. Marko� type chains of isolated extreme

values have been obtained for n = 2; 3. Several authors have made contributions: Wills,

Betke,Cusick, Pomerance, Chen, Dumir, Hans-Gill, Bennia, Goddyn, Gvozdjak, Seb�o and

Tarsi. The case n = 5 has recently been completed by Bohman, Holzman and Kleitman.

The conjecture is still open for n � 6. Some equivalent formulations of the problem are

1. View-obstruction problem for Boxes.

2. Billiard ball problem for special paths

3. Lonely runner problem

The view-obstruction problem was formulated by T.W. Cusick. This formulation has the

advantage that the problem can be formulated also for other sets. It is easy to solve for

domains in two dimensions. For spheres it has been solved for dimension � 5.

Tight Triangulations

Wolfgang K�uhnel

A triangulation of a manifold M is called a tight triangulation if the span A of any

subset of vertices is topologically essential in M , i.e., if the induced homomorphism

H

�

(A) ! H

�

(M) in homology is injective. Tightness is a generalization of convexity,

and the tightness of a triangulation is a fairly restrictive property. For 2-manifolds (with-

out boundary) it is equivalent to the completeness of the edge graph. We give a review on

all known examples of tight triangulations in dimension d � 3. Altogether, six new exam-

ples of tight triangulations are presented, a 15-vertex triangulation of the non-orientable

4-manifold (S

3

�S

1

)# 5(CP

2

) admitting a vertex-transitive group action, furthermore a

13-vertex triangulation of the simply connected homogeneous 5-manifold SU(3)=SO(3)

with a vertex-transitive action, two non-symmetric 12-vertex triangulations of S

3

� S

2

,

and two non-symmetric triangulations of S

3

� S

3

on 13 vertices.

Reference:

W.K�uhnel and F.H.Lutz: A census of tight triangulations. Periodica Math. Hung. 39

(2000), to appear

(joint work with Frank H. Lutz)
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Knots in Minimal Trees

Wlodzimierz Kuperberg

Given a �nite set of points, S, a minimal tree spanned by S is a connected graph contain-

ing S whose total length (i.e. the sum of lengths of its edges) is smallest possible. If S lies on

the boundary of the unit ball in R

3

, and if T is a minimal tree spanned by S, then T�S lies

in the interior of the ball. We say that T is unknotted if there exists a topological disk prop-

erly embedded in the ball and containing T , otherwise T is knotted. Answering a question

of Michael Freedman (Can a minimal tree spanned by a set lying on the boundary of the ball

in R

3

be knotted?), Krystyna Kuperberg constructed a spanning set whose minimal tree

contains a trefoil-knotted arc (see http://front.math.ucdavis.edu/math.MG/9806080

for a preprint). We investigate the problem of knotted minimal trees further, and discover

that, besides the trefoil, certain other types of knots are possible in such minimal trees.

Also, we consider similar problems for minimal trees spanned by a subset of a convex

surface other than a sphere.

(joint work with Krystyna Kuperberg)

Apollonian Circle Packings

Je�rey C. Lagarias

An Apollonian circle packing is an in�nite packing of circles in the plane generated

from a Descartes con�guration (four mutually touching circles) by a group of M�obius

transformations consisting of inversions in the circles passing through each triple of tangent

points. Some Apollonian packings have the special property that all circle curvatures are

integers, and the curvature � center of each circle has integer coordinates. We call these

strongly integral packings. The existence of integer curvatures is explained by the Descartes

circle theorem (�rst stated in 1638) which says that the curvatures c

i

=

1

r

i

of the circles in a

Descartes con�guration satisfy (c

2

1

+c

2

2

+c

2

3

+c

2

4

) =

1

2

(c

1

+c

2

+c

3

+c

4

)

2

: If one starts with an

integral solution to this equation, integrality of curvatures is preserved under the action of

the group above. We show that Descartes' theorem can be generalized to similar equations

involving curvature � center, which explains strong integrality. We characterize Descartes

con�gurations in a coordinate system involving the isochronous Lorentz group O

"

(3; 1;R),

and give generalizations valid for n-dimensional Euclidean, spherical and hyperbolic space.

