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The 
onferen
e was organized by Robion Kirby (Berkeley, USA), Wolfgang L�u
k

(M�unster, Germany), and Elmer Rees (Edinburgh, GB). It was attended by 45 mathe-

mati
ians from Europe and North Ameri
a.

There were 20 talks, among whi
h a spe
ial series of 3 le
tures by Graeme Segal about

quantum �eld theory and geometry. Di�erent topi
s 
overed by other le
turers in
luded

(stable) homotopy theory, bordism, positively 
urved manifolds, foliations, low dimensional

manifolds and knot theory, group representations, algebrai
 K- and L-theory.

Between and after the talks there was plenty of time for dis
ussions and resear
h. This

opportunity has been widely used and appre
iated by the parti
ipants, and together with

the pleasant atmosphere of the institute 
ontributed to the su

ess of the meeting.
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Abstra
ts

Norbert A'Campo

Ideal triangulations on knot 
omplements, spines and monodromy

A tree � de�nes on the metri
 spa
e, whi
h is spanned by its verti
es, a quadrati
 form.

To ea
h vertex 
orresponds a re
e
tion. The produ
t of these re
e
tions is the Coxeter

element C

�

of �. The eigenvalues lie on S

1

[R

+

and the Coxeter group is �nite if �+

1

�

< 2

for ea
h eigenvalue �. The Coxeter di�eomorphism D

�

is de�ned for a planar tree � as a

di�eomorphism of the surfa
e �

�

whi
h one obtains by plumbing annuli, su
h that we have

one annulus for ea
h vertex and one annulus for ea
h edge. D

�

is the produ
t of the right

Dehn twist along the 
ore 
urves of the plumbing. We only 
onsider trees � su
h that �

�

has one boundary 
omponent. In this 
ase, the di�eomorphism D

�

is the monodromy of

the slalom knot asso
iated to the tree �.

Theorem. D

�

is pseudo-Asonov if � has 4 or more terminal verti
es, or if �

0


ontains

stri
tly the tree E

8

, where the tree �

0

is obtained by subdividing with a node ea
h edge of �.

We dis
uss how to read o� the �bration and the monodromy of a �bred hyperboli
 knot

from an ideal triangulation of its 
omplement. The main ingredient uses a 1-
o
hain on

the Matveev spine of the 
omplement.

We give 
ombinatorial eviden
e for a positive answer to the following question:

Let � : S

3

� K ! S

1

be the harmoni
 representative for the essential map from the


omplement of the knot K to the 
ir
le, harmoni
 for the 
omplete hyperboli
 metri
 of

�nite volume on S

3

�K. Is the map � a �bration if the knot K is a �bred knot?

Arthur Bartels

On the isomorphism 
onje
ture in algebrai
 K-theory

(joint work with Tom Farrell, Lowell Jones, and Holger Rei
h)

For a torsionfree group � and a regular ring R the Isomorphism Conje
ture states that

the assembly map A : H

i

(B�; KR) ! K

i

(R�) is an isomorphism. Here KR denotes the

K-theory spe
trum of R. It implies for example that K

0

(R�) = K

0

(R). For general rings

a di�erent assembly map has to be 
onsidered.

Theorem. Let M be a 
ompa
t Riemannian manifold with stri
tly negative se
tional 
ur-

vature and � := �

1

(M). Let R be a ring. Then for i � 1 the assembly map

A

C

: H

�

i

(E�(C); KR) ! K

i

(R�)

is an isomorphism.
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This 
an be used to show that in the same situation for regular rings A is also an

isomorphism. The proof of the theorem uses 
ontrolled topology. The map A

C


an be

expressed as a \forget 
ontrol" map. Then a transfer argument, the geodesi
 
ow and a

foliated 
ontrol theorem are used to regain 
ontrol.

Jim Bryan

Introdu
tion to BPS-state 
ounts and Gromov-Witten invariants

Gromov-Witten theory 
an be studied from the point of view of topology, analysis,

algebra, geometry, or physi
s. The interplay between these subje
ts has given the subje
t

a remarkable robustness. Re
ent advan
es in M-theory in physi
s has suggested that the

Gromov-Witten invariants should be equivalent to a simpler set of invariants whi
h in

physi
s are obtained from BPS state 
ounts but are mathemati
ally unknown. In this talk,

we give an introdu
tion to Gromov-Witten invariants with an eye toward des
ribing how

the \BPS invariants" should be de�ned mathemati
ally and how they should be related to

the Gromov-Witten invariants.

