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The conference was organized by Robion Kirby (Berkeley, USA), Wolfgang Liick
(Miinster, Germany), and Elmer Rees (Edinburgh, GB). It was attended by 45 mathe-
maticians from Europe and North America.

There were 20 talks, among which a special series of 3 lectures by Graeme Segal about
quantum field theory and geometry. Different topics covered by other lecturers included
(stable) homotopy theory, bordism, positively curved manifolds, foliations, low dimensional
manifolds and knot theory, group representations, algebraic K- and L-theory.

Between and after the talks there was plenty of time for discussions and research. This
opportunity has been widely used and appreciated by the participants, and together with
the pleasant atmosphere of the institute contributed to the success of the meeting.



Abstracts

NORBERT A’CAMPO

Ideal triangulations on knot complements, spines and monodromy

A tree I defines on the metric space, which is spanned by its vertices, a quadratic form.
To each vertex corresponds a reflection. The product of these reflections is the Coxeter
element Cr of I'. The eigenvalues lie on S'UR, and the Coxeter group is finite if )\—l-% <2
for each eigenvalue \. The Coxeter diffeomorphism Dr is defined for a planar tree I' as a
diffeomorphism of the surface ¥ which one obtains by plumbing annuli, such that we have
one annulus for each vertex and one annulus for each edge. Dr is the product of the right
Dehn twist along the core curves of the plumbing. We only consider trees I' such that ¥r
has one boundary component. In this case, the diffeomorphism Dr is the monodromy of
the slalom knot associated to the tree I'.

Theorem. Dr is pseudo-Asonov if I' has 4 or more terminal vertices, or if I contains
strictly the tree Eg, where the tree T is obtained by subdividing with a node each edge of T'.

We discuss how to read off the fibration and the monodromy of a fibred hyperbolic knot
from an ideal triangulation of its complement. The main ingredient uses a 1-cochain on
the Matveev spine of the complement.

We give combinatorial evidence for a positive answer to the following question:

Let #: S? — K — S' be the harmonic representative for the essential map from the
complement of the knot K to the circle, harmonic for the complete hyperbolic metric of
finite volume on S® — K. Is the map @ a fibration if the knot K is a fibred knot?

ARTHUR BARTELS
On the isomorphism conjecture in algebraic K-theory

(joint work with Tom Farrell, Lowell Jones, and Holger Reich)

For a torsionfree group I' and a regular ring R the Isomorphism Conjecture states that
the assembly map A: H;(BI'; KR) — K;(RI) is an isomorphism. Here KR denotes the
K-theory spectrum of R. It implies for example that Ky(RI') = Ky(R). For general rings
a different assembly map has to be considered.

Theorem. Let M be a compact Riemannian manifold with strictly negative sectional cur-
vature and T := m(M). Let R be a ring. Then for i <1 the assembly map

Ac: H (ET(C); KR) — K;(RT)

18 an isomorphism.



This can be used to show that in the same situation for regular rings A is also an
isomorphism. The proof of the theorem uses controlled topology. The map A can be
expressed as a “forget control” map. Then a transfer argument, the geodesic flow and a
foliated control theorem are used to regain control.

JIM BRYAN

Introduction to BPS-state counts and Gromov-Witten invariants

Gromov-Witten theory can be studied from the point of view of topology, analysis,
algebra, geometry, or physics. The interplay between these subjects has given the subject
a remarkable robustness. Recent advances in M-theory in physics has suggested that the
Gromov-Witten invariants should be equivalent to a simpler set of invariants which in
physics are obtained from BPS state counts but are mathematically unknown. In this talk,
we give an introduction to Gromov-Witten invariants with an eye toward describing how
the “BPS invariants” should be defined mathematically and how they should be related to
the Gromov-Witten invariants.

