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Introduction

General relativity (GR) is the central theoretical tool in the study of gravitation. In the

past the mathematics applied in the study of GR was drawn mainly from the area of

Lorentzian geometry. Recently this has changed, with the theory of partial di�erential

equations and modern techniques from Riemannian geometry playing an increasingly im-

portant role. This conference, organized by Gerhard Huisken, Jim Isenberg and Alan

Rendall, was intended to bring together workers in mathematical relativity with mathe-

maticians expert in relevant areas of PDE theory and geometry. In particular, the aim was

to make interesting mathematical problems posed by GR familiar to non-specialists and

to introduce relativists to new mathematical techniques. Listening to the lively exchanges

of ideas during the week indicated that the conference succeeded in achieving this.

Most of the talks were closely related to one of four major topics:

(1) Asymptotic structure of spacetime and radiation (R. Bartnik, H. Friedrich, F. Nicol�o,

N. Zipser).

(2) Wave maps and critical collapse (P. Bizon, C. Gundlach, M. Struwe).

(3) Structure of spacetime singularities (L. Andersson, H. Andr�easson, B. Berger, H.

Ringstr�om, P. Tod, M. Weaver).

(4) Applications of Riemannian geometry (M. Anderson, H. Bray, J. Corvino, J. Lohkamp,

D. Pollack, W. Simon.).

There were also talks on individual topics of interest by P. Chru�sciel, F. Finster and R.

Wald.

�

composed by Oliver Henkel
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The above crude classi�cation cannot do justice to the diversity of the talks and the

relations between them; the talk of Corvino, for instance, although listed under point (4)

is intimately connected to point (1). It should also be mentioned that although the use

of numerical methods was not a subject focussed on in this conference, the importance of

the interaction between numerical and rigorous work was a recurring theme and was an

important element of several talks (Bartnik, Berger, Bizon, Gundlach).

The organisers chose to limit the number of talks and use the possibility of posting contri-

butions by all participants during the week. This was apparently received favourably by

the participants, who appreciated the time which was freed for discussions in this way.
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Abstracts of the talks

Lars Anderson

Quiescent Singularities

(joint work with Alan Rendall)

The most detailed existing proposal for the structure of spacetime singularities originates in

the work of Belinskii, Khalatnikov and Lifshitz. We show rigorously the correctness of this

proposal in the case of analytic solutions of the Einstein equations coupled to a scalar �eld

or sti� 
uid. More speci�cally, we prove the existence of a family of spacetimes depending

on the same number of free functions as the general solution which have the asymptotics

suggested by the Belinskii-Khalatnikov-Lifshitz proposal near their singularities. In these

spacetimes a neighbourhood of the singularity can be covered by a Gaussian coordinate

system in which the singularity is simultaneous and the evolution at di�erent spatial points

decouples.

Michael T. Anderson

On long-time vacuum evolution and geometrization of 3-manifolds

A general picture relating the long-time future asymptotic behavior of vacuum cosmo-

logical space-times wth the geometrization of 3-manifolds was outlined. Let (M; g) be a

vacuum, globally hyperbolic space-time with compact CMC slice �. Suppose M is both

time-like geodesically complete to the future of � and CMC time-complete to the future of

�, i.e. the CMC foliation �

�

�lls M to the future of �. Then provided certain curvature

decay assumptions hold, the asymptotic behavior of the slices �

�

, after natural rescal-

ing, induces a weak geometrization of the 3-manifold �. More precisely, for any sequence

�

i

! 0, the rescaled metrics (�; �g

�

i

) subconverge to a complete hyperbolic metric of �nite

volume H � � while the complement G of H in � is a graph manifold which collapses

along S

1

or T

2

�bers.

Details may be found in the corresponding paper, which may be viewed or downloaded

at: www.math.sunysb.edu/� anderson or gr-qc/0006042

Hakan Andr

�

easson

On global existence for the spherically symmetric Einstein-Vlasov

equation

The classical problem of gravitational collapse in the spherical symmetric situation is stud-

ied using the Vlasov equation as matter model. Rein and Rendall proved in 1992 that

solutions to the Einstein-Vlasov equation remain smooth for all times in Schwarzschild co-

ordinates if the initial data is small enough. In this case the matter disperses and spacetime

is geodesically complete. For large data spacetime singularities form. In Schwarzschild
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time the spacetime singularities are most likely avoided (supported by numerical simu-

lations by Rein, Rendall and Schae�er in 1998) and the problem is again to show that

solutions remain smooth for all times in these coordinates (for large data). For initial data

that vanishes inside an arbitrary small ball around the centre and which also vanishes if

angular momentum is arbitrary small (note that in the kinetic description the system has

angular momentum also in the spherical symmetric case) it is proved that if the matter

initially falls inward and if it continues to do so no singularities will form in �nite time.

