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The Oberwolfach Tagung on Harmonische Analyse und Darstellungstheorie

topologischer Gruppen took place from July 9 - 15, 2000, under the leadership

of Roger Howe (New Haven), Eberhard Kaniuth (Paderborn), and Gerard Schi�-

mann (Strasbourg). There were 48 attendees, down slightly from over 50 accep-

tances, due to last-minute crises (including a broken foot). The participants came

from 13 countries: from Asia, Australia, North and South America, as well as

seven European countries. This Tagung continued a series begun in 1969 under

the leadership of H. Leptin and E.Thoma. Harmonic analysis and representation

theory is a broad area. Rather than focus on some subspecialty, this Tagungsreihe

has attempted to survey developments in a variety of areas, and to provide at-

tendees with some overview of current directions. The warm response to our

invitations and the high quality of the talks, many by younger mathematicians,

testify that these principles remain viable. It was di�cult to select a program of

only 23 talks from the strong �eld of participants. The organizers are grateful

to the Leitung of the Mathematisches Institut, and to all the attendees, both

speakers and non-speakers. We especially thank Dr. B. Kr�otz for preparing this

summary of the meeting.
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J. Adler: Murnaghan-Kirillov theory for supercuspidal representations (joint

work with S. DeBacker)

We have little explicit information about the basic objects of harmonic

analysis on reductive p-adic groups and Lie algebras: irreducible characters and

orbital integrals. We outline a situation in which they are related to each other,

thus giving both more information about each and an illustration of the Kirillov

philosophy.

More speci�cally, we show that it is often the case that a supercuspidal

character, after composition with a substitute for the exponential map, coincides

on a certain large region with the product of the formal degree and the Fourier

transform of a certain elliptic orbital integral. This extends earlier work of F.

Murnaghan in two directions.

In my talk, I introduce all of the objects referred to above, state the theorem

more precisely, and give an application.

R. Archbold: Strength of convergence in duals of C

�

-algebras and nilpotent Lie

groups

We discuss the recent concept of upper multiplicity for an irreducible repre-

sentation of a C

�

-algebra, and its link to Ludwig's earlier notion of strength of

convergence in the dual of a nilpotent Lie group G. In joint work with Kaniuth,

Ludwig, Schlichting and Somerset, trace formulae have been used to show that

if � 2

b

G has �nite upper multiplicity then this integer is the greatest strength

with which a sequence in

b

G can converge to � . Upper multiplicities have been

calculated for all irreducible representations of the groups in the threadlike gen-

eralization of the Heisenberg group. The values are computed by combining new

C

�

-theoretic results with detailed analysis of the convergence of coadjoint orbits,

and they show that every positive integer occurs for this class of groups.

B. Bekka: Fundamental domains, square integrable representations and von

Neumann algebras

Let G be a unimodular Lie group, and let � be a discrete subgroup of G:

Let (�;H) be a square integrable irreducible unitary representation of G: If G

is non compact, then the restriction �j

�

of � to � is never irreducible. The

following is a natural question:

Is �j

�

cyclic, that is, does there exist a vector � in H such that the linear

span of the set f�(
)� : 
 2 �g is dense in H?
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The representation �j

�

extends to a representation of the von Neumann

algebra V N(�); the closure for the strong operator topology of the linear span

of f�(
) : 
 2 �g in the algebra B(`

2

(�)) of all bounded operators on `

2

(�);

where � denotes the left regular representation of �: In this way, H is a V N(�)-

module. Such a module has a von Neumann dimension (or continuous dimension)

dim

�

H; a non-negative (possibly in�nite) real number. A necessary condition for

the existence of a �-cyclic vector in H is that dim

�

H � 1: (This condition is

also su�cient when V N(�) is a factor, that is, when � is an ICC-group.) In the

case where H comes from a square integrable representation � of G; one has the

following nice formula due to Atiyah and Schmid:

dim

�

H = d

�

vol(G=�);

where d

�

is the formal dimension of � and vol(G=�) is the volume of a funda-

mental domain for the action of � by right translation on G (for a choice of a

Haar measure on G).

We apply the above to the in�nite dimensional unitary representations of

the Heisenberg group (which are square integrable modulo the centre) and show

the following result, also obtained by L. Baggett (Coll. Math. 60/61 (1990),

195{203). For �xed g in L

2

(R); the associated windowed Fourier transform (or

Wigner-Fourier transform) T

win

g

: L

2

(R) ! L

2

(R

2

) is de�ned by

T

win

g

f(t; !) = hf; g

t;!

i; f 2 L

2

(R);

with g

t;!

(s) = e

�i!s

g(s � t): Let � be a lattice in R

2

: Then there exists g in

L

2

(R) such that, for every f in L

2

(R); the restriction of T

win

g

f to � uniquely

determines f if and only if vol(R

2

=�) � 2�:

M. Cowling: Slowly growing representations

This talk is about a weak notion of equivalence of representations, namely,

homotopy. The object is to be able to treat representations with a Jordan{H�older

series as if they were a direct sum.

We consider the following notion of \good continuity" for maps s 7! �

s

whose

values are representations of a locally compact group G: all the representations

�

s

act on the same Hilbert space H , and the integrated representations of L

1

(G)

are such that s 7! �

s

(f) is continuous in operator norm. We will say that

two unitary representations are homotopic if we can �nd a continuous curve of

representations (in the above sense) joining one to the other. We will see that

in order to make this notion work as we would like, we need to introduce more
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general representations than unitary ones; in particular, we will discuss uniformly

bounded representations and \slowly growing representations".