In this coordinate system Apollonian packings are expressed in terms of the action of a

discrete subroup of integer matrices, called the Apollonian group. We give a geometric

interpretation of the generators of this group, and extend it to a super-Apollonian group,

which is a Coxeter group, and of �nite index in O

"

(3; 1;Z). These results also have n-

dimensional analogues.

(This is joint work with R. L. Graham, C. Mallows, A. Wilks (AT&T Labs) and C.

Yan (Texas A&M.)
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Squeezed 2- and 3-Spheres are Hamiltonian

Carl W. Lee

We consider the dual graphs to Kalai's squeezed spheres, where vertices of the graph

correspond to facets of the sphere, and edges of the graph correspond to adjacent facets. We

show that squeezed 2- and 3-spheres yield Hamiltonian dual graphs. As one consequence,

no obstacle to the Hamiltonicity of a simple 4-polytope can be deduced from its f -vector

alone.

(joint work with Robert Hebble, Morehead State University)

Simplicial decompositions of convex polytopes

Jesus De Loera

A cover of a convex d-polytope is a �nite collection of d-simplices whose union is the

whole polytope. The vertices of each member of the collection are vertices of the polytope.

A cover is irreducible if after the removal of any simplex from the collection it is not

a cover anymore. A dissection of d-polytope is an irreducible cover with the additional

conditional that the interiors are disjoint. A triangulation is a dissection the additional

condition that any pair of faces intersect in a common face, i.e. it is a simplicial complex.

The size of a cover (dissection, triangulation) is the number of members it has. A cover is

maximal if it is largest possible. A cover is minimal if it is smallest possible. Maximal

and minimal decompositions are not unique.

There exist families of convex 3-polytopes such that

1. Minimal triangulations (or dissection) larger than minimal covers. The di�erence of

size can be linear on the number of vertices.

2. Maximal triangulations (or dissection) smaller than maximal covers. The di�erence

of size can be quadratic on the number of vertices.

3. The above statements can be repeated for triangulations and dissections.

4. For some Lattice polytopes the properties (1) and (2) happen simultaneously.

5. When �xing a combinatorial type of polytope with n vertices, the sizes of triangula-

tions vary greatly. An important example.

regular d-cube, max triangulation: d!

Klee-Minty d-cube, max triangulation > c

d

d!, for c > 1:

These results are joint with Below, Brehm, Richter-Gebert, Santos and Takeuchi.
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Some recent results on geometric graphs

Horst Martini

A geometric graph any two edges of which intersect is said to be an intersector. A useful

generalization of intersectors is given by the notion of successors (i.e. by geometric graphs

without isolated vertices where the neighboring edges of every vertex form a convex star

with edges giving a succession regarding angle ordering, cf. [KM1]). This generalization

keeps essential properties and thus gives better insight in the structure of intersectors on

the other hand, but allows also to obtain new results (not true in the restricted category

of intersectors) with applications in di�erent �elds of planar geometry. These applications

are combinatorial and metrical in nature, and they refer to

{ isoperimetric problems related to planar sets of constant width (uni�ed approach to

the theorems of Blaschke-Lebesgue and Firey-Sallee, cf. [KM2]),

{ planar sets S of diameter h having the weak circular intersection property (i.e. , sets

with the property that the intersection of all unit discs with centers from S is a set

of constant width h, see [KM3]),

{ time optimal constructions of Releaux polygons, cf. [KMW]

References:

[KM1] Y. Kupitz, H. Martini: From intersectors to successors. Graphs and Combinatorics,

to appear.

[KM2] Y. Kupitz, H. Martini: On the isoperimetric inequalities for Releaux polygons.

Journal of Geometry, to appear.

[KM3] Y. Kupitz, H. Martini: On the weak circular intersection property. Studia

Sci. Math. Hungar., to appear.

[KMW] Y. Kupitz, H. Martini, B. Wegner: A linear-time construction of Releaux poly-

gons. Beitr�age zur Algebra und Geometrie 37 (1996), 415{427.