ANAND DESSAI

Elliptic genera and manifolds with positive curvature

Let M be a simply connected closed Riemannian Spin-manifold of positive sectional
curvature. By the Lichnerowicz formula the index of its Dirac operator vanishes. We show
that the index of certain twisted Dirac operators (e.g. the Rarita-Schwinger operator)
vanishes provided the dimension of M is > 8 and its symmetry rank is > 2. If one restricts
to metrics with a prescribed lower bound on the symmetry rank these results may be
used to exhibit simply connected manifolds (of arbitrary large dimension) with small Betti
numbers which admit a metric of positive Ricci curvature but no metric of positive sectional
curvature. The proof uses the rigidity theorem for elliptic genera, intersection properties
of totally geodesic submanifolds of positively curved manifolds and elementary properties
of codes.



[AN HAMBLETON
Topological equivalence of linear representations

(joint work with Erik Pedersen)

Let G be a finite group and V, V' finite dimensional real orthogonal representations
of G. Then V is said to be topologically equivalent to V' (denoted V' ~; V') if there exists a
homeomorphism h: V' — V' which is G-equivariant. If V', V" are topologically equivalent,
but not linearly isomorphic, then such a homeomorphism is called a non-linear similar-
ity. These notions were introduced and studied by de Rham, and developed extensively
by Cappell and Shaneson, Steinberger and West, Hsiang and Pardon, and Madsen and
Rothenberg in the 1980’s.

We say that V; and V5 are stably topologically similar (V} = V3) if there exists a G-
representation W such that Vi @ W ~;, V5 @ W. Let Rpop(G) = R(G)/Ri(G) denote the
quotient group of the real representation ring of G by the subgroup R;(G) = {[V1] — [V4] |
Vi =~ Vo). The following result gives the first complete calculation of Rr,,(G) for any
group which admits non-linear similarities.

Theorem. Let G = C(2") be a cyclic group of order 2", with r > 4. Then Rr,,(G) =
Do Bt (G/K) and Ry (G) = Z & RS (G) where

Top Top

é?;)(;e(G) = <O[1, Qo ...y Qp 2, 617 627 ) Br73>

subject to the relations 2°a, = 0 for 1 < s <r—2, and 2° H(ay+ ) =0 for2 < s <r—3,
together with 2(c + (1) = 0.

The generators for r > 4 are given by the elements

52r—s—2+1

HP—38—2
a; =t —t% and B, =15 —t

We remark that RIT°°(C(8)) = C'(4) is generated by t — #°.

Top

KATHRYN HESS

Algebraic models in homotopy theory

In the mid 1990’s N. Dupont and I developed a theory of NONCOMMUTATIVE ALGE-
BRAIC MODELS OF FIBER SQUARES, which we have since applied to modelling free loop
spaces and homotopy pullbacks.

1. The theoretical framework

We work in the category whose objects, which we call cochain algebras, are cochain com-
plexes over a field K endowed with a (cochain) homotopy-associative product and whose
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morphisms are quasi-algebra maps, i.e., (essentially) cochain maps inducing algebra ho-
momorphisms on cohomology. There is a special class of maps in this category, known
as twisted algebra extensions, analogous to the KS-extensions of rational homotopy theory,
that are used for modelling topological fibrations. If (A, d) and (B, d) are cochain algebras,
then a twisted algebra extension of (A, d) by (B,d), denoted (A, d) ® (B,d), is a cochain
algebra (C, D) such that C' = A ® B as graded R-modules and such that the inclusion
map (A,d) — (C,D) and the projection map (C,D) — (B,d) are both strict algebra
morphisms.

Theorem (A). Suppose there is a commuting diagram over a field K,

(4,d) © (C,e) +— (A,d) 2= (A, d)

,BIV alN ’YlN
C*q cxf

C*E+—C"B—— ("X

in which A is a free algebra, ¢ admits a cochain algebra section o, a and v are alge-
bra maps, and B may be only a quasi-algebra map. Then there exist a twisted algebra
extension (A,d) — (A,d) ® (C,e) (almost entirely explicitly defined) and a quasi-algebra
quasi-isomorphism (A, d) ® (C,e) = C*(E . X).

2. Applications

2.1. Free loop space. We have applied Theorem A to the construction of a model of
the free loop space ES' over any field K, where F is simply connected and of finite type.
The most delicate stage of the construction is the definition of a twisted algebra extension
that models the fibration ¢: E' — E x E.