Anand Dessai

Ellipti
 genera and manifolds with positive 
urvature

Let M be a simply 
onne
ted 
losed Riemannian Spin-manifold of positive se
tional


urvature. By the Li
hnerowi
z formula the index of its Dira
 operator vanishes. We show

that the index of 
ertain twisted Dira
 operators (e.g. the Rarita-S
hwinger operator)

vanishes provided the dimension ofM is > 8 and its symmetry rank is � 2. If one restri
ts

to metri
s with a pres
ribed lower bound on the symmetry rank these results may be

used to exhibit simply 
onne
ted manifolds (of arbitrary large dimension) with small Betti

numbers whi
h admit a metri
 of positive Ri

i 
urvature but no metri
 of positive se
tional


urvature. The proof uses the rigidity theorem for ellipti
 genera, interse
tion properties

of totally geodesi
 submanifolds of positively 
urved manifolds and elementary properties

of 
odes.
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Ian Hambleton

Topologi
al equivalen
e of linear representations

(joint work with Erik Pedersen)

Let G be a �nite group and V , V

0

�nite dimensional real orthogonal representations

of G. Then V is said to be topologi
ally equivalent to V

0

(denoted V �

t

V

0

) if there exists a

homeomorphism h : V ! V

0

whi
h is G-equivariant. If V , V

0

are topologi
ally equivalent,

but not linearly isomorphi
, then su
h a homeomorphism is 
alled a non-linear similar-

ity. These notions were introdu
ed and studied by de Rham, and developed extensively

by Cappell and Shaneson, Steinberger and West, Hsiang and Pardon, and Madsen and

Rothenberg in the 1980's.

We say that V

1

and V

2

are stably topologi
ally similar (V

1

�

t

V

2

) if there exists a G-

representation W su
h that V

1

�W �

t

V

2

�W . Let R

Top

(G) = R(G)=R

t

(G) denote the

quotient group of the real representation ring of G by the subgroup R

t

(G) = f[V

1

℄� [V

2

℄ j

V

1

�

t

V

2

g. The following result gives the �rst 
omplete 
al
ulation of R

Top

(G) for any

group whi
h admits non-linear similarities.

Theorem. Let G = C(2

r

) be a 
y
li
 group of order 2

r

, with r � 4. Then R

Top

(G) =

L

K�G

R

free

Top

(G=K) and R

free

Top

(G) = Z�

e

R

free

Top

(G) where

e

R

free

Top

(G) =




�

1

; �

2

; : : : ; �

r�2

; �

1

; �

2

; : : : ; �

r�3

�

subje
t to the relations 2

s

�

s

= 0 for 1 � s � r�2, and 2

s�1

(�

s

+�

s

) = 0 for 2 � s � r�3,

together with 2(�

1

+ �

1

) = 0.

The generators for r � 4 are given by the elements

�

s

= t� t

5

2

r�s�2

and �

s

= t

5

� t

5

2

r�s�2

+1

:

We remark that

e

R

free

Top

(C(8)) = C(4) is generated by t� t

5

.

Kathryn Hess

Algebrai
 models in homotopy theory

In the mid 1990's N. Dupont and I developed a theory of non
ommutative alge-

brai
 models of fiber squares, whi
h we have sin
e applied to modelling free loop

spa
es and homotopy pullba
ks.

1. The theoreti
al framework

We work in the 
ategory whose obje
ts, whi
h we 
all 
o
hain algebras, are 
o
hain 
om-

plexes over a �eld K endowed with a (
o
hain) homotopy-asso
iative produ
t and whose
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morphisms are quasi-algebra maps, i.e., (essentially) 
o
hain maps indu
ing algebra ho-

momorphisms on 
ohomology. There is a spe
ial 
lass of maps in this 
ategory, known

as twisted algebra extensions, analogous to the KS-extensions of rational homotopy theory,

that are used for modelling topologi
al �brations. If (A; d) and (B; d) are 
o
hain algebras,

then a twisted algebra extension of (A; d) by (B; d), denoted (A; d) � (B; d), is a 
o
hain

algebra (C;D) su
h that C

�

=

A 
 B as graded R-modules and su
h that the in
lusion

map (A; d) ! (C;D) and the proje
tion map (C;D) ! (B; d) are both stri
t algebra

morphisms.