Topological Aspects in the Theory of Transversals

Luis Montejano Peimbert

We would like to emphasize the idea that transversals, as a subset of a Grassmanian

manifold, should be studied topologically.

Let F = fA

0

; :::; A

r

g be a family of convex sets in R

n

and let T

m

(F ), the space of

transversals of F , be the subspace of the Grassmannian G(n;m) of m-planes in R

n

that

intersect all members of F .

Our �rst purpose is to study the homotopy type of T

m

(F ) through C

m

r

, the polyhedron

of con�gurations of (r + 1) points in R

m

. In particular, if r = m + 1 and T

m�1

(F ) = �; it

is possible to calculate the homotopy type of T

m

(F ) through the �nite set of all possible

order types achieved by the m-transversals when they intersect F . It is also possible to

prove that the set of all m-transversals of T

m

(F ) that intersect F with a prescribed order

type is a contractible space.
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Of course these theorems are false when T

m�1

(F ) 6= � or if we consider m-transversals

of a family of (r + 1) convex sets with r > m+ 1.

Our next purpose is to study Helly type theorems for transversals in the following spirit:

It is natural to expect generalizations of Helly's Theorem about families of convex sets,

replacing the concept of intersection points (0-transversals) by the concept of k-planes that

intersect all the convex sets (k-transversals). Let us consider a family F of compact convex

sets, our philosophy is that if subfamilies of F with few members have enough transversals

of small dimension, then the whole family F has many transversals of a �xed dimension.

We shall measure the size of the set of transversals according with their topological

complexity inside the corresponding Grassmannian manifold. That is, if X is a set of

n-planes in R

n+k

; we say that �(X) � � if X has "topologically" as many n-planes as

the set of all n-planes through the origin in R

n+�

. Our main result states that the set of

n-transversals of a family F of compact convex sets in R

n+k

is greater or equal than k if

and only if for every subfamily F

0

of F with k+2 members, the set of �-transversals of F

0

is also greather or equal than k.

Four degrees of separation

J�anos Pach

J. Urrutia asked the following question. Given a family of pairwise disjoint compact

convex sets in the plane (on a sheet of glass), is it true that one can always separate from

one another a constant fraction of them using edge-to-edge straight-line cuts? We answer

this question in the negative, and establish lower and upper bounds for the number of

separable sets. In particular, we show:

Theorem 1: Any family F of n pairwise disjoint convex polygons in the plane has at

least n

1

3

separable members, and a subfamily with this property can be constructed in

O(N + n logn) time, where N is the total number of sides of the members of F .

A set is calles "-fat if the ratio of its inradius and circumradius is at least ". The

variance of a family is the ratio of the circumradius of the largest and smallest member.

Theorem 2: For any " > 0 there is a constant c

"

with the following property: Any family

of n pairwise disjoint compact convex "-fat sets in the plane contains at least c

"

n

log log V

log V

separable members, where V denotes the variance of that family.

This is joint work with G�abor Tardos.

New results about circles in the plane

Rom Pinchasi

Let C be a family of (at least 5) unit circles in the plane. In Ascona Conference (1999)

A. Bezdek conjectured that if the circles in C are pairwise intersecting then there must

exist an intersection point through which exactly two circles pass. We present a prove to

bezdek's conjecture. Together with Noga Alon, Hagit Last, and Micha Sharir, we consider

families of pairwise intersecting circles of arbitrary radii and show that if C is large enough

13



then there always exists an intersection point through which at most 3 circles pass, unless

C is a pencil, i.e., all the circles in C pass through two given points.

We also derive improved upper bounds on the number of cells with two edges in the

planar arrangement of the circles in C. In particular we show that if C is a family of

pairwise intersecting circles then the number of those cells is linear in the size of C.