The assumption of "falling inward" (which can be weakened by instead assuming bounds

on the outgoing matter components) was �rst chosen as a "worst case scenario" but from

a mathematical point of view it seems to be harder to control the solution having both

ingoing and outgoing matter in the system. The aim is of course to get around this as-

sumption in future work and also study the relation to weak cosmic censorship if a global

existence theorem is established.

Robert Bartnik

Null In�nity in the NQS gauge

The NQS (null quasi-spherical) numerical Einstein solver [1,2] can be used to test con-

jectures about the asymptotic structure of gravitational �eld, near future null in�n-

ity. These numerical results can be compared against the predictions of formal expan-

sion techniques. Starting only with the assumptions of existence of NQS coordinates

near I, and the �rst two terms of the asymptotic expansion of the outgoing shear,

�

NP

= �

2

r

�2

+ �

3

r

�3

+ o(r

�3

), which in terms of the NQS potential r

2

� = gb becomes

b = b

0

+ b

1

r

�1

+ o(r

�1

);

we �nd that the NP Weyl component 	

0

satis�es

	

0

= � r

�4

+O(r

�5

log r):

The coe�cient  depends only on b

0

; b

1

:

 = gb

1

+

�

b

0

g

2

b

0

+ b

0

�

ggb

0

+ 2gb

0

g

�

b

0

:

Since b

0

; b

1

6= 0 even if b(0) is compactly supported, we conclude that  6= 0 generically

in the natural evolution space for gravitational �elds near I. Note however that

_

 = 0

always under the above asymptotics, so full peeling is preserved in time, if it holds on the

initial null hypersurface. This is consistent with results obtained from formal expansions

in the Bondi gauge [3].

References:

[1] R. Bartnik, CQG 1997, gr-qc/9611045

[2] | and A. Norton, SIAM J Sci. Comp. 2000, gr-qc/9904045

[3] P. Chrusciel, M. MacCallum and D. Singleton, PRSL 1994, gr-qc/9305021

4



Beverly K. Berger

The Role of Numerical Simulations in the Study of Spacetime

Singularities

Numerical simulations have proven to be a valuable tool in the study of spacetime sin-

gularities especially in collaboration with mathematical analysis of the same spacetimes.

While computers cannot handle in�nite or unde�ned values, their ability to evolve compli-

cated nonlinear equations allows them to yield insight into the approach to pathalogical

behavior in Einstein's equations. Examples which demonstrate this synergy include the

numerical discovery of critical phenomena in gravitational collapse and the nature of the

approach to the singularity in spatially inhomogeneous cosmologies.

Piotr Bizon

Formation of singularities for wave maps

I report on a recent joint work with T. Chmaj and Z. Tabor on the Cauchy problem for

equivariant wave maps from 3 + 1 Minkowski spacetime into the 3-sphere

u

tt

= u

rr

+

2

r

u

r

�

sin(2u)

r

2

; u(0; r) = �(r); u

t

(0; r) =  (r):(1)

The work was motivated by an attempt to get an analytic insight into some aspects of

critical behaviour at the threshold for black hole formation. We �rst show that the equation

(1) has a countable family of self-similar solutions f

n

(�) where � = r=T � t and the index

n is equal to the number of unstable modes. On the basis of numerical evidence combined

with stability analysis of self-similar solutions we put forward two conjectures. The �rst

conjecture states that singularities which are produced in the evolution of su�ciently

large initial data are approached in a universal manner given by the pro�le of a stable

self-similar solution f

0

. In this sense the blowup can be considered as local convergence to

the solution f

0

. The second conjecture states that the self-similar solution f

1

plays the role

of a critical solution, that is, its stable manifold determines the threshold for singularity

formation. This provides a toy-model of Type II critical gravitational collapse. At the end

we mention that an analogous problem for wave maps from 2 + 1 Minkowski spacetime

into the 2-sphere exhibits a completely di�erent behaviour at the threshold for singularity

formation which does not seem to �t into a standard dynamical system picture of critical

phenomena.