We motivate this with some examples of semisimple Lie groups and related

groups. In each case, there is a natural space X on which G acts (the boundary

of the symmetric space or similar object on which G acts isometrically) with a

quasi-invariant measure � (or rather, a class of these of which we choose one).

The principal series of representations �

s;c

of G may be de�ned by

�

s;c

(g) �(x) =

�

d�(g

�1

x)

d�(x)

�

(s+1)=2

c(g; x) �(g

�1

x) 8x 2 X 8x 2 X;

for all � in an appropriate function space on G. The function c is a cocyle taking

values in some (�nite-dimensional) unitary group U(m), and the functions � take

values in C

m

. The parameter s may be complex-valued, and when Re s 2 [0; 1],

if we de�ne p by requiring that p(Re s + 1) = 2, then �

s;c

acts isometrically on

L

p

(X).

If G = SL(2;R), then the principal series representations are obtained by

considering the action of G on the projective space P

1

; it is usually appropriate

to view this in either the \compact picture", in which X is the circle (usually

equipped with the rotation invariant measure), or the \noncompact picture", in

which X is the line R (usually equipped with the Lebesgue measure). For the

even principal series of SL(2;R), the cocycle c is the trivial cocycle e. In this

case, when �1 < s < 1, we can �nd a Hilbert space H

s

on which �

s;e

acts

unitarily (given by the intertwining operator); in the noncompact picture this is

a Sobolev space, in which the norm of � is

(1) k�k

H

s

= k�

�s=4

�k

L

2

:

We then realise all the representations �

s;e

on the same Hilbert space, namely

L

2

(R), by mapping H

s

to L

2

by �

�s=4

(this is usually considered to be the square

root of the intertwining operator). In any case, the extra unitary representations

are known as the complementary series. For s such that �1 < Re s < 1, let �

s

denote �

�s=4

�

s;c

�

s=4

(where c is either the trivial cocycle or the \sign cocycle").

It was shown by R.A. Kunze and E.M. Stein that when �1 < Re s < 1, the

representations �

s

are always uniformly bounded.

When c is the sign cocycle o, i.e.,

(2) o

��

a b

c d

�

; x

�

= sgn(�cx + d);
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we obtain the odd principal series of representations. The representation �

0;o

splits as the sum of two unitary representations, known as limits of discrete

series. With our notion of continuity, we can say that all the representations �

it;o

(t 2 R

+

) are homotopic, and that these are also homotopic to the sum of the two

limits of discrete series representations.

If we consider the square root of the sign cocyle o (as in (2)), we obtain

a new cocycle r which does not give rise to a representation of SL(2;R), but

does give rise to a representation of its double cover. If we now consider this

new group G, we �nd that the principal series �

s;r

admits a complementary

series when �1=2 < s < 1=2. At the end of this series of representations, �

s;r

becomes reducible, and the composition series is made of the so-called \oscillator

representation" and a discrete series representation. It is possible to �nd �

s;r

-

invariant positive semide�nite sesquilinear forms on the spaces for �

s;r

when

�1=2 � s � 1=2, but when s = �1=2, these are not positive de�nite, and

the unitary representations do not act on the whole Hilbert space (it su�ces to

observe that some of the K -types from �

0;r

are missing). In order to �nd a

Hilbert space on which the whole representation acts, it is necessary to use a

di�erent Hilbert space on which �

s;r

acts uniformly boundedly.

Theorem. (P.A. Sally) Let r be the square root cocycle on SL(2;R) � R . If

�1 < s < 1, then the representation �

s;r

acts uniformly boundedly on the Hilbert

space H

s

(R) described in (1) above.

The following theorem is a generalisation of the above theorem.

Theorem. Let �

s;c

be a principal series representation a simple Lie group G

of real rank one, let X be the boundary of the associated symmetric space, realised

as the Bruhat group

�

N , and let � be the natural sublaplacian on X . Suppose

that �1 < s < 1, and let H

s

(X) be the (possibly vector-valued) Sobolev space

with norm

(3) k�k

H

s

= k�

�sQ=4

�k

L

2

;

where Q is the homogeneous dimension of

�

N (i.e., Q = dim g

�

+ 2dimg

2�

).

Then �

s;c

acts uniformly boundedly on H

s

(X).

Finally, to deal with the behaviour of the representations when s = �1, we

have a problem, namely, the Sobolev spaces introduced above behave badly when

s! �1. It seems that we have to consider \slowly growing representations". We

say that a representation � of a group G on C

1

�

(the space of smooth vectors)

is slowly growing if the following holds: for any " in R

+

, we can �nd a Hilbert

space completion H

"

of C

1

�

and a constant C such that

k�(x)�k

H

"

� C kxk

"

k�k

H

"

8� 2 C

1

(X) 8x 2 G;
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where kxk is the standard matrix norm of x. This notion was introduced by N.

Higson and V. La�orgue (unpublished) to tackle the Baum{Connes conjecture.