Incidence theorems on manifolds

J�urgen Richter-Gebert

We focus on structural aspects of algebraic proofs for incidence theorems. Several

classical approaches to proving incidence theorems by algebraic methods are compared

and it is shown that all of them are essentially equivalent. A special role is played by

proofs that are generated by joining together many distinct copies of Ceva's or Menelaus'

Theorem. These proofs can be dircetly associated to an underlying cycle structure. The

fact that one \indeed has a proof" corresponds to the fact that the cycle has no boundary.

In many cases this point of view provides additional structural insight. The correspondence

between cycles and other types of algebraic proofs (like the \Area Method", or \binomial

�nal polynomials") makes use of essential facts that occur in the theory of Tutte Groups

for matroids that was introduced by Dress and Wenzel in 1984. As applications of these

new structural insights one can, for instance, generate a complete classi�cation of liftable

rhombic tilings with three directions.

In�nitesimal Unfoldings and Sibson's Area-Stealing Formula

G�unter Rote

It is an outstanding open problem whether every three-dimensional convex polytope

can be unfolded into the plane without overlap by cutting along some edges while keeping

the rest of the surface connected. Together with Eric Demaine, we have proposed a simpler

model, where we want to unfold an \in�nitesimally 
at" patch of a polytope surface, by

introducing a scaling parameter that makes the surface 
atter and 
atter as it approaches

zero. This model is easier to analyze, and we can give a characterization of the cut graphs

which lead to overlapping unfoldings when the 
atness parameter is arbitrarily close to 0.

While this approach has so far not lead to a resolution of the unfolding question, the

computations that were necessary to work out how a polytope would unfold have produced

a new proof of Sibson's area-stealing formula [1980] for Voronoi diagrams, or more generally,

for power diagrams (regular polyhedral subdivisions). The area-stealing formula states

that a point P within the convex hull of some other points is the weighted average of those

points, where the weight of point Q is proportional to the area of P 's region in the Voronoi

diagram that is \stolen" from Q's region when P is added to the point set. This formula

has applications in surface interpolation.

After establishing the correspondence with in�nitesimal unfoldings, the area-stealing

formula becomes immediately obvious, without any further computation. In this correspon-

dence, there is some similarity to the de�nition of the Steiner point of a convex polytope.

14



We wonder if this relation points to generalizations of the area-stealing formula to di�erent

settings.

Some applications of the volume formula for polyhedra

Idjad Kh. Sabitov

For the triangle a formula expressing the area in terms of the sidelengths was already

found by Heron:

A

2

=

1

16

(2a

2

b

2

+ 2a

2

c

2

+ 2b

2

c

2

� a

4

� b

4

� c

4

):

A similar, but much more complicated, formula for the volume of a threedimensional

simplex was found by Tartaglia (1561) and Euler (1752), which expressed the squared

volume as a polynomial of the squared edge-lengths of the simplex. This is a special case

of the following theorem (S. 1996):

Theorem: For any orientable polyhedron P in R

3

with triangular faces and given lengths

of edges there is a polynomial Q with the properties

� the coe�cients of Q are polynomials (over rational numbers) in the edge-lengths of

P , the polynomials being determined by the combinatorial structure of P , and

� the squared volume V

2

is a zero of the polynomial: Q(V

2

) = 0.

We further discuss some corollaries of this result, its algebraic meaning, the canonical

volume polynomial, examples, isometric realizations and the special cases of octahedra

with symmetries.

Small protosets and matching conditions (and their complexity)

Peter Schmitt

A basic question in the theory of tilings is the following:

Given a set of bodies (called prototiles). How can they (more precisely, congruent

copies) be used to tile space?

The set of all distinct (i.e., incongruent) tilings admitted by a set of prototiles is often

called the species (determined by the protoset). It usually will be empty, or contain

uncountably many tilings. However, it also may be �nite, or countably in�nite. Moreover,

a more detailed classi�cation of the species, e.g., according to symmetry properties of its

members, is of interest. I call this, i.e., the structure of the species, the versatility of the

protoset (or the species).

A special case (related to aperiodicity) is the classi�cation according to periodicity

properties: I am looking for small protosets which realize a given versatility vector (v

k

)

where v

k

(P ) is the number of all tilings which have translations in k independent directions

among their symmetries.