Our input data for the construction consist of an Adams-Hilton model for E over Z,
together with a homotopy-coassociative and homotopy-cocommutative coproduct on this

A~ ~

model. We proved that there exists a twisted algebra extension Q(C,0) — Q(C,0) ®
(C,d) (almost entirely explicitly defined) and a quasi-algebra quasi-isomorphism Q(C, 9) ®
(C,d) 5 C*(ES"), where Q denotes the cobar construction and (C,d) the dual of such an
“enriched” Adams-Hilton model. R R

We have provided explicit formulas for the entire structure of Q(C,9) ® (C, d) when the
product on (C, 5) is strictly commutative and associative, e.g., when F is a r-connected
finite CW-complex of dimension at most pr and charK = p. For p > 2 we could then
construct a commutative cochain algebra over [, that models the free loop space. For
spaces that are also p-formal, such as spheres and projective spaces, we defined an even
simpler commutative model that applies for all primes p. We then used the simplified

model to compute the cohomology algebras of a number of free loop spaces explicitly.

2.2. Homotopy fiber products and homotopy fibers. Applying Theorem A and the
model of ¢ above, we have constructed a model for the homotopy pullback of continuous
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maps f: X — E and g: Y — E. If (C,9), (C,d), and (C",") are dual to enriched
Adams-Hilton models of E, X, and Y, respectively, then the homotopy pullback of f
and ¢ has a model of the form (Q(C’,d') @ Q(C",d)) ® (C, ).

We plan to employ this new model in the study of homotopy fibers of interesting
topological cofibrations, such as cell attachments. It may also be useful for determining
when maps of p-compact groups are monomorphisms.

GERD LAURES
The E,-structure of the K (1)-local spin-bordism

A classical result says that spin manifolds are determined up to bordism by their
KO characteristic and Stifel-Whitney numbers. This leads to an additive splitting of the
spin bordism M Spin which allows the computation of the bordism groups. The cartesian
product of manifolds gives spin bordism in addition a highly commutative and associative
(Es) ring structure. So far there is not much known about it since it is not compatible
with the mentioned splitting.

In the talk we concentrate on the part of spin bordism which can be investigated with
K O-theoretical tools. We develop an E, splitting of this localized spin bordism:

LyyMSpin = T, A \ TS".

=1

Here, T; is the E-cone over a generator ¢ of W,ILK(I)SO and T'S° is the free F . -spectrum
generated by the sphere. Together with a result of M. Hopkins this formula gives the
desired O(8)-orientation of the K (1)-local elliptic cohomology TMF'.

ERIC LEICHTNAM
On the cut and paste property of higher signatures of closed manifolds

(joint work with Wolfgang Liick)

We extend the notion of the symmetric signature o(M,r) € L"(R) for a compact
n-dimensional manifold M without boundary, a reference map r: M — BG and a homo-
morphism of rings with involutions f: ZG — R to the case with boundary 0M, where
(M,0M) — (M,0M) is the G-covering associated to 7. We need the assumption that
C(OM) ®7¢ R is R-chain homotopy equivalent to a R-chain complex D, with trivial m-th
differential for n = 2m resp. n = 2m + 1. We prove a gluing formula, homotopy invariance
and additivity for this new notion.

Let Z be a closed oriented manifold with reference map 7 — BG. Let F' C Z be
a cutting codimension one submanifold F C Z and let F — F be the associated G-
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covering. Denote by a,(F) the m-th Novikov-Shubin invariant and by b5 (F) the m-th
L?-Betti number. If for the discrete group G the Baum-Connes assembly map is rationally
injective, then we use o(M,r) to prove the additivity (or cut and paste property) of the
higher signatures of Z, if we have a,,(F) = oo™ in the case n = 2m and, in the case
n = 2m + 1, if we have a,,(F) = co* and by (F)=0.

This additivity result had been proved (by a different method) by Leichtnam-Lott-
Piazza when G is Gromov hyperbolic or virtually nilpotent. We give new examples, where
these conditions are not satisfied and additivity fails. Our work is greatly motivated by
and partially extends some of the work of Leichtnam-Lott-Piazza, Lott, and Weinberger.