Theorem. Let G be a simple Lie group of real rank one. For any " in R

+

,

there exist constants C and C

0

such that, for all s in [�1; 1],

(4) k�

s;c

(x)�k

H

s(1�")

� C kxk

C

0

"

k�k

H

s(1�")

8x 2 G:

This theorem allows us to say that the sum of the trivial representation

� and a couple of additional representations is homotopic to the principal series

representation �

0;e

. More generally, we may show that � is homotopic to a formal

weighted sum of tempered representations. It is hoped that this will lead to a

proof of the full Baum{Connes conjecture for Sp(n; 1) (and the exceptional group

F

4;�20

).

M. Flensted-Jensen: On the Plancherel Formula for semisimple symmetric

spaces (joint work in progress with Francois Rouviere (Nice))

I. An observation about the structure of the Plancherel formula

Recently Delorme, and van den Ban and Schlichtkrull have generalized

Harish-Chandras Plancherel formula for a semisimple Lie group G to the case

of a semisimple symmetric space G=H . In particular this decomposition splits

L

2

(G=H) into pieces parametrized by certain parabolic subgroups P .

Let K be a maximal compact subgroup of G, such that the involutions �

and � , corresponding to H and K , commute.

The �rst piece of the Plancherel formula is the discrete series, which is non-

empty if and only if rank(G=H) = rank(K=K \ H). This part is described

through the work of the author, and Oshima and Matsuki. In the group case it

is due to Harish-Chandra.

The other pieces correspond to choices of �� -invariant parabolic subgroups

P = MAN , where M=(M \ H) has discrete series. Ignoring the question

of multiplicity and working with the normalized Fourier transform, the cor-

responding piece can be described as a subspace L

2

P

(G=(M \ HA \ HN)) of

L

2

(G=(M \ HA \ HN)) de�ned by the condition on a function f , that m !

f(gm) belongs to the discrete series of M=(M \H) for each g 2 G.

In the lecture we discussed the possibility of doing analysis on G=H by

studying each P -related piece separately.

II. A Radon type tranform related to a parabolic subgroup
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It is natural in this context to try to generalize the Radon transform from

the Riemannian case G=K , by de�ning the map:

f !

Z

N

f(gn)dn

followed be the projection onto the discrete series for M=(M \H) from the right.

Notice that this extra projection is not relevant for P minimal as a �� -invariant

parabolic subgroup, since in this case M=M \H is compact.

If well de�ned it should map suitable functions on G=H directly into the

relevant P -part of the Plancherel formula, L

2

P

(G=(M \HA \HN)).

In the lecture we discussed the problems of de�ning this transform and of

relating it, whenever well de�ned, to the Fourier transform.

III. Can Harish-Chandra's description of the discrete series

as cusp forms be generalized?

Notice that in the above discussions the discrete series for G=H corresponds

to G considered as a parabolic subgroup of itself. It is then quit natural to expect

that this part (i.e. nice functions f in the discrete series) is characterized by the

property that the integrals

f !

Z

N

f(gn)dn

vanish for all the other parabolic subgroups.

In the lecture we discussed in what sense this could lead to a generalization

of Harish-Chandra's result for the group case.

Summary

Questions were raised and few results given. One of the main obstacles

being that the integral

R

N

f(gn)dn does not converge in general for L

2

-Schwartz

functions on G=H , not even in the group case, where it corresponds to integrating

a function f on G over N �

�

N . However sometimes there is convergence, as for

example for G = SL(2;R) or for G=H = SL(2; C )=SL(2;R).

H. Fujiwara: Central elements of Corwin-Greenleaf (joint work with G. Lion,

B. Magneron and S. Mehdi)

Let G = exp(g) be a connected, simply connected nilpotent Lie group with

Lie algebra g, H = exp(h) be a connected subgroup and � be a unitary character

of H . We study the monomial representation � : = Ind

G

H

�. Its canonical central

decomposition is denoted by

�

�

=

Z

�

b

G

m(�)� d�(�)

7



with a measure � on the unitary dual

b

G of G and the multiplicity function

m(�). Let D

�

(G=H) be the algebra of G-invariant di�erential operators on the

line bundle with basis G=H associated to �. We prove the following conjecture

of Du
o, Corwin-Greenleaf: D

�

(G=H) is commutative if and only if � is of �nite

multiplicities.

S. Helgason: Geometry of the Multitemporal Wave Equation on Symmetric

Spaces

On a symmetric space X = G=K of the noncompact type, Semenov-Tian-

Shansky has introduced a canonical hyperbolic system of di�erential equations

which generalizes the classical wave equation in Euclidean space. Here the time

variable is however in the Cartan subspace of X and is therefore multidimen-

sional. Reference is made to work of Shahshahani and Phillips-Shahshahani.

The theory of this multitemporal system shows remarkable analogies with the

Euclidean wave equation, yet many new phenomena turn up. For example, Huy-

gens' principle relates to the number of conjugacy classes of Cartan subgroups

of G rather than to the dimension. If G is complex Huygen's principle holds

in a considerably stronger form. Various solution formula are shown, by Fourier

transform, by Radon transform and by the mean value operator, each method

having certain merits. The spectral representation is also considered including a

range theorem established jointly with Schlichtkrull.