It seems that, for a single prototile, only sporadic examples exist. Pairs of prototiles

can be quite versatile, and three prototiles { two large and one small shape { are su�cient
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to construct examples of many (most) types of versatility. In space, it is possible to reduce

this to one large and one small prototile for many cases.

These general examples use tiles of complex shape. Using other types of matching rules

(like an atlas of vertex �gures) it is possible to use simpler shapes, but only in exchange

for complicated rules.

On Finite Lattice Coverings

Uwe Schnell

Optimal �nite lattice packings measured by the parametric density lead to the socalled

Wul�{shape which is known from crystallography ([BB], [W], [S1], [S2]). A new approach

to coverings based on the parametric density was given in [BHW]. The classical density

corresponds to the case when the parameter % is 0. This was investigated under various

aspects by Bambah, Rogers, Woods, Zassenhaus, Gritzmann and G. Fejes T�oth. Here

our question is whether one can give detailed information on the (asymptotic) shape of

thinnest lattice coverings. We present results from [MS].

We consider �nite lattice coverings of strictly convex bodies K. For planar centrally

symmetric K we characterize the �nite arrangements C

n

such that convC

n

� C

n

+ K,

where C

n

is a subset of a covering lattice for K (which satis�es certain conditions). We

prove that for a �xed lattice the optimal arrangement (measured by the parametric density)

is either a sausage, or a double sausage or a Wul�{shape (asymptotically) depending on

the parameter. This shows that the Wul�{shape plays an important role for packings as

well as for coverings. Further we give a version of this result for variable lattices. We

characterize the set of covering lattices for the Euclidean d{ball with the property that the

optimal arrangement is a sausage (for su�ciently large parameter).

References:

[BB] U. Betke and K. B�or�oczky, Jr.: Finite lattice packings and the Wul�{shape, Mathe-

matika, to appear.
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(1995), 251{263.

[MS] M. Meyer, U. Schnell: On �nite lattice coverings, submitted.
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[S2] U. Schnell: FCC versus HCP via Parametric Density, Discrete Math., to appear.
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Locally unitary groups generated by involutory re
ections

Egon Schulte

We discuss complex groups G generated by n involutory re
ections that preserve a

hermitian form. Such a group G is called locally unitary if each subgroup generated by

n� 1 of the generators is a �nite unitary re
ection group. These groups naturally arise in
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the enumeration of abstract regular polytopes whose facets or vertex-�gures are toroidal.

This is joint work with Peter McMullen.

The k-set problem

Micha Sharir

Let S be a set of n points in R

d

in general position, and let 0 < k < n be an integer.

A subset S

0

� S is called a k-set if jS

0

j = k and S

0

can be separated from S n S

0

by a

hyperplane. Let f

(d)

k

(n) denote the maximum number of k-sets for any set S of n points

in d-space. The problem of obtaining sharp bounds for these quantities have been posed

by Erd}os, Lov�asz and others around 1970, and is still far from being solved, even in the

plane. In the talk I will discuss the problem, show its connection to various problems in

computational and combinatorial geometry, involving arrangements of lines, hyperplanes,

and other surfaces, and review the recent progress that has been made. The main topic

in the talk is a very recent improvement of the upper bound on F

(3)

k

(n) to O(nk

3=2

),

improving the previous bound of O(nk

5=3

). (Joint work with Shakhar Smorodinsky and

G�abor Tardos.)

Finite edge-to-edge tilings by convex polygons

Geo�rey C. Shephard

A polygon Q is said to be tiled by a �nite number r of polygons P

1

: : : ; P

r

if the interiors

of these polygons P

i

are pairwise disjoint, and the union of these polygons, together with

their interiors, is the polygon Q and its interior. (A polygon is a piecewise closed simple

curve in the plane.) A tiling of a convex m-gon Q by convex n-gons P

i

is said to be

edge-to-edge if

(a) for any two polygons of the polygons P

i

, if their intersection is a line segment, then

this segment is a side of each, and

(b) each side of Q is a side of one of the polygons P

i

.