RAN LEVI

Spaces of equivalences between classifying spaces
of finite groups completed at a prime p

(joint work with Carles Broto and Bob Oliver)

We study homotopy equivalences of p-completions of classifying spaces of finite groups.
To each finite group GG and each prime p, we associate a finite category L£7(G) with the
following properties. Two p-completed classifying spaces BGQ and BG' Q have the same ho-
motopy type if and only if the associated categories L5 (G) and L5(G') are equivalent. The
topological monoid Aut(BG))) of self equivalences of BG)) is determined by the self equiv-
alences of the associated category L£5(G). Both the question of whether BG) and BG')
are homotopy equivalent and the homotopy type of Aut(BGI/,\) can be approximated by
means of fusion preserving isomorphisms of the Sylow p subgroup of G. We explain these
approximations and use a recent theorem of Oliver to show that in fact at odd primes, they
are precise. This theorem also settles a conjecture of Martino and Priddy at odd primes.

IB M ADSEN

A topologist’s view of a conjecture of Mumford

Let I'g141 be the mapping class group of genus g surfaces with two boundary compo-
nents, I'y 11 = mo Diff (£} 141,0). Adding a genus one surface with two boundary compo-
nents to F'induces a map from I'y 141 to I'y11 141. On the classifying space level one obtains
maps from BT’y 11 to BI'gyq,141, and a limit space which we denote by BI'y,. A theorem
of Ulrike Tillmann asserts that after applying Quillen’s plus construction, BI'y, becomes
an infinite loop space BI'Y. The space BI',;;; classifies surface bundles £ — X. The
Thom-Pontrjagin construction gives a map X — Q° Th(—T"FE), and universally a map

(oo : BT'E — Q®CP.

The talk discussed evidence for the following
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Conjecture. The map o, s a homotopy equivalence.

In geometric terms the conjecture asserts that a map f : E"*? — M™ between man-
ifolds, with the extra property that TE"*2 is stable equivalent to f*TM™ & & for some
oriented 2-plane bundle £ over F, up to cobordism can be deformed into a submersion.

Rationally the conjecture is equivalent to the so-called Mumford conjecture that

H*(Brooa Q) = Q[I{la Ko,y -+ ]
After localization at an odd prime p,
QOOCPE?ZBO X X Bp_3 X Wp_g

where the B; are factors of 2°S>(CP:°). Theorems of Tillmann and the speaker assert
that o is an infinite loop map and that By x- - -Xx B,_3 is a factor of BI'L after p-completion.
This gives a host of new cohomology, all p"-torsion, in H*(BT «;Z). Moreover there is a
map 7 from Q*°CP?} into Sp/U such that noa,, cohomologically behaves like the standard
map

BT — BSp(Z) — Sp/o.

The talk represents joint work with Ulrike Tillmann.

BIrRGIT RICHTER

Taylor-approximations and cubical constructions of Gamma-modules

Topological André-Quillen homology is a generalization of usual André-Quillen homol-
ogy (AQ for short) to commutative ring spectra. One version of such a theory is Gamma
homology — H" — defined by A. Robinson and S. Whitehouse. T. Pirashvili and the speaker
identified Gamma homology of Eilenberg-MacLane spectra with stable homotopy of a func-
tor. This functor £(A, M) depending on a commutative k-algebra A (k a field) and an
A-module M sends a finite pointed set {0,1,... ,n} to M @ A®™.

Theorem. H. (A, M) = 18(L(A, M)).

In the context of Taylor-approximations of functors from the category of finite pointed
sets I' to k-modules I proved these groups to be isomorphic to the homology of the lin-
earization of L(A, M). This approach leads to an Atiyah-Hirzebruch spectral sequence
E?, = H} (k[z],k) ® AQ,(A, k) = H,,, (A, k) with A augmented over k. Moreover H" of
the “basepoint” k[z] is shown to be isomorphic to Hk,HZ. The methods in this subject
were sketched by calculating H' (Fy[z], Fy) as a graded module—which is well-known, in

order to indicate how these methods may be helpful in other cases.
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JOHN ROGNES

Algebraic K-theory of finitely presented ring spectra

The talk introduced the notion of a G-Galois extension A — B of commutative S-
algebras, or E, ring spectra, and presented the Galois descent problem for algebraic K-
theory in this context. With E,, the Lubin-Tate spectrum with

B = WFpn [t -« s tp]][u, u™"]
and E, a maximal connected pro-Galois extension of E,,, we optimistically conjecture that
LK(nJrl)K(Fn) = En-H .