K. Kikuchi: Gelfand pairs associated to Heisenberg groups

Let F be a non-Archimedean local �eld of characteristic 0, that is, a �nite

extension of Q

p

for some prime number p, O

F

the ring of integers and P

F

the maximal ideal of O

F

. We assume that the characteristic of the residue

�eld O

F

=P

F

is odd. Let n be a positive integer, G

n

= F

n

� F

n

� F the

(2n+1)-dimensional Heisenberg group over F with the product (x; y; t)(u; v; s) :=

(x + u; y + v; t + s + (x � v � y � u)=2), where (x; y) 7! x � y is the standard

symmetric form on F

n

to F . The symplectic group Sp(n; F ) acts on G

n

as

automorphisms which �x each element in the center of G

n

. For a compact

subgroup K � Sp(n; F ) a pair (K;G

n

) is a Gelfand pair if the algebra L

1

K

(G

n

) of

all K -invariant integrable functions on G

n

is a commutative Banach �-algebra.

By Carcano's Theorem we have that a pair (K;G

n

) is a Gelfand pair if and only

if for any non-trivial character � 2

b

F the restriction to K of the metaplectic

representation W

�

attached to � has a multiplicity-free decomposition as a K -

module.
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In this talk we show that for a maximal compact subgroup Sp(n;O

F

) �

Sp(n; F ) the restriction of the metaplectic representation of Sp(n; F ) has a

multiplicity-free decomposition as Sp(n;O

F

)-module for both cases where the

representation is attached to � 2

b

F of conductor 0 and to � 2

b

F of conductor

1. This implies that the pair (Sp(n;O

F

);G

n

) is a Gelfand pair.

The restriction W

�

j

Sp(n;O

F

)

is realized on the lattice model, that is, the space

H

�

of all measurable functions on F

n

� F

n

to C which satisfy

f(u+ k; v + l) = �((l � u� k � v)=2)f(u; v) for any k; l 2 O

n

F

;

jjf jj

2

=

R

(F=O

F

)

n

�(F=O

F

)

n

jf(u; v)j

2

d _ud _v <1:

For a non-negative integer m we put M

m

= f(r; s) 2 F

n

; min(ord(r);

ord(s)) = �mg. We denote by H

(m)

�

= ff 2 H

�

; supp f � M

m

g and by

H

(m);+

�

= ff 2 H

(m)

�

; eveng, H

(m);�

�

= ff 2 H

(m)

�

; oddg for a positive integer

m. Then we have an irreducible decomposition

H

�

= H

(0)

��

1

m=1

H

(m);+

�

��

1

m=1

H

(m);�

�

as Sp(n;O

F

)-module. This decomposition is multiplicity-free. Next we realize

W

�

j

Sp(n;O

F

)

on the space of all measurable functions on F

n

� F

n

� O

n

F

which

satisfy

f(u+ k; v + l; �) = �((l � u� k � v)=2)�(k � l=2 + l � �)f(u; v; � + k) f. k; l 2 O

n

F

;

f(u; v; � + �

0

) = f(u; v; �) for any �

0

2 P

n

F

;

jjf jj

2

=

R

(F=O

F

)

n

�(F=O

F

)

n

�(O

F

=P

F

)

n

jf(u; v; �)j

2

d _ud _vd

_

� <1:

For a non-negative integer m we denote by H

(m)

�

= ff 2 H

�

; supp f �

M

m

� O

n

F

g, H

(m);+

�

= ff 2 H

(m)

�

; eveng, H

(m);�

�

= ff 2 H

(m)

�

; oddg. Using

these notations we have a multiplicity-free decomposition

H

�

= H

(0);+

�

�H

(0);�

�

��

1

m=1

H

(m);+

�

��

1

m=1

H

(m);�

�

as Sp(n;O

F

)-module. These arguments above say that for a given compact

subgroup K of Sp(n;O

F

) to know whether (K;G

n

) is a Gelfand pair or not we

may compute an irreducible decomposition of each H

(0)

�

, H

(m);�

�

, H

(0);�

�

, H

(m);�

�

as K -module.
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J.L. Kim: An Explicit Plancherel formula of Sp

4

over p-adic �elds Harish-

Chandra derived the Plancherel formula on p-adic groups. However, to have an

explicit formula, one will have to compute the measures appearing in the formula.

Here, we compute Plancherel measures on Sp

4

over p-adic �elds explicitly.

The basic method for computation lies in the scheme of theory of Types:

Let G be a connected reductive group. Then the theory of types illustrates

a method of understanding the category R(G) of smooth representations of G

via pairs (J; �), which consist of an open compact subgroup and its irreducible

representation �, and their associated (generalized) Hecke algebras H(G==J; �).

Let R

�

be the category of smooth representations � 2 R(G) such that all the

subquotients of � contain �. In a good case, we will have a categorical equivalence

between the category R

�

and the category of representations of H(G==J; �).

When this is achieved, Plancherel measures on R

�

can be found via Plancherel

measures on H(G==J; �).

In the case of Sp

4

, we know all the necessary types to understand R(G) and

their associated Hecke algebras. In particular, those Hecke algebras are in the

form of (generalized) a�ne Hecke algebras of rank at most 2. If R

�

is of rank 0

or 1, since Plancherel measures on those Hecke algebras are known, we compute

Plancherel measures on R

�

from those on H(G==J; �). If R

�

is of rank 2, we

�nd them by Shahidi's method of intertwining operators. As a corollary, we get

a Plancherel formula on the Iwahori Hecke algebra of Sp

4

(note that its rank is

2). This is a joint work with Anne-Marie Aubert.