An edge-to-edge tiling of a convexm-gon by r convex n-gons is said to be of type < m; n; r >

and the problem is to determine all possible types of tilings. This is completely solved by:

Main Theorem: Tilings of types < m; n; r > exist for all m � 3; n � 3 and r � 1, if and

only if these integers satisfy the relations m � nr(mod2), 3 � m � (n� 2)r + 2, and

m

2

� r(n� 2)((n� 6)r + 12)� 4(n� 3) (1)

except there is no tiling of type < 3; 5; 13 >.

It is remarkable that the same inequality (1) holds for all n in spite of the fact that the

problems of tiling by 3-gons, 4-gons, and 5-gons are very di�erent from tilings by n-gons

(n � 6). It is also very remarkable that there is an anomalous case: there is no tiling of

type < 3; 5; 13 > in spite of the fact that this satis�es the conditions of the theorem.

This work was done jointly with Roswitha Blind.
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Realizations of regular toroidal maps

Asia Ivi�c Weiss

We determine and completely describe all pure realizations of the �nite toroidal maps.

For type f4; 4g maps most such realizations are 8-dimensional. For type f3; 6g and f6; 3g

maps most such realizations are 12-dimensional.

This is joint work with Barry Monson.

(At most j)-facets in 3-space

Emo Welzl

Let S be a set of n points in generic position in R

3

. An oriented triangle spanned by

three of the points is called a j-facet if there are exactly j points from S on the positive

side of its a�ne hull; e.g. 0-facets are the facets of the convex hull of S. We show that for

j � (n� 4)=2 the number of (� j)-facets (i.e. i-facets with 0 � i � j) is maximized when

S is in convex position. The proof proceeds by showing that this statement is equivalent

to the Generalized Lower Bound Theorem for d-polytopes with at most d + 4 vertices

(employing the Gale transform).

Rigidity of Frameworks and Polyhedra: Euclidean, Spherical, Hyperbolic and

Projective

Walter Whiteley

The �rst-order rigidity (and equivalent static rigidity) of a discrete con�guration (frame-

work, polyhedron etc.) in Euclidean space of any dimensions is projectively invariant.

There is a consistent projective presentation of this rigidity which specializes to the �rst-

order rigidity in each of the Eucldiean, elliptic and hyperbolic metrics. This `explains'

why and how the �rst-order motions of a con�guration in the underlying projective space

translates among these geometries, with the same projective points and abstract structure

of constraints. In each of the metrics, an `averaging principle' takes two structure with

the same indexing, P and Q, into their average

1

2

(P +Q) with in�nitesimal motion P �Q

preserving a distance in the average if and only if this distance was equal in the two initial

models. This and its converse (pushing an in�nitesimal motion back and forth to gener-

ate P and Q) transform a connected pair of structures in one metric to another pair in

the other metric (no longer the same projective coordinates) with corresponding pairs of

lengths equal if and only if they were equal in the original pair (a construction implicit

in the work of Pogorelov). This explicit projective approach, applied to points inside and

outside the absolute, translates theorems such as Cauchy's rigidity theorem for triangu-

lated convex polyhedra with �xed edge lengths in Euclidean space into both the rigidity

theorems in hyperbolic space and to an extension of Andreev's Theorem for uniqueness of

�nite polyhedra with �xed dihedral angles in hyperbolic space.

This is joint work with Franco Saliola.
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A discrete form of the Beckman-Quarles theorem for rational spaces

Joseph Zaks

The Beckman-Quarles theorem [Proc. AMS 4 (1953) 810{815] states that every unit-

preserving mapping of R

d

into R

d

is an isometry (d � 2).

A. Tyszka [Math. Mag. 2000] proved the following two results:

Theorem 1: For d = 8, for every two rational points x; y in Q

d

there exists a �nite set

S

x;y

of points in Q

d

that contains x and y such that every unit-preserving mapping f of

the set S

x;y

into Q

d

preserves also the distance from x to y (jf(x)� f(y)j = jx� yj).

This implies the following:

Theorem 2: For d = 8, every unit-preserving map of Q

d

into itself is an isometry.