Theorem (A). Suppose there is a 
ommuting diagram over a �eld K ,

(A; d)� (C; e)

�
'

��

(A; d)

�

oo
'

//

�
'

��

(

�

A;

�

d)




'

��

C

�

E C

�

B

C

�

q

oo
C

�

f

//
C

�

X

in whi
h

�

A is a free algebra, ' admits a 
o
hain algebra se
tion �, � and 
 are alge-

bra maps, and � may be only a quasi-algebra map. Then there exist a twisted algebra

extension (

�

A;

�

d) ! (

�

A;

�

d) � (C; e) (almost entirely expli
itly de�ned) and a quasi-algebra

quasi-isomorphism (

�

A;

�

d)� (C; e)

'

! C

�

(E �

B

X):

2. Appli
ations

2.1. Free loop spa
e. We have applied Theorem A to the 
onstru
tion of a model of

the free loop spa
e E

S

1

over any �eld K , where E is simply 
onne
ted and of �nite type.

The most deli
ate stage of the 
onstru
tion is the de�nition of a twisted algebra extension

that models the �bration q : E

I

! E � E.

Our input data for the 
onstru
tion 
onsist of an Adams-Hilton model for E over Z,

together with a homotopy-
oasso
iative and homotopy-
o
ommutative 
oprodu
t on this

model. We proved that there exists a twisted algebra extension 
(C;

b

�) ! 
(C;

b

�) �

(C;

b

�) (almost entirely expli
itly de�ned) and a quasi-algebra quasi-isomorphism 
(C;

b

�)�

(C;

b

�)

'

! C

�

(E

S

1

), where 
 denotes the 
obar 
onstru
tion and (C;

b

�) the dual of su
h an

\enri
hed" Adams-Hilton model.

We have provided expli
it formulas for the entire stru
ture of 
(C;

b

�)�(C;

b

�) when the

produ
t on (C;

b

�) is stri
tly 
ommutative and asso
iative, e.g., when E is a r-
onne
ted

�nite CW-
omplex of dimension at most pr and 
har K = p. For p > 2 we 
ould then


onstru
t a 
ommutative 
o
hain algebra over F

p

that models the free loop spa
e. For

spa
es that are also p-formal, su
h as spheres and proje
tive spa
es, we de�ned an even

simpler 
ommutative model that applies for all primes p. We then used the simpli�ed

model to 
ompute the 
ohomology algebras of a number of free loop spa
es expli
itly.

2.2. Homotopy �ber produ
ts and homotopy �bers. Applying Theorem A and the

model of q above, we have 
onstru
ted a model for the homotopy pullba
k of 
ontinuous
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maps f : X ! E and g : Y ! E. If (C;

b

�), (C

0

;

b

�

0

), and (C

00

;

b

�

00

) are dual to enri
hed

Adams-Hilton models of E, X, and Y , respe
tively, then the homotopy pullba
k of f

and g has a model of the form

�


(C

0

;

b

�

0

)
 
(C

0

;

b

�

0

)

�

� (C;

b

�).

We plan to employ this new model in the study of homotopy �bers of interesting

topologi
al 
o�brations, su
h as 
ell atta
hments. It may also be useful for determining

when maps of p-
ompa
t groups are monomorphisms.

Gerd Laures

The E

1

-stru
ture of the K(1)-lo
al spin-bordism

A 
lassi
al result says that spin manifolds are determined up to bordism by their

KO 
hara
teristi
 and Stifel-Whitney numbers. This leads to an additive splitting of the

spin bordism MSpin whi
h allows the 
omputation of the bordism groups. The 
artesian

produ
t of manifolds gives spin bordism in addition a highly 
ommutative and asso
iative

(E

1

) ring stru
ture. So far there is not mu
h known about it sin
e it is not 
ompatible

with the mentioned splitting.

In the talk we 
on
entrate on the part of spin bordism whi
h 
an be investigated with

KO-theoreti
al tools. We develop an E

1

splitting of this lo
alized spin bordism:

L

K(1)

MSpin

�

=

T

�

^

1

^

i=1

TS

0

:

Here, T

�

is the E

1

-
one over a generator � of �

�1

L

K(1)

S

0

and TS

0

is the free E

1

-spe
trum

generated by the sphere. Together with a result of M. Hopkins this formula gives the

desired Oh8i-orientation of the K(1)-lo
al ellipti
 
ohomology TMF .