B. Kr�otz: Analytic continuation of representations with applications to Maa�

automorphic forms (joint with R. Stanton)

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN .

Assume that G � G

C

. If � = �(g; a) denotes the restricted root system, then we

de�ne the domain A

1

C

: = fa 2 A

C

: (8� 2 �)Re(a

�

) > 0g. Then our �rst result is

as follows:

Theorem 1. Let (�;H) be an irreducible Hilbert representation of G and

H

K

the underlying (g; K)-module of K -�nite vectors. Then for all v 2 H

K

the

orbit map G! H; g 7! �(g):v extends to a G-equivariant holomorphic map on

the open domain GA

1

C

K

C

� G

C

. If X 2 log(@A

1

C

) � a

C

, then we are interested

in the behaviour of k�(exp((1 � ")X):vk

2

for v 2 H

K

and " ! 0. In general

this is a very hard problem but we made important partial progress for low rank

groups.
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Theorem 2. Suppose that G has real rank one. Write p: = dim g

�

and q: =

dim g

2�

. Let v

0

be a K -spherical vector for an unitary irreducible representation

(�;H) of G. Then

k�(exp((1� ")X):v

0

k

2

�

8

>

<

>

:

j log "j for p = 1; q = 0

"

�p+1

for p > 1; q = 0

j log "j for q = 1

"

�q+1

for q > 1.

In addition we have explicit results for G = Sl(3;R).

Following Bernstein and Reznikov the estimates in Theorem 2 can be used

to obtain estimates for the coe�cients of Maa� automorphic forms on �nG=K

for � < G a discrete cocompact subgroup. In particular for G = SO(3; 1) we

improve on results of Sarnak.

J. Lauret: Gelfand pairs associated with nilpotent Lie groups

The main object of this work is to present several families of new examples

of Gelfand pairs associated with nilpotent Lie groups. If N is a simply connected

Lie group and K is a compact group of automorphisms of N , then we say that

(K;N) is a Gelfand pair when the convolution algebra L

1

K

(N) of K -invariant

integrable functions on N is commutative. (K;N) is a Gelfand pair precisely

when (H;K) is a Gelfand pair in the usual sense, where H = K nN .

Starting from a faithful real representation (�; V ) of a compact Lie algebra

g, we construct a two-step nilpotent Lie algebra n = g�V with center g and Lie

bracket de�ned on V by h[v; w]; xi: = h�(x):v; wi for all v; w 2 V , x 2 g, where

h; i is any g-invariant inner product on n. We denote by N(g; V ) the simply

connected Lie group with Lie algebra n = g� V .

If G is the simply connected Lie group with Lie algebra [g; g] and U is the

group of orthogonal intertwining operators of V , then K = G�U can be viewed

as a compact subgroup of automorphisms of N(g; V ). The group U acts trivially

on the center g and each g 2 G acts on n = g � V by (Ad(g); �(g)), where we

also denote by � the corresponding representation of G on V .

Let T be any maximal torus of G and let

e

V denote a T -invariant comple-

ment in V of the zero weight space V

0

, regarded naturally as a complex vector

space. Using the following characterization: (G � U;N(g; V )) is a Gelfand pair

if and only if the action of T � U on

e

V is multiplicity-free; we obtain a com-

plete classi�cation of the Gelfand pairs of the form (G� U;N(g; V )), determing

explicitly the multiplicity free actions given above. This produces ten families of
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Gelfand pairs associated with nilpotent Lie groups, containing almost all known

examples. Up to now, relatively few examples were known and in such exam-

ples, N is one of the following: a product of Heisenberg groups, a free two-step

nilpotent Lie group, or an Heisenberg -type group of a special kind.

S.T. Lee: Degenerate principal series of U(p; q)

Let P = LN be the maximal parabolic subgroup of U(p; q) (p > q)

with Levi subgroup L

�

=

Gl(q; C ) � U(p � q). Let s 2 C and � 2 Z, de�ne

�

s;�

: Gl(q; C ) ! C

�

by

�

s;�

(a): = j det aj

s

�

det a

j det aj

�

�

:

Let �

�

be the irreducible representation of U(p � q) of highest weight �. Let

�

s;�;�

be the representation of P which is trivial on N and

�

s;�;�

j

L

= �

s;�


 �

�

:

Form the induced representation Ind

U(p;q)

P

�

s;�;�

. In this talk we shall describe the

method used to determine the module structure and unitarity of Ind

U(p;q)

P

�

s;�;�

.

D. M�uller: Sub-Laplacians of holomorphic L

p

-type on exponential Lie groups

(joint work with W. Hebisch and J. Ludwig)

Let L denote a right-invariant sub-Laplacian on an exponential (hence solv-

able)Lie group G, endowed with a left-invariant Haar measure. Depending on

the structure of G, and possibly also that of L, L may admit di�erentiable L

p

-

functional calculi, or may be of holomorphic L

p

-type for a given p 6= 2. By

\holomorphic L

p

-type"we mean that every L

p

-spectral multiplier for L is nec-

essarily holomorphic in a complex neighborhood of some non-isolated point of

the L

2

-spectrum of L. This can in fact only arise if the group algebra L

1

(G) is

non-symmetric.