Hubert Bray

Survey of the Penrose Conjecture

The Penrose Conjecture states that the ADM mass of a space-like slice of a space-time

should be at least the mass contributed by the black holes in the space-time, de�ned to be

the square root of the total area of their horizons divided by 16�. In the seventies, Geroch,

Jang, and Wald observed that the Hawking mass of a surface was monotone under inverse

mean curvature 
ow and proposed using this fact to prove the Penrose Conjecture (for
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space-like slices of a space-time with zero second fundamental form). However, existence of

such a 
ow was far from clear since the mean curvature of the surfaces could presumably

go to zero or even be negative. Then in 1997, Huisken and Ilmanen modi�ed inverse

mean curvature 
ow in such a way that the 
ow always existed, thereby proving this case

of the Penrose Conjecture for a single horizon. Later, in 1999, the speaker developed

another approach to the problem by de�ning a new conformal 
ow of 3-metrics which has

the property that ADM mass decreases and the area of apparent horizons stays constant

and eventually 
ows to a Schwarzschild 3-metric, thereby proving the inequality for any

number of black holes.

Piotr Chrusciel

The area theorems

In my talk I will describe joint work with E.Delay, G.Galloway and R.Howard, in which

we prove that the area of sections of future event horizons in space{times satisfying the

null energy condition is non{decreasing towards the future under any one of the following

circumstances: 1) the horizon is future geodesically complete; 2) the horizon is a black hole

event horizon in a globally hyperbolic space{time and there exists a conformal completion

with a \H{regular" Scri plus; 3) the horizon is a black hole event horizon in a space{time

which has a globally hyperbolic conformal completion. This extends a theorem of Hawking,

in which piecewise smoothness of the event horizon seems to have been assumed. No

assumptions about the cosmological constant or its sign are made. We prove smoothness

or analyticity of the relevant part of the event horizon when equality in the area inequality

is attained | this has applications to the theory of stationary black holes, as well as to

the structure of compact Cauchy horizons. In the course of the proof we establish several

new results concerning the di�erentiability properties of horizons.

Justin Corvino

Constructing Vacuum Spacetimes Identically Symmetric near Spatial

In�nity

We establish the existence of asymptotically 
at, scalar-
at metrics on R

n

(n � 3) which

are spherically symmetric, hence Schwarzschild, outside a compact set [1]. Such metrics

provide time-symmetric Cauchy data for the Einstein vacuum equations which evolve into

nontrivial vacuum spacetimes that are identically Schwarzschild near spatial in�nity.

The proof uses a local deformation result for the scalar curvature operator, whose lin-

earization L

g

has adjoint L

�

g

with injective symbol. The obstruction to local deformation

is the presence of kernel of the overdetermined-elliptic operator L

�

g

. We generalize work of

Fischer-Marsden [2] by studying the deformation problem on a domain in a Riemannian

manifold, where the deformation tensor should vanish outside the domain in question. We

achieve this by using suitably weighted spaces of functions and tensors. In the case when

g is the 
at metric on R

3

, the kernel is the span of f1; x

1

; x

2

; x

3

g. We glue a Schwarzschild

metric to a given asymptotically-
at, scalar-
at metric at a large radius R. In the annular

gluing region, the scalar curvature is close to zero. To deform it to zero we use both the
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local deformation result, as well as the freedom to adjust the mass and center-of-mass of

the outer Schwarzschild region to account for the kernel of L

�

�

, which becomes an issue as

the metric in the annular gluing region is approaching the 
at metric.

In a forthcoming work (joint with Rick Schoen) we treat the non-time-symmetric case.

The previous method extends to the full set of constraints, but the corresponding kernel

is bigger in this case, and in fact can be accounted for by also considering the linear and

angular momentum, and so the basic model at in�nity is a suitable slice in Kerr.

References:

[1] Corvino, J.: Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint

Equations. Comm. Math. Phys. To appear.

[2] Fischer, A.E., Marsden, J.E.: Deformations of the Scalar Curvature. Duke Math. J. 42 519-547 (1975)

Felix Finster

The Long-Time Dynamics of Dirac Particles in the Kerr-Newman Black

Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-

Newman geometry outside the event horizon. We derive an integral representation for

the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's

separation of variables. It is proved that for initial data with compact support, the prob-

ability of the Dirac particle to be in any compact region of space tends to zero as t goes

to in�nity. This means that the Dirac particle must either disappear in the black hole or

escape to in�nity.