Eri
 Lei
htnam

On the 
ut and paste property of higher signatures of 
losed manifolds

(joint work with Wolfgang L�u
k)

We extend the notion of the symmetri
 signature �(M; r) 2 L

n

(R) for a 
ompa
t

n-dimensional manifold M without boundary, a referen
e map r : M ! BG and a homo-

morphism of rings with involutions � : ZG ! R to the 
ase with boundary �M , where

(M; �M) ! (M; �M) is the G-
overing asso
iated to r. We need the assumption that

C

�

(�M )


ZG

R is R-
hain homotopy equivalent to a R-
hain 
omplex D

�

with trivial m-th

di�erential for n = 2m resp. n = 2m+1. We prove a gluing formula, homotopy invarian
e

and additivity for this new notion.

Let Z be a 
losed oriented manifold with referen
e map Z ! BG. Let F � Z be

a 
utting 
odimension one submanifold F � Z and let F ! F be the asso
iated G-
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overing. Denote by �

m

(F ) the m-th Novikov-Shubin invariant and by b

(2)

m

(F ) the m-th

L

2

-Betti number. If for the dis
rete group G the Baum-Connes assembly map is rationally

inje
tive, then we use �(M; r) to prove the additivity (or 
ut and paste property) of the

higher signatures of Z, if we have �

m

(F ) = 1

+

in the 
ase n = 2m and, in the 
ase

n = 2m + 1, if we have �

m

(F ) =1

+

and b

(2)

m

(F ) = 0.

This additivity result had been proved (by a di�erent method) by Lei
htnam-Lott-

Piazza when G is Gromov hyperboli
 or virtually nilpotent. We give new examples, where

these 
onditions are not satis�ed and additivity fails. Our work is greatly motivated by

and partially extends some of the work of Lei
htnam-Lott-Piazza, Lott, and Weinberger.

Ran Levi

Spa
es of equivalen
es between 
lassifying spa
es

of �nite groups 
ompleted at a prime p

(joint work with Carles Broto and Bob Oliver)

We study homotopy equivalen
es of p-
ompletions of 
lassifying spa
es of �nite groups.

To ea
h �nite group G and ea
h prime p, we asso
iate a �nite 
ategory L




p

(G) with the

following properties. Two p-
ompleted 
lassifying spa
es BG

^

p

and BG

0^

p

have the same ho-

motopy type if and only if the asso
iated 
ategories L




p

(G) and L




p

(G

0

) are equivalent. The

topologi
al monoid Aut(BG

^

p

) of self equivalen
es of BG

^

p

is determined by the self equiv-

alen
es of the asso
iated 
ategory L




p

(G). Both the question of whether BG

^

p

and BG

0^

p

are homotopy equivalent and the homotopy type of Aut(BG

^

p

) 
an be approximated by

means of fusion preserving isomorphisms of the Sylow p subgroup of G. We explain these

approximations and use a re
ent theorem of Oliver to show that in fa
t at odd primes, they

are pre
ise. This theorem also settles a 
onje
ture of Martino and Priddy at odd primes.

Ib Madsen

A topologist's view of a 
onje
ture of Mumford

Let �

g;1+1

be the mapping 
lass group of genus g surfa
es with two boundary 
ompo-

nents, �

g;1+1

= �

0

Di�(F

g;1+1

; �). Adding a genus one surfa
e with two boundary 
ompo-

nents to F indu
es a map from �

g;1+1

to �

g+1;1+1

. On the 
lassifying spa
e level one obtains

maps from B�

g;1+1

to B�

g+1;1+1

, and a limit spa
e whi
h we denote by B�

1

. A theorem

of Ulrike Tillmann asserts that after applying Quillen's plus 
onstru
tion, B�

1

be
omes

an in�nite loop spa
e B�

+

1

. The spa
e B�

g;1+1


lassi�es surfa
e bundles E ! X. The

Thom-Pontrjagin 
onstru
tion gives a map X ! 


1

Th(�T

v

E), and universally a map

�

1

: B�

+

1

! 


1

C P

1

�1

:

The talk dis
ussed eviden
e for the following
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Conje
ture. The map �

1

is a homotopy equivalen
e.

In geometri
 terms the 
onje
ture asserts that a map f : E

n+2

! M

n

between man-

ifolds, with the extra property that TE

n+2

is stable equivalent to f

�

TM

n

� � for some

oriented 2-plane bundle � over E, up to 
obordism 
an be deformed into a submersion.