We conjecture that G admits a sub-Laplacian of holomorphic L

p

-type (p 6=

2) if and only if there exists a point l in the dual g

�

of the Lie algebra g of

G satisfying \Boidol's condition" (which is equivalent to the non-symmetry of

L

1

(G)), whose coadjoint orbit 
(l) = Ad

�

(G):l is closed.
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What we can prove is the \if "part of this conjecture, under the stronger

assumption that the restriction of 
(l) to the nilradical of g is closed. This work

builds on previous joint works with M. Christ and J. Ludwig.

H. Oh: Uniform pointwise bounds for matrix coe�cients and equidistribution of

Hecke points

The aim of this talk is to explain the construction of new uniform pointwise

bounds for the matrix coe�cients of in�nite dimensional irreducible unitary rep-

resentations of a reductive algebraic group over a local �eld k with semisimple

k -rank at least 2. Construction of such uniform pointwise bounds which are

both sharp and explicit has several applications. In particular, we will describe

an important application related to the number theory, namely equidistribution

of Hecke points, recently obtained in a joint work with L. Clozel and E. Ullmo.

A. Okounkov: Applications of representation theory to probability theory

I will survey recent progress in applying representation theory to various

classical problems of probability theory such as distribution of increasing subse-

quences in a random permutation of f1; : : : ; ng as n!1.

G.

�

Olafsson: The H -spherical distribution character for the Holomorphic

Discrete Series of G=H

Let M = G=H be a semisimple a�ne symmetric space. To each discrete

series representation (�; E) of G we can associate a spherical distribution �

E

de�ned by

C

1

c

(G=H) 3 f 7! pr

E

(f)(x

o

) 2 C ; x

o

= fHg 2 G=H :

Here pr

E

: L

2

(G=H) ! E stands for the orthogonal projection onto E . The

distribution �

E

is called the H -spherical distribution character of (�; E). Even

if the abstract Plancherel formula for G=H is by now known by the work of P.

Delorme, E. van den Ban, and H. Schlichtkrull, little is known about the H -

spherical characters. We consider the case where (�; E) is a holomorphic discrete

series representation of G=H . In this case the character can be realized as a

limit

�

E

(f) = lim

t!0

Z

M

f(m)�

E

(exp(�tiZ

0

)m) dm

13



where �

E

is a holomorphic function on a complex domain � � G

C

=H

C

, and Z

0

is a central element in k. Let � be the lowest K -type of E and let � be the

highest weight of � . Let a be a Cartan subspace of G=H contained in a maximal

compact subalgebra k. Then � 2 a. Let 2� =

P

�2�

+

(g

C

;a

C

)

m

�

� and � = �+ �.

Then up to a constant c we have for "big" parameters

�

�

(a) = c'

�

(a)

where '

�

(a) = c




(�)

P

w2W

o

�

w�

(a) is a spherical function on the dual symmetric

space G

c

=H . Using results of B. Kr�otz this gives the character formula

�

�

= d(�)'

�

where d(�) is given by the same product formula as the formal degree of the

holomorphic discrete series of G.

A. Paul: Equal rank dual pairs In joint work with Jian-shu Li, Eng Chye Tan,

and Chenbo Zhu, we have determined the Howe correspondence for the dual pairs

(Sp(p; q); O

�

(2n)) for the cases p + q � n in terms of Langlands parameters,

starting with the equal rank case. This (almost) completes the list of reductive

dual pairs of equal rank over R for which the correspondence is explicitly known.

The techniques we used work especially well in the equal rank case, and this

provides a starting point for determining the full correspondence. We sketch

the result and idea of proof for (Sp(p; q); O

�

(2n)). We can summarize the main

theorem as follows:

The Howe correspondence gives rise to a bijection between

\

O

�

(2n) and

[

p+q=n;n�1

\

Sp(p; q) (admissible duals).

This constitutes a suitable version for these dual pairs of \Theta Dichotomy"

which Steve Kudla has conjectured for unitary groups of equal size over non-

archimedian �elds. Then we look at the complete list of equal rank dual pairs

and discuss to which extent theta dichotomy holds in each case. We conclude

by listing a few more phenomena which are particular to dual pairs of the same

rank.

R. Penney: Helgason-harmonic, Hua-harmonic and pluriharmonic functions on

bounded homogeneous domains in C

n

A function F on a Riemannian-symmetric space D = G=K is harmonic if it

is annihilated by the algebra D

G

(D) of G-invariant di�erential operators without

14



constant term. The Helgason theorem states that F is harmonic if and only if it is

the Poisson integral of a hyperfunction over the Furstenberg boundary. There are

generalizations that describe the Poisson integrals of hyperfunctions over other

boundaries. Most notably, in the tube case, the Hua-Johnson-Koranyi system

(\HJK ") describes Poisson integrals over the Shilov boundary B .

The goal of our continuing work is to generalize Helgason theory to non-

symmetric homogeneous K�ahler manifolds in general, and bounded homogeneous

domains in C

n

in particular. (Recall that every homogeneous K�ahler manifold

�bers, with compact �ber, over such a domain.) Some of the di�culties which

must be overcome include

(i) In general, the maximal compact subgroup K of G is very small. Hence,

most arguments based in it do not extend beyond the semi-simple case { entirely

new proofs must be found.

(ii) In the Hermitian-symmetric case, the Shilov boundary is a homogeneous

space (of K ). In the general case it need not even be a manifold. The best that

can be said is that it contains a dense, open homogeneous space B

0

� B for an at

most 2-step nilpotent subgroup of G. This, however, is not su�cient to be able

to de�ne notions such as hyperfunctions on the boundary.