This is joint work with Niky Kamran, Joel Smoller, and Shing-Tung Yau.

Helmut Friedrich

Einstein Equations and Conformal Structure

The conformal regularity of Einstein's vacuum �eld equations with cosmological constant

allows us to show that under suitable assumptions on the data the solutions admit a

smooth conformal structure at null in�nity. Thus we have precise control on the asymptotic

behaviour of the solutions, which cannot be strengthened. In the remaining open case,

which is concerned with the asymptotic behaviour of asymptotically 
at solutions near

space-like in�nity, is is shown that under certain assumptions on the data a \regular �nite

initial value problem near space-like in�nity" can be formulated. This problem implies

certain \regularity conditions" which allow us for the �rst time to formulate a reasonable

conjecture under which conditions on the initial data the solutions will admit a smooth

structure at null in�nity. Moreover, the new initial value problem allows us to express the

values of the NP constants - absolutely preserved quantities which are de�ned by certain

integrals over cuts of null in�nity - in terms of the initial data. For further information and

references till 1998 we refer to the article: H. Friedrich, "Einstein's equation and geometric

asymptotics", gr-qc/9804009.
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Carsten Gundlach

Critical phenomena in gravitational collapse { ten years on

The boundary in the space of initial data for GR between those data that form a black

hole and those that disperse is mathematically analogous to a critical phase transition.

In particular, data near the threshold evolve through an intermediate attractor (critical

solution) that is self-similar and is the same for all initial data for a given type of matter

coupled to GR. The black hole mass scales as an irrational power of distance from the

threshold (on the collapse side of the threshold). This critical exponent is again universal.

I gave a by now standard review talk on the underlying mechanism and sketched the

calculation of the critical exponents. More details can be found in my review paper

on www.livingreviews.org, article 1999-4. Then I discussed the structure of spherically

symmetric critical solutions { they have a naked singularity { and my current e�ort to �nd

the most general way in which they can be (non-uniquely) continued beyond the Cauchy

horizon of the singularity. Fuchsian methods may help to show that these continuations

exist.

Joachim Lohkamp

Positive Scalar Curvature and Energy Theorems

There is a notable relation between positive energy theorems and and nonexistence results

for positive scalar curvature on large manifolds. In the talk we explained this geometric

correspondence as well as how to approach this kind of problem without dimensional or

spin assumptions by goemetric means.

Francesco Nicol

�

o

A new proof of the stability of the Minkowski space

In this work we present a modi�ed approach to the proof of the stability of the Minkowski

space, based only on null outgoing and incoming hypersurfaces. The introduction of

this double null \canonical"

1

foliation is a signi�cant technical simpli�cation and avoids

completely the introduction of the maximal spacelike hypersurfaces

2

. Moreover this new

approach allows us to prove also a global existence result

3

which holds outside the domain

of dependence of a su�ciently large compact set of arbitrary, strong asymptotically 
at,

initial data set, without having to prove the full stability of Minkowski spacetime

4

.

1 We call a foliation made by null outgoing hypersurfaces \canonical", if these hypersurfaces are level

surfaces of a solution of the eikonal equation with a speci�c choice of the initial data.

2 The elliptic estimates on the spacelike hypersurfaces are substituted by estimates associated to the evolu-

tion equations along the null geodesics generating the null hypersurfaces, which are ordinary di�erential

equations and by elliptic estimates on the two dimensional surfaces, di�eomorphic to S

2

, intersections

of the outgoing and incoming null hypersurfaces.

3 The outgoing leaves of the double null foliation are complete, that is the null geodesics generating them

can be inde�nitely extended toward the future.

4 In the proof of stability the regions internal and external to a \cone" with vertex at the origin are

completely decoupled.
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Daniel Pollack

A gluing construction for the Einstein constraint equations

We address the following general question: given two set of initial data (�

i

; 


i

; K

i

), for

i = 1; 2, each satisfying the vacuum Einstein constraint equations, together with speci�ed

points p

i

2 �

i

; can we �nd a family of solutions to the constraint equations (�

s

; 


s

; K

s

),

for s 2 � (a set of space of free parameters) with the following properties? For each s 2 �

� �

s

is the topological connected sum of original two 3-manifolds, �

s

= �

1

#�

2

.