Based on similar arguments, we can establish the following:

Theorem 3: If d is of the form d = 4k(k + 1) then every unit-preserving map of Q

d

into

itself is an isometry.

Theorem 4: If d � 2 is a complete square and if it is of the form d = 2k

2

� 1 then every

unit-preserving map of Q

d

into itself is an isometry.

Facet Subgraphs of Simple Polytopes

G�unter M. Ziegler

The combinatorial structure of a d-dimensional simple convex polytope { as given,

for example, by the set of the (d � 1)-regular subgraphs of facets { can be reconstructed

from its abstract graph [Blind & Mani 1988, Kalai 1988]. However, no polynomial/

e�cient algorithm is known for this task, although a polynomially checkable certi�cate for

the correct reconstruction was found by [Kaibel & K

�

orner 2000].

A much stronger certi�cate would be given by the following characterization of the

facet subgraphs, conjectured by Perles: \The facet subgraphs of a simple d-polytope

are exactly all the (d � 1)-regular, connected, induced, non-separating subgraphs." We

�rst observe that for any counterexample, the boundary of the (simplicial) dual polytope

P

�

contains a 2-complex without a free edge, and without 2-dimensional homology. One

example of such a complex, a modi�cation of \Bing's house," is then used to construct

explicit 4-dimensional counterexamples to Perles' conjecture.

This is joint work with Christian Haase, TU Berlin

Edited by Peter Bra�
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Problems

Problem Session, Discrete Geometry 2000, Oberwolfach, Tuesday, May 30

Edited by Schnell/Wills

1. Problem (G. C. Shephard)

If a polygon P is divided into triangles by lines joining the vertices of P , and if T

i

has area

a(T

i

) and centroid g

i

, then g =

P

a(T

i

)g

i

=

P

a(T

i

) is a point of P (its centroid) which is

independent of the particular triangulation that is chosen.

It is not so well{known that if c

i

is the circumcentre of T

i

then c =

P

ac

i

=

P

a(T

i

) is also

independent of the choice of triangulation. (Note: the corresponding property is not true

for incentres, orthocentres, etc).

The problem is to �nd a geometric interpretation for the point c (for example as the point

where some function on P attains ist max/min). Note that if all the vertices of P lie on a

circle, then c is the centre of this circle.

2. Problem (Luis Montejano Peimbert)

The False Plane of Symmetry.

De�nition: Let K be a convex body and let H be a hyperplane in euclidean n{space. We

say that H is a hyperplane of symmetry if there is a direction with the property that the

middle points of all chords of K in this direction lies in H.

Conjecture: Let K be a convex body and let H be a hyperplane in euclidean n{space.

Suppose that for every hyperplane N orthogonal to H, the intersection of K with N has

an (n�2){plane of symmetry parallel to H. Then, either K has a hyperplane of symmetry

parallel to H, in the direction orthogonal to H, or K is an ellipsoid.

3. Problem (Heiko Harborth)

Can every planar graph be drawn as a plane graph with all edges being straight line

segments which are of integer lengths?

A positive answer to the following question would help: Does every plane pentagon with

integer sides and two integer diagonals incident to one vertexpoint contain a point with

rational distances to all �ve vertexpoints?
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4. Problem (Heiko Harborth)

Prove that the minimum area of the convex hull of an edge{to{edge packing of n congruent

regular pentagons is attained by the following \double sausage" with one exception for

n = 6.

5. Problem (G�unter M. Ziegler)

Can every (simple) convex 3{polytope P be represented so that a dual polytope Q

�

=

P

�

can be constructed as the convex hull of vertices that are chosen in the relative interiors

of the corresponding facets of P ? That is, can one represent every 3{polytope with points

on its facets, such that adjacent facets of P correspond to adjacent vertices on the convex

hull P of the extra points?

In particular, can one do this for the 3{polytope obtained by cutting o� the vertices of a

tetrahedron?