For L, the Adams summand of p-complete topological K-theory and ¢, its connective cover,
C. Ausoni and the speaker have computed the mod p and v; homotopy of K(¢,) using
topological cyclic homology, the answer being a free P(vy)-module on 4p + 4 generators.
This leads to the conjectural formula

p?—1 oo

dp+4=>"> dimy, H*(Gal(L,/L,);F, (i)

i=1 n=0

with L, = E,. The talk indicated how algebraic K-theory of topological K-theory is a
form of elliptic cohomology. More generally we presented the available evidence for the
following:

Chromatic red-shift problem. Let E be an S-algebra of pure fp-type n. Does TC(F; p)
have pure fp-type n +1 ¢

DANIEL RUBERMAN

Moduli spaces of metrics of positive scalar curvature on 4-manifolds

Suppose that a manifold X admits a metric of positive scalar curvature. Then one
can ask for topological properties of M™ (X)), the space of all such metrics. Alternatively,
one can consider topological properties of the moduli space of positive scalar metrics,
MT(X)/Diff(X).

The simplest question about these spaces is whether they are connected. Results of
Hitchin, Gromov—Lawson, and more recently Gilkey—Botvinnik, Stolz, and others show
that these spaces can indeed be disconnected, when the dimension of X is greater than or
equal to 5. We extend these results to dimension 4 in the following theorems.

Theorem (A). There are simply connected smooth 4—manifolds X for which M*(X) is
disconnected.



Theorem (B). There are (non-orientable) smooth 4—manifolds X for which
MT(X)/Diff(X) is disconnected.

The metrics in Theorem A are of the form gy and f*gy, where f is a certain diffeo-
morphism, which is homotopic to the identity. It follows from the method of proof (which
uses the Seiberg-Witten equations) that f is not isotopic to the identity map of X. The
components of M™/Diff in Theorem B are detected by n-invariants associated to Pin®
structures, as in the work of Gilkey-Botvinnik.

THOMAS SCHICK

Atiyah’s conjecture about the integrality of L2-Betti numbers

The Atiyah conjecture for a torsion-free discrete group 7 states that the L2-Betti num-
bers of a finite CW-complex with fundamental group 7 are integers.

The L2-Betti numbers are defined in terms of harmonic L?-cycles (in the cellular chain-
complex tensored over Zm with the Hilbert space [>7). There exists a real valued normalized
dimension function for such Hilbert spaces with unitary m-action (going back to Murray
and von Neumann), and the L2-Betti numbers are these m-dimensions of the spaces of
harmonic L2-cycles.

The Atiyah conjecture for a torsion-free group 7 implies the Kaplanski conjecture that
there are no non-trivial zero divisor in the ring Zm.

In the talk, certain classes of groups were presented for which the Atiyah conjecture
is true. Among them are torsion-free elementary amenable groups, residually torsion-free
elementary amenable groups, and poly-free groups (proved by Linnell, Schick, Dicks-Schick,
respectively).

The last part of the talk dealt with the question how to handle finite extensions of
groups for which the Atiyah conjecture is true. As an example, the following result of
Linnell-Schick was presented:

Theorem. Assume I' has a finite classifying space, H*(f"’,Z/p) — H*(T',Z/p) is an iso-
morphism for all primes p, and T'/~,(T') is torsion-free for infinitely many n € N.

Assume 1 - T = 1 — F — 1 is an exact sequence of groups, 7 is torsion-free and F
is finite. If the Atiyah conjecture is true for I', then it is also true for w.