Rationally the 
onje
ture is equivalent to the so-
alled Mumford 
onje
ture that

H

�

(B�

1

;Q)

�

=

Q [�

1

; �

2

; � � � ℄:

After lo
alization at an odd prime p,




1

C P

1

�1

'B

0

� � � � �B

p�3

�W

p�2

where the B

i

are fa
tors of 


1

S

1

(C P

1

+

). Theorems of Tillmann and the speaker assert

that � is an in�nite loop map and that B

0

�� � ��B

p�3

is a fa
tor of B�

+

1

after p-
ompletion.

This gives a host of new 
ohomology, all p

n

-torsion, in H

�

(B�

1

;Z). Moreover there is a

map � from 


1

C P

1

�1

into Sp=f su
h that �Æ�

1


ohomologi
ally behaves like the standard

map

B�

1

! BSp(Z)! Sp=f:

The talk represents joint work with Ulrike Tillmann.

Birgit Ri
hter

Taylor-approximations and 
ubi
al 
onstru
tions of Gamma-modules

Topologi
al Andr�e-Quillen homology is a generalization of usual Andr�e-Quillen homol-

ogy (AQ for short) to 
ommutative ring spe
tra. One version of su
h a theory is Gamma

homology { H

�

{ de�ned by A. Robinson and S. Whitehouse. T. Pirashvili and the speaker

identi�ed Gamma homology of Eilenberg-Ma
Lane spe
tra with stable homotopy of a fun
-

tor. This fun
tor L(A;M) depending on a 
ommutative k-algebra A (k a �eld) and an

A-module M sends a �nite pointed set f0; 1; : : : ; ng to M 
 A


n

.

Theorem. H

�

�

(A;M)

�

=

�

st

�

(L(A;M)).

In the 
ontext of Taylor-approximations of fun
tors from the 
ategory of �nite pointed

sets � to k-modules I proved these groups to be isomorphi
 to the homology of the lin-

earization of L(A;M). This approa
h leads to an Atiyah-Hirzebru
h spe
tral sequen
e

E

2

p;q

= H

�

q

(k[x℄; k)
AQ

p

(A; k) =) H

�

p+q

(A; k) with A augmented over k. Moreover H

�

of

the \basepoint" k[x℄ is shown to be isomorphi
 to Hk

�

HZ. The methods in this subje
t

were sket
hed by 
al
ulating H

�

(F

2

[x℄; F

2

) as a graded module|whi
h is well-known, in

order to indi
ate how these methods may be helpful in other 
ases.
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John Rognes

Algebrai
 K-theory of �nitely presented ring spe
tra

The talk introdu
ed the notion of a G-Galois extension A ! B of 
ommutative S-

algebras, or E

1

ring spe
tra, and presented the Galois des
ent problem for algebrai
 K-

theory in this 
ontext. With E

n

the Lubin{Tate spe
trum with

E

n�

= W F

p

n

[[u

1

; : : : ; u

n�1

℄℄[u; u

�1

℄

and E

n

a maximal 
onne
ted pro-Galois extension of E

n

, we optimisti
ally 
onje
ture that

L

K(n+1)

K(E

n

) = E

n+1

:

For L

p

the Adams summand of p-
omplete topologi
al K-theory and `

p

its 
onne
tive 
over,

C. Ausoni and the speaker have 
omputed the mod p and v

1

homotopy of K(`

p

) using

topologi
al 
y
li
 homology, the answer being a free P (v

2

)-module on 4p + 4 generators.

This leads to the 
onje
tural formula

4p+ 4 =

p

2

�1

X

i=1

1

X

n=0

dim

F

p

H

n

(Gal(L

p

=L

p

); F

p

2

(i))

with L

p

= E

1

. The talk indi
ated how algebrai
 K-theory of topologi
al K-theory is a

form of ellipti
 
ohomology. More generally we presented the available eviden
e for the

following:

Chromati
 red-shift problem. Let E be an S-algebra of pure fp-type n. Does TC(E; p)

have pure fp-type n+ 1 ?

Daniel Ruberman

Moduli spa
es of metri
s of positive s
alar 
urvature on 4-manifolds

Suppose that a manifold X admits a metri
 of positive s
alar 
urvature. Then one


an ask for topologi
al properties of M

+

(X), the spa
e of all su
h metri
s. Alternatively,

one 
an 
onsider topologi
al properties of the moduli spa
e of positive s
alar metri
s,

M

+

(X)=Di�(X).