(This was Problem 3 in B. Gr

�

unbaum & G.C. Shephard: Some problems on polyhedra,

J. Geometry 29 (1987), 182{190.)

6. Problem (Joseph Zaks)

Let Q

d

denote the rational d-space, and let A(d) and B(d) be de�ned by:

A(d): For every two points x and y of Q

d

, there exists a �nite set S

x;y

that contains x

and y, such that every unit-preserving mapping (u.p.m.) f : s

x;y

! Q

d

preserves also the

distance from x to y, i.e.

dist(x; y)(f(x); f(y)) = dist(x; y).

B(d): Every u.p.m. f : Q

d

�! Q

d

is an isometry.

Open Problems:

1) Is it true that A(d)) B(d) for all d � 5?

2) Are A(d) and B(d) true for all d � 5?

Obviously, A(d)) B(d).

Known results:

1) A(d) and B(d) are false for d = 1; 2; 3 and 4.

2) A(8) and B(8) are true [A. Tyszka, Math. Mag (T.A.). see also Aequ.Math. 59 (2000),

124-133.]

3) A(d) and B(d) are true for all even d of the form d = 4k(k + 1); k = 1; 2; : : : and for all

odd d which are complete squares, d = x

2

, and are of the form d = 2y

2

�1. (J.Z., in Prep.)
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7. Problem (Peter Brass)

Is it true that if a convex polygon x

1

; : : : ; x

n

has the property for some a; b that for each

order-a diagonal x

i

x

i+a

the point x

i+b

is the farthest point to x

i

x

i+a

among the points cut

o� by that diagonal fx

i+1

: : : x

i+a�1

g then 2b = a?

8. Problem (Janos Baracs, submitted by Walter Whiteley)

The following problem was posed by Janos Baracs (Montreal) and is related to possible

con�gurations in 4{space.

Given two indexed sets of 3{lines each: L

1

; L

2

; L

3

;M

1

;M

2

;M

3

; and 3 indexed points:

P

1

; P

2

; P

3

, we choose a line (Choice) which intersects each L

i

in a point which is joined to

P

i

then intersected with M

i

to create the point Q

i

. The problem is to choose (construct)

a line Choice so that the points Q

1

Q

2

Q

3

are collinear. For very degenerate situations,

such as each P

i

lies on its L

i

, this may not be possible. However, experimentation with

geometer's sketchpad indicates that, in general, there is such a line and it is not unique.

9. Problem (Wlodzimierz Kuperberg)

Determine the pairs of integers (k; d) with 3 � k � d for which the d{cube contains a

regular k{simplex as a concentric 0{1 subpolytope.

10. Problem (J�urgen Richter-Gebert)

Does each convex 3{polytope have a realization with convex faces and integer edges?
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11. Problem (Wolfgang K�uhnel)

It is well known that for any n 6� 2(3); n � 4 there is a triangular embedding of the

complete graph K

n

into some closed surface. In other words: There is a triangulation of

some closed surface such that the edge graph is a K

n

.

Is it true that for any n = 3m with an integer m � 3 one can choose this triangulation

in such a way that it contains m disjoint triangles? In terms of the graph K

n

: Is there a

partition into m triples such that any triple forms a triangle in the surface?

Warning: This is not true for n = 6, but it is true for n = 9 and n = 12. For certain cases

a solution can be found in the book \Map color Theorem" by G. Ringel.

12. Problem (Wolfgang K�uhnel)

Is there a 3{neighborly triangulation of any 4{manifold with n = 14 vertices? \3{

neighborly"means that the number of triangles is

�

n

3

�

. There is none with a vertex{

transitive automorphism group, so an example would presumably be rather irregular. The

case n = 14 is the only case for n < 20 vertices which is undecided.

13. Problem (Imre B�ar�any)

Let A(n) denote the minimal area that a convex lattice polygon with n vertices can have.

It is known that the order of magnitude of A(n) is n

3

:

1

54

�

A(n)

n

3

�

1

16�

2

The lower bound here follows from a result of R�enyi and Sulanke. A simple example shows

the upper bound. Question: �nd

lim

A(n)

n

3

:

Problem{List:

U. Schnell/J. M. Wills
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