� there exist small geodesic balls B

r

i

(s)

(p

i

) of radius r

i

(s) > 0 (possibly depending

on s) about each p

i

such that on �

i

n B

r

i

(s)

(p

i

) � �

s

both 


s

and K

s

are small

perturbations of 


i

and K

i

for i = 1; 2 respectively.

Here a \small perturbation" is one which vanishes as the parameter s ! 1 in �. In

joint work with Jim Isenberg and Rafe Mazzeo we give an a�rmative answer to this

question in the case that the mean curvature � = Tr




i

K

i

is constant (with the same value)

and the 3-manifolds �

i

are closed. The solutions we construct have perturbations which

are exponentially small of order exp(�� s) for an explicit � > 0, where s 2 R

+

� �.

Moreover the distance in �

s

between �

1

nB

r

1

(s)

(p

1

) and �

2

nB

r

2

(s)

(p

2

) tends to zero as

s ! 1. The construction makes extensive use of the conformal method as developed by

Choquet-Bruhat, Lichnerowicz and York. Similar results are expected to hold in the cases

of asymptotically 
at or asymptotically hyperboloidal initial data.

Hans Ringstr

�

om

Bianchi IX orthogonal perfect 
uids

The talk concerned the asymptotic behaviour of Bianchi IX spacetimes close to the sin-

gularities. The matter model was assumed to be an orthogonal perfect 
uid with linear

equation of state p = (
 � 1)�, where 1 � 
 � 2. First, results concerning curvature blow

up were mentioned. The class of Bianchi IX spacetimes contains the subclass of Taub-

NUT solutions. These solutions are locally rotationally symmetric vacuum solutions, and

as one approaches a singularity, the curvature remains bounded. In fact, these solutions

can be extended beyond the singularities in inequivalent ways. The result stated was that

all Bianchi IX solutions considered, except for the Taub-NUT solutions, exhibit curvature

blow up. According to the BKL conjecture, Bianchi IX solutions are the prototypes for

the local behaviour of generic gravitational collapse. According to this conjecture, the

behaviour of solutions should be oscillatory and the matter should be unimportant as

one approaches a singularity, with the exception of sti� 
uid solutions. In terms of the

variables of Wainwright and Hsu, we mentioned the result that, except for the sti� 
uid

case, the solutions generically oscillate inde�nitely, and the density parameter generically

converges to zero. In fact, the solutions generically converges to an attractor in the non-

sti� 
uid case. In the sti� 
uid case, all solutions converge and the density parameter

converges to a non-zero value in that case.
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Walter Simon

On Uniqueness of static vacuum spacetimes with negative cosmological

constant

A well-known family of solutions of Einstein's equations with cosmological constant � are

the "generalized Kottler solutions" (GKS) [1]

ds

2

= �(k �

2m

r

�

�

3

r

2

)dt

2

+ (k �

2m

r

�

�

3

r

2

)

�1

dr

2

+ r

2

d


2

k

; k = 0;�1:(1)

where d


2

k

denotes a metric of constant Gauss curvature k on a 2-dim. manifold (which

we assume to be compact), and m is a constant.

P. Chru�sciel and myself have recently carried out a rather systematic study of static

solutions with � < 0 which asymptotically approach the GKS at a suitable rate [2]. If we

assume, in addition, that the genus of in�nity g

1

is � 2, that the horizon is connected, and

that its surface gravity satis�es � �

p

��=3, we show the "inverse Penrose inequality"

(IPI)

2m + r

@�

+ �r

3

@�

=3 � 0 ; where m is the (suitably normalized) mass, r

@

H

�

is de�ned by

4�(g

@

H

�

� 1)r

2

@

H

�

= A

@

H

�

, and g

@

H

�

and A

@

H

�

are the genus and the area of the horizon,

respectively.

We expect that the Penrose inequality (PI, which goes precisely the opposite way as

the IPI) holds under the same conditions (and in fact under much less restrictive ones) as

above. In fact the PI has been shown under the additional assumption of a smooth "inverse

mean curvature 
ow". If both the PI and the IPI hold, it follows that the corresponding

GKS are unique.