(iii) The structure of D

G

(D) is not at all well understood. Also, if K is

\small", D

G

(D) can be so large as to have no interesting harmonic functions. In

particular, as opposed to the Hermitain symmetric case, holomorphic functions

need not be harmonic.

Despite all of these di�culties, considerable progress has been made. In

place of D

G

(D), which is typically too large, we use invariant systems de�ned

intrinsically from the curvature operator. Our systems reduce to the classical

ones in the symmetric case. The majority (but not all) of our recent work (much

of it joint with A. Hulanicki and E. Damek) has focussed on the Shilov boundary

and generalizations of the HJK system. Some of our main results for an HJK

harmonic function F are

(a) If F is bounded, F is the Poisson integral of an element of L

1

(B

0

)

against the Shilov-boundary kernel function for the Laplace-Beltrami operator.

In the tube case, the Cauchy-Szeg�o Poisson kernel may also be used.

(b) For a tube-type domain, the space of boundary functions for the HJK

harmonic functions is dense in L

1

(B

0

) if and only if the domain is symmetric. In

the non-symmetric case, the HJK boundary functions may be characterized by

the fact that their Euclidean Fourier transforms must be supported in a certain

�nite set of non-convex cones.
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(c) If F satis�es an H

2

like growth condition as we approach B

0

, and D

is \su�ciently non-tube like", then f is the sum of a holomorphic and anti-

holomorphic function. In the symmetric case \su�ciently non-tube like" means

that D is a Siegel II domain.

(d) If F grows at most exponentially as we approach B

0

, then F has a

van den Ban-Schlichtkrull type asymptotic expansion where the coe�cients are

distributions on B

0

. This expansion is explicitly computable from its \leading"

terms, which are, by de�nition, the boundary distributions for F . They uniquely

determine the solution F . The inverse map to the boundary map is, by de�nition,

the Poisson transform.

Property (c) seems to be new, even in the Hermitian-symmetric case. It

represents a partial solution to the problem, proposed in 1980 by Berline and

Vergne, of desribing the boundary values for the HJK system in the non-tube

case.

The fact that many of our results require the assumption that F be bounded

is traceable to the fact that the boundary value is a function and we only need to

know it a.e. to form its Poisson integral. Hence, it is su�cient to work with B

0

.

In the symmetric case, the boundary object for an unbounded solution might

be a distribution or a hyperfunction on B . The boundary distributions referred to

in (d) are their restrictions to B

0

, which do not, on general principals, determine

them on all of B . Thus, (d) is quite striking in that we only need to know the

boundary values on B

0

to form the Poisson transformation, avoiding the problems

mentioned in (ii). The idea that such a result could be true was suggested by a

theorem of van den Ban-Schlichtkrull which states that in the symmetric case,

the restriction of the boundary distributions to any open subset of B uniquely

determines the solution. Our (d) may be viewed as a partial generalization of

this result.

H. Rubenthaler: In�nite dimensional Lie and associative algebras related to

commutative prehomogeneous vector spaces

Let g = g

�1

� g

0

� g

1

be a Z-grading of a simple Lie algebra g. Let

G denote the adjoint group of G and let G

0

be the analytic subgroup of G

corresponding to g

0

. We make the assumption that the G

0

action on g

1

has a

relative invariant �

0

. This setting is in one to one correspondence with Hermitian

symmetric spaces of tube type. Let T be the associative algebra of di�erential

operators generated by �

0

, �

�1

0

, �

0

(@) and E =Euler operator. Let a be

the Lie algebra of di�erential operators generated by �

0

, �

0

(@) and E . We
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describe the structure of T and prove that a is in�nite dimensional except if

@

o

�

0

� 2. The Lie algebras a and g

0

0

are commuting subalgebras of a bigger Lie

algebra L (L

�

=

sp if @

o

�

0

= 2). The restriction of a natural representation �

of L to a � g

0

0

decomposes multiplicity free and gives rise to a correspondance

between certain representations of a (lowest weight modules) and the so called

harmonic representations of g

0

0

. If @

o

�

0

= 2 this reduces to a classical Howe

correspondance for the in�nitesimal Weil representation.

Y. Shalom: Property (T) of Kazhdan: Introduction, recent results and some

open problems

We consider in the talk recent results about property (T), and related ques-

tions. One direction which we explore is to what extent property (T) of dis-

crete subgroups is really a good geometric one. This question arises naturally

following numerous recent new constructions of Kazhdan groups which involve

geometric ideas. We observe that property (T) is not a quasi-isometry invariant

(a famous problem of Ghys), but that one can nevertheless give geometric inter-

pretation/characterization of (T) by means of metric properties of balls in the

Cayley graph. Other related results that we discuss are a positive answer to a

question of Grigorchuk and Zuk to the e�ect that any �nitely generated Kazhdan

group is a quotient of a �nitely presented Kazhdan group, and a proof of a con-

jecture of Vershik-Karpushev: Any compactly generated locally compact group

without (T) admits an irreducible representation with H

1

6= 0. At the heart

of our approach lies the notion of �rst reduced cohomolgy, and a non-vanishing

result for that (smaller in general) cohomology group. Among the open questions

we mention there the problem of existence of linear Kazhdan groups which are

not lattices (or constructed trivially from such). We o�er a candidate: the group

Sl(3;Z[t]), and remark on the connection to K -theory and Dirichlet theorem on

primes in arithmetic progressions.