The simplest question about these spa
es is whether they are 
onne
ted. Results of

Hit
hin, Gromov{Lawson, and more re
ently Gilkey{Botvinnik, Stolz, and others show

that these spa
es 
an indeed be dis
onne
ted, when the dimension of X is greater than or

equal to 5. We extend these results to dimension 4 in the following theorems.

Theorem (A). There are simply 
onne
ted smooth 4{manifolds X for whi
h M

+

(X) is

dis
onne
ted.

9



Theorem (B). There are (non-orientable) smooth 4{manifolds X for whi
h

M

+

(X)=Di�(X) is dis
onne
ted.

The metri
s in Theorem A are of the form g

0

and f

�

g

0

, where f is a 
ertain di�eo-

morphism, whi
h is homotopi
 to the identity. It follows from the method of proof (whi
h

uses the Seiberg{Witten equations) that f is not isotopi
 to the identity map of X. The


omponents of M

+

=Di� in Theorem B are dete
ted by �{invariants asso
iated to Pin




stru
tures, as in the work of Gilkey{Botvinnik.

Thomas S
hi
k

Atiyah's 
onje
ture about the integrality of L

2

-Betti numbers

The Atiyah 
onje
ture for a torsion-free dis
rete group � states that the L

2

-Betti num-

bers of a �nite CW-
omplex with fundamental group � are integers.

The L

2

-Betti numbers are de�ned in terms of harmoni
 L

2

-
y
les (in the 
ellular 
hain-


omplex tensored over Z� with the Hilbert spa
e l

2

�). There exists a real valued normalized

dimension fun
tion for su
h Hilbert spa
es with unitary �-a
tion (going ba
k to Murray

and von Neumann), and the L

2

-Betti numbers are these �-dimensions of the spa
es of

harmoni
 L

2

-
y
les.

The Atiyah 
onje
ture for a torsion-free group � implies the Kaplanski 
onje
ture that

there are no non-trivial zero divisor in the ring Z�.

In the talk, 
ertain 
lasses of groups were presented for whi
h the Atiyah 
onje
ture

is true. Among them are torsion-free elementary amenable groups, residually torsion-free

elementary amenable groups, and poly-free groups (proved by Linnell, S
hi
k, Di
ks-S
hi
k,

respe
tively).

The last part of the talk dealt with the question how to handle �nite extensions of

groups for whi
h the Atiyah 
onje
ture is true. As an example, the following result of

Linnell-S
hi
k was presented:

Theorem. Assume � has a �nite 
lassifying spa
e, H

�

(

^

�

p

;Z=p)! H

�

(�;Z=p) is an iso-

morphism for all primes p, and �=


n

(�) is torsion-free for in�nitely many n 2 N.

Assume 1 ! �! � ! F ! 1 is an exa
t sequen
e of groups, � is torsion-free and F

is �nite. If the Atiyah 
onje
ture is true for �, then it is also true for �.

Here

^

�

p

is the pro-p-
ompletion of � (i.e. the inverse limit of all the quotients of �

whi
h are �nite p-groups), H

�

(

^

�

p

;Z=p) its 
ontinuous 
ohomology (i.e. the dire
t limit of

the 
ohomology of the quotients de�ning

^

�

p

), and 


n

(�) is the n-th lower 
entral series

subgroup.

As an example, it is proved that the pure braid groups satisfy all the 
onditions of the

theorem. It follows that the full braid groups ful�ll the Atiyah 
onje
ture.

Very similar methods apply to the Baum-Connes 
onje
ture, to give e.g. a proof of the

Baum-Connes 
onje
ture (with 
oeÆ
ients) for the full braid group.
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Moreover, the methods of the proof of the theorem imply that �=


n

(�) is torsion-free

for in�nitely many n 2 N . This implies in parti
ular that all pure braid groups have many

non-trivial torsion-free quotients; and disproves a 
onje
ture of Lin whi
h stated that no

su
h quotients exist.

Stefan S
hwede

Uniqueness results for stable homotopy theory

We study the question of whether or not the stable homotopy 
ategory admits \ex-

oti
" models. The pre
ise formulation uses the framework of Quillen's \
losed model


ategories"; so we ask whether there exists a model 
ategory whose homotopy 
ategory is

equivalent|as a triangulated 
ategory|to the stable homotopy 
ategory, but whi
h is not

(Quillen-)equivalent to the standard model for spe
tra.