Our proof of the IPI combines the strategies under which similar inequalities have been

obtained before, in the special cases of vanishing � on the one hand, and in the case of the

absence of the black hole on the other hand (where the IPI becomes the "negative mass

theorem" of Boucher et al. [3]).

In the case � = 0, the PI is known and leads, in combination with the IPI, to a uniqueness

proof, (which is, in essence, Israel's proof [4]). On the other hand, in the case � < 0

without black hole a positive mass theorem (and a uniqueness result for the anti-de Sitter

solutions in the static case) are likely to hold but have not yet been established rigorously.

References:

[1] Annalen der Physik 56 (1918), 401{462

[2] gr-qc/0004032

[3] Phys. Rev. D 30 (1984), 2447{2451

[4] Phys. Rev. 164 (1967), 1776{1779
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Michael Struwe

Wave maps

Wave maps u = (u

1

; : : : ; u

n

) : R�R

m

�! N ,! R

n

from (1+m)-dimensional Minkowski

space to a smooth, compact target manifold N � R

n

without boundary by de�nition are

solutions to the equation

2u = u

tt

�4u = A(u)(Du;Du)? T

u

N ;(1)

where Du = (u

t

;ru) denotes the space-time derivatives and with A denoting the second

fundamental form of N .

It is conjectured that the Cauchy problem for (1) is (locally) well-posed for initial data

(u; u

t

)

jt=0

= (u

0

; u

1

) 2 H

s

�H

s�1

(R

m

;TN)

whenever s �

m

2

. I survey recent progress towards a proof of this conjecture using the

special geometric, analytic, and algebraic structure of equation (1).

Paul Tod

Isotropic cosmological singularities

Penrose has suggested that the initial singularity of the universe must have �nite Weyl

curvature, while this should not be true of any singularity formed in gravitational collapse.

It is not known how to characterise a singularity with �nite Weyl tensor but isotropic

cosmological singularities are a class of singularities which are easy to de�ne and which

manifestly have this property. An isotropic cosmological singularity (ICS) is one which

can be removed by conformally rescaling the physical metric: in the rescaled, unphysical

metric the physical singularity occurs at a smooth space-like hypersurface on which the

conformal factor vanishes (though it need not be smooth there). Since the Weyl tensor is

conformally invariant and it is �nite in the unphysical space-time, it will be �nite at the

ICS in the physical space-time.

The problem is to show that there exist reasonable cosmological models with an ICS.

The idea is to do this by �nding (and solving) a well-posed initial value problem with

data given at the singularity surface. In two recent papers with Keith Anguige (1999,

below), I considered this problem for perfect 
uids with polytropic equation of state and,

with spatial homogeneity, for mass-less Einstein-Vlasov. In a third paper, Anguige (2000)

solved the mass-less Einstein-Vlasov case without the assumption of spatial homogeneity.

In each case, the Einstein equations can be reduced to a symmetric hyperbolic system

with a singularity in the time, of the appropriate form for the existence and uniqueness

theorem of Claudel and Newman (1998) to be used. Thus there are many cosmological

models with an ICS.

Because the system is Fuchsian, less data can be freely speci�ed: for the perfect 
uid

case one can give the 3-metric of the singularity arbitrarily (the second fundamental form

must vanish, and there are no constraints and no extra data for the matter); for the

Einstein-Vlasov case one can give the initial distribution function, subject to a vanishing

�rst moment; the initial metric and second fundamental form are then determined by
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the distribution function. For the perfect 
uid, if the initial Weyl tensor is zero rather

than just �nite, it will always be zero and the metric will be Robertson-Walker. For the

Einstein-Vlasov this is not the case; the Weyl tensor can be zero at the singularity and

nonzero later.

References:

[1] K Anguige and K P Tod Ann.Phys. 276 (1999) 257-293, 294-320, gr-qc 9903008, 9903009

[2] K Anguige Ann.Phys. 282 (2000) 395-419, gr-qc 9903018 C M Claudel and K P Newman Proc. Roy.

Soc. Lond. A 454 (1998) 1073-1107

Robert Wald

Conserved Quantities

In general relativity, at spatial in�nity conserved quantities can be de�ned in a natural way

via the Hamiltonian framework: Each conserved quantity is associated with an asymp-

totic symmetry and the value of the conserved quantity is de�ned to be the value of the

Hamiltonian which generates the canonical transformation on phase space corresponding

to this symmetry. However, such an approach cannot be employed to de�ne \conserved

quantities" in a situation where symplectic current can be radiated away because there

does not, in general, exist a Hamiltonian which generates the given asymptotic symmetry.