T. Steger: Free Group Representations: Not Square Integrable Implies Irre-

ducible (joint with W. Hebisch)

Let A

+

be a �nite set and let �

0

be the nonabelian free group with generators

A

+

. The Cayley graph, T , of �

0

relative to A

+

is a tree. Denote by 
 the

boundary of �

0

, meaning the boundary of T .

Let (�

s

;H

s

) be one of the isotropic spherical principal series representations

of �

0

constructed relative to A

+

. Exclude from consideration the two endpoint

representations and the midpoint representation of that series. Let 1 2 H

s

be
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the function identically equal to one under the usual identi�cation H

s

�

=

L

2

(
) .

Finally, let � � �

0

be any subgroup, necessarily free, but possibly with in�nitely

many generators.

Theorem. The following are equivalent:

(i) �

s

j

�

is irreducible.

(ii) h1; �

s

(�)1i =2 `

2

(�).

(iii) The isotropic random walk on T =� is recurrent.

By far the most di�cult part is proving irreducibility, and for this we use

some machinery. The natural left action of �

0

on 
 yields an action of �

0

on

the C

�

-algebra C(
). With respect to this action, one constructs the crossed

product algebra � n C(
). By a boundary intertwiner for �

s

j

�

we mean a pair

(�; (�

0

;H

0

)) where

(1) (�

0

;H

0

) is a representation of �n C(
).

(2) � : H

s

!H

0

is a �-intertwiner.

(3) �

0

(C(
))�(H

s

) is dense in H

0

.

So a boundary intertwiner for �

s

j

�

is a �-intertwiner of �

s

into some repre-

sentation naturally realized on L

2

(
; V; d�), where � is a measure on 
 and V

is a Hilbert space of �nite or in�nite dimension. One de�nes a simple notion of

equivalence for boundary intertwiners.

The usual identi�cation H

s

�

=

L

2

(
) gives an action of C(
) on H

s

by

pointwise multiplication. This in turn permits us, abusing notation, to consider

�

s

as a representation of �

0

nC(
). For t

1

> 0 this gives \tautological" boundary

intertwiners of the form (t

1

id; (�

s

;H

s

)).

There exists a �

0

-intertwiner J

s

: H

s

! H

�s

. Note that J

s

does not

intertwine the two C(
)-actions. For t

2

> 0 this gives boundary intertwiners of

the form (t

2

J

s

; (�

�s

;H

�s

)). One can combine the two types to form boundary

intertwiners of the form (t

1

id�t

2

J

s

; (�

s

� �

�s

;H

s

�H

�s

)).

Theorem. Suppose that h1; �

s

(�)1i =2 `

2

(�). Then any boundary intertwiner

for �

s

j

�

is equivalent to one of the intertwiners described above: (t

1

id; (�

s

;H

s

)),

(t

2

J

s

; (�

�s

;H

�s

)), or (t

1

id�t

2

J

s

; (�

s

��

�s

;H

s

�H

�s

)) for appropriate values of

t

1

and/or t

2

. Irreducibility follows immediately.

A. Valette: Lie groups with the Haagerup property

A locally compact group has the Haagerup property, or is a-T-menable in the

sense of Gromov, if it admits a proper, isometric action on some a�ne Hilbert

space. This class of groups appears in harmonic analysis, ergodic theory, and

18



operator algebras (e.g. in connection with the Baum-Connes conjecture). It

is clear from the de�nition that the Haagerup property is a strong negation of

Kazhdan's property (T): the intersection of both classes is the class of compact

groups. The class of groups with the Haagerup property is remarkably wide:

it contains amenable groups, groups acting properly on trees, Coxeter groups,

closed subgroups of SO(n; 1) and SU(m; 1), etc. We present the following result

(which is part of joint work with P.-A. Cherix and M. Cowling):

Theorem. Let G be a connected Lie group. The following are equivalent:

(i) G has the Haagerup property;

(ii) If H is a closed subgroup such that the pair (G;H) has the relative

property (T), then H is compact;

(iii) G is locally isomorphic to a direct product

M � SO(n

1

; 1)� : : :� SO(n

k

; 1)� SU(m

1

; 1)� : : :� SU(m

`

; 1);

where M is an amenable Lie group (i.e. M is solvable-by-compact).

C. Zhu : Orbits of orthogonal groups and representations of symplectic groups

We consider the action of H = O(p; q) on the matrix space M

p+q;n

(R).

We study a certain orbit O of H in the null cone N � M

p+q;n

(R) which

supports an eigendistribution d�

O

for H . We determine the structure of

e

G =

^

Sp(2n;R) -cyclic module generated by d�

O

under the oscillator representation of

e

G (the metaplectic cover of G = Sp(2n(p + q);R)). Applications to local theta

correspondence and a generalized Huygens' Principle are given. A key step of this

work is to understand the

e

K =

]

U(n)-types of a

e

P -eigendistribution, where P

is the Siegel parabolic subgroup of G. This is accomplished through an identity

of Capelli-type satis�ed by solutions of a certain system of di�erential equations.

The talk is based on a joint work with Roger Howe of Yale University.
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