A Quillen equivalen
e of model 
ategories implies an equivalen
e of homotopy 
ate-

gories, but is in general a mu
h stronger 
ondition. Loosely speaking, a Quillen equivalen
e

preserves all \higher order" homotopy information.

An important motivation for our study 
omes from work of J. Franke on 
hromati


lo
alizations of the stable homotopy 
ategory. For a prime p and a 
hromati
 level n su
h

that n

2

+n < 2p�2, he 
onstru
ts an algebrai
 model for the homotopy 
ategory of E(n)-

lo
al spe
tra. The obje
ts in this model are 
ertain 
omplexes of E(n)

�

E(n)-
omodules,

and the 
ategory is not Quillen-equivalent to E(n)-lo
al spe
tra.

On the other hand, we expe
t that without lo
alizing there is only one model for the

stable homotopy 
ategory up to Quillen-equivalen
e. The problem 
an be studied one

prime at a time, and we show that the model is indeed unique at the primes 2 and 3. We

expe
t that the uniqueness holds for all primes, but a proof requires re�ned te
hniques.

Graeme Segal

Quantum �eld theory and geometry

I Deligne or Cheeger-Simons 
ohomology

An ele
tromagneti
 �eld on a spa
e-time manifold X is a 
omplex hermitian line bundle

on X equipped with a unitary 
onne
tion. The �eld is nearly determined by its \�eld

strength", the 
urvature 2-form of the 
onne
tion, but it 
arries additional holonomy in-

formation. Two other stru
tures of the same type have been prominent in string theory

re
ently.

(i) String theory is a theory of gravity, but redu
es in its 
lassi
al limit to a theory of

manifolds equipped not only with a Riemannian metri
 but also with a \B-�eld".
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The latter is roughly des
ribed by a 
losed 3-form with integral periods, but 
arries

additional holonomy information.

(ii) Supergravity is a theory of 11-dimensional manifolds with Riemannian metri
 and an

additional 
losed 4-form with integral periods.

In fa
t, on a smooth manifold X one 
an de�ne (for p � 0) a 
ategory C

p

(X) of \p-

obje
ts", and a 
ategory C


onn

p

(X) of \p-obje
ts with 
onne
tion". The set of isomorphism-


lasses of obje
ts of C

p

(X) is H

p

(X;Z), while that of C


onn

p

(X) is a group H

p

D

(X) whi
h

�ts into two exa
t sequen
es

0

//



p�1

(X)=Z

p�1

Z

(X)

//
H

p

D

(X)

//
H

p

(X;Z)

//
0

0

//
H

p�1

(X;T)

//
H

p

D

(X)

//
Z

p

Z

(X)

//
0

where Z

p

Z

(X) denotes the 
losed p-forms with integral periods.

I des
ribed the main features of these 
ategories, espe
ially the multipli
ative stru
ture

and Poin
ar�e duality, the existen
e of a dire
t-image fun
tor, and the lifting of the p-th

Chern 
lass of a ve
tor bundle with unitary 
onne
tion to an obje
t of C


onn

2p

(X).

II Twisted K-theory and the Verlinde algebra

For any spa
e X an element of H

3

(X;Z) 
an be represented by a bundle P on X whose

�bres P

x

are proje
tive spa
es P

1

C

. For su
h P there is a bundle Fred(P ) whose �bre

at x 2 X is the spa
e of Fredholm operators in the �bre P

x

. The twisted K-group K

P

(X)

is de�ned as the group of verti
al homotopy 
lasses of se
tions of Fred(P ). I des
ribed some

properties of these groups, in
luding the Atiyah-Hirzebru
h spe
tral sequen
e relating them

to H

�

(X;Z). In fa
t K

P

(X) 
 Q

�

=

ker(
)= im(
), where 
 : H

i

(X;Q) ! H

i+3

(X;Q) is

multipli
ation by the 
lass 
 of P .

An equivariant version of this theory 
an be de�ned when a 
ompa
t Lie group G a
ts

on X: the twisting is then by elements of H

3

G

(X;Z).

The 
entral extensions by T of the loop-group LG 
orrespond to elements 
 2 H

3

G

(G;Z),

where G a
ts on itself by 
onjugation. Re
ently D. Freed, M. Hopkins, and C. Teleman have

proved a remarkable theorem identifying the Verlinde algebra of positive energy proje
tive

representations of LG with 
lass 
 with the twistedK-groupK

�

G;P

(G), where the twisting P

is simply related to 
. The multipli
ation in the Verlinde algebra|essentially de�ned by


on
atenation of loops|
orresponds to the dire
t-image map in twisted K-theory indu
ed

by the produ
t G�G! G.