(This fact is closely related to the fact that the desired \conserved quantities" are not, in

general, conserved!) A. Zoupas and I have proposed a prescription for de�ning \conserved

quantities" in such situations by postulating a modi�cation of the equation that must be

satis�ed by a Hamiltonian. Our prescription is a very general one, and is applicable to

a very general class of asymptotic conditions in arbitrary di�eomorphism covariant theo-

ries of gravity derivable from a Lagrangian, although we have not investigated existence

and uniqueness issues in the most general contexts. In the case of general relativity with

the standard asymptotic conditions at null in�nity, our prescription agrees with the one

proposed by Dray and Streubel from entirely di�erent considerations.

Marsha Weaver

Gowdy spacetimes with spikes

(joint work with Alan Rendall)

We construct C

1

solutions to Einstein's equation which belong to the T

3

Gowdy class

with a transformation which takes a Gowdy solution to a Gowdy solution. The seed

solutions we use are a large class (having the correct number of arbitrary functions) which

are known explicitly up to a remainder term which converges to zero in the singular time

direction. Thus the arbitrary functions are called \data on the singularity." Solutions in

this previously known class do not reproduce the features (spikes) which have been seen

in numerical simulations. The new solutions again have the correct number of arbitrary

functions, and they do reproduce the features seen in numerical simulations. In addition,

now we can make rigorous various statements about the asymptotic properties of the spikes

that were indicated by previous work. The spikes do persist to the singularity. That is,
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the \data on the singularity" is discontinuous at the asymptotic position of the spike, and

smooth except for a set of measure zero. All of the solutions obtained here are convergent.

That is, the evolution at each spatial point converges to that of a Kasner solution. None

of the solutions obtained here are extendible past the singularity, since the Kretschmann

scalar blows up there. The rate of curvature blowup is discontinuously greater at a \true"

spike than at any given nearby spatial point, close enough to the singularity, in terms

of a geometrically de�ned time coordinate, the area of the two-dimensional orbits of the

isometry group.

Nina Zipser

Solutions of the Maxwell-Einstein Equations

In The Global Nonlinear Stability of the Minkowski Space, Christodoulou and

Klainerman show that given asymptotically 
at initial data which satisfy a smallness con-

dition, there exist global, smooth nontrivial solutions to the Einstein-Vacuum equations.

This result can be generalized to show the global nonlinear stability of the trivial solution

of the Einstein-Maxwell equations. In particular instead of solving the Einstein �eld

equations G

��

= 8�T

��

with the energy momentum tensor T

��

equal to zero, T

��

is set

to equal the stress-energy tensor of an electromagnetic �eld F such that F satis�es the

Maxwell equations.

As in The Global Nonlinear Stability of the Minkowski Space, the stability of the

Minkowski space for the Einstein-Maxwell system is proven by showing the existence of

unique, globally hyperbolic, smooth, and geodesically complete solutions which are close

to Minkowski Space. The proof of existence starts with a maximally foliated space-time

slab obtained by proving short time existence for the Maxwell-Einstein equations and

requiring that all curvature remain bounded by some "

0

. A null structure is de�ned on

the space-time by constructing an optical function which is the solution of the Eikonal

equation. The optical function is used to de�ne "almost" conformal killing �elds which

are analogous to the conformal killing �elds in Minkowski space-time. These vector �elds

are used in conjunction with the stress-energy tensor and the homogeneous �eld equations

for the electromagnetic �eld and the Bel-Robinson tensor and the inhomogeneous �eld

equations for the Weyl tensor to obtain estimates for the space-time Riemann curvature

tensor.

Once good estimates are obtained for the Riemann curvature tensor, all the parameters of

the time foliation are determined purely by solving an elliptic system The proof of global

existence follows from a continuation argument which shows that the weighted L

2

-norms

of the curvature and the parameters of the foliation must remain small.

The asymptotic behavior of the components of the Weyl tensor and the electromagnetic

�eld with respect to a null frame are seen to be the same as in the linear case shown

by Christodoulou and Klainerman in "Asymptotic properties of linear �eld equations in

Minkowski space".
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