III Two-dimensional topologi
al �eld theories

In string theory Riemannian manifolds X (with B-�elds) 
orrespond to 
onformal theories

with 
ertain properties. As a toy model of these stru
tures we 
an 
onsider two-dimensional

12



topologi
al �eld theories, whi
h are known to 
orrespond pre
isely to 
ommutative Frobe-

nius algebras. Re
ently it has emerged that string theory should allow more general spa
e-

times X whose metri
s have singularities along submanifolds Y of X known as D-branes:

the string des
ription is to supplement the 
losed strings of the usual theory by open strings

with end-points on the D-brane Y . It is believed that D-branes in X have \
harges" lying

in the twisted K-theory K




(X), where 
 is the B-�eld of X.

Jointly with G. Moore I have analysed the toy topologi
al version of this situation,

showing that the possible D-brane theories 
ompatible with a 
ommutative Frobenius

algebra A of \
losed strings" 
orrespond to non-
ommutative Frobenius algebra B related

to A in a spe
i�
 way. If A is semisimple these are indeed 
lassi�ed by elements of the

K-theory of the spe
trum of A. A less trivial model, whi
h illuminates the role of the

B-�eld, is obtained by 
onsidering gauged topologi
al �eld theories, making use of results

of Turaev.

Vladimir Turaev

Homotopy �eld theory in dimension 3 and group-
ategories

We apply the idea of a topologi
al quantum �eld theory (TQFT) to maps from man-

ifolds into topologi
al spa
es. This leads to a notion of a (d + 1)-dimensional homotopy

quantum �eld theory (HQFT) whi
h may be des
ribed as a TQFT for 
losed d-dimensional

manifolds and (d+1)-dimensional 
obordisms endowed with homotopy 
lasses of maps into

a given spa
e. For a group �, we introdu
e 
ohomologi
al HQFT's with target K(�; 1) de-

rived from 
ohomology 
lasses of � and its subgroups of �nite index. The main part of the

talk is 
on
erned with (1+1)-dimensional HQFT's. We 
lassify them in terms of so-
alled


rossed group-algebras. In parti
ular, the 
ohomologi
al (1+ 1)-dimensional HQFT's over

a �eld of 
hara
teristi
 0 are 
lassi�ed by simple 
rossed group-algebras. We also dis-


uss (2 + 1)-dimensional HQFT's and derive su
h HQFT's from so-
alled 
rossed braided


ategories.

Elmar Vogt

Tangential Lyusternik-Shnirelman 
ategory of foliations

(joint work with Wilhelm Singhof)

Call an open set U of a foliated manifoldM 
ategori
al if U 
an be homotoped insideM

via a homotopy whi
h moves points only inside their leaves to a map whi
h 
ontra
ts every

leaf of the foliation indu
ed on U to a point. The tangential 
ategory of the foliation

is the smallest 
ardinal of an open 
overing of M by 
ategori
al sets. This 
on
ept was

introdu
ed by Hellen Colman in her 1998 Santiago thesis and is an invariant of foliated

homotopy type. As with the usual 
ategory there is a 
up-length lower bound using foliated
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ohomology (whi
h is usually hard to 
ompute).

We have the following results.

A. The tangential 
ategory is at most equal to dim(foliation)+1.

B. Tangential 
ategory is upper semi-
ontinuous on the spa
e of foliations of a manifold.

(We use the C

1

-topology on plane �elds of C

2

-foliations.)

C. A 
up{length 
riterion using ordinary 
ohomology instead of foliated 
ohomology:

if there are x

1

; x

2

; : : : ; x

r

2 H

> 
odimF

(M ;A) with x

1

x

2

� � �x

r

6= 0, then the tangential


ategory of the foliation F is greater than r.

D. A 
hara
terization of C

2

-foliations of 
odimension 1 with tangential 
ategory � 2 on


losed n-manifolds, n � 3:

these are exa
tly the �bre bundles over S

1

with homotopy spheres as �bres.

In parti
ular this determines the tangential 
ategory of all foliations on 
losed 2- and

3-manifolds.

Edited by Mar
o Varis
o
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