Here I? is the pro-p-completion of T' (i.e. the inverse limit of all the quotients of T’
which are finite p-groups), H*(f‘i”, Z/p) its continuous cohomology (i.e. the direct limit of
the cohomology of the quotients defining I'?), and ~, (') is the n-th lower central series
subgroup.

As an example, it is proved that the pure braid groups satisfy all the conditions of the
theorem. It follows that the full braid groups fulfill the Atiyah conjecture.

Very similar methods apply to the Baum-Connes conjecture, to give e.g. a proof of the
Baum-Connes conjecture (with coefficients) for the full braid group.
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Moreover, the methods of the proof of the theorem imply that 7 /~,(T") is torsion-free
for infinitely many n € N. This implies in particular that all pure braid groups have many
non-trivial torsion-free quotients; and disproves a conjecture of Lin which stated that no
such quotients exist.

STEFAN SCHWEDE

Uniqueness results for stable homotopy theory

We study the question of whether or not the stable homotopy category admits “ex-
otic” models. The precise formulation uses the framework of Quillen’s “closed model
categories”; so we ask whether there exists a model category whose homotopy category is
equivalent—as a triangulated category—to the stable homotopy category, but which is not
(Quillen-)equivalent to the standard model for spectra.

A Quillen equivalence of model categories implies an equivalence of homotopy cate-
gories, but is in general a much stronger condition. Loosely speaking, a Quillen equivalence
preserves all “higher order” homotopy information.

An important motivation for our study comes from work of J. Franke on chromatic
localizations of the stable homotopy category. For a prime p and a chromatic level n such
that n? +n < 2p—2, he constructs an algebraic model for the homotopy category of E(n)-
local spectra. The objects in this model are certain complexes of F(n).F(n)-comodules,
and the category is not Quillen-equivalent to F/(n)-local spectra.

On the other hand, we expect that without localizing there is only one model for the
stable homotopy category up to Quillen-equivalence. The problem can be studied one
prime at a time, and we show that the model is indeed unique at the primes 2 and 3. We
expect that the uniqueness holds for all primes, but a proof requires refined techniques.

GRAEME SEGAL

Quantum field theory and geometry

I Deligne or Cheeger-Simons cohomology

An electromagnetic field on a space-time manifold X is a complex hermitian line bundle
on X equipped with a unitary connection. The field is nearly determined by its “field
strength”, the curvature 2-form of the connection, but it carries additional holonomy in-
formation. Two other structures of the same type have been prominent in string theory
recently.

(i) String theory is a theory of gravity, but reduces in its classical limit to a theory of
manifolds equipped not only with a Riemannian metric but also with a “B-field”.
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The latter is roughly described by a closed 3-form with integral periods, but carries
additional holonomy information.

(ii) Supergravity is a theory of 11-dimensional manifolds with Riemannian metric and an
additional closed 4-form with integral periods.

In fact, on a smooth manifold X one can define (for p > 0) a category C,(X) of “p-
objects”, and a category C;°"™" (X) of “p-objects with connection”. The set of isomorphism-
classes of objects of C,(X) is H?(X;Z), while that of C;°™(X) is a group Hp(X) which
fits into two exact sequences

0—— 0771 (X)/ 75 (X) — HB(X) — HP(X; Z) —0

0—— H"Y(X;T) —— HH(X) —— ZL(X) ——0

where Z%(X) denotes the closed p-forms with integral periods.

I described the main features of these categories, especially the multiplicative structure
and Poincaré duality, the existence of a direct-image functor, and the lifting of the p-th
Chern class of a vector bundle with unitary connection to an object of C5)™" (X).

IT Twisted K-theory and the Verlinde algebra

For any space X an element of H?(X;Z) can be represented by a bundle P on X whose
fibres P, are projective spaces P¥. For such P there is a bundle Fred(P) whose fibre
at © € X is the space of Fredholm operators in the fibre P,. The twisted K-group Kp(X)
is defined as the group of vertical homotopy classes of sections of Fred(P). I described some
properties of these groups, including the Atiyah-Hirzebruch spectral sequence relating them
to H*(X;Z). In fact Kp(X) ® Q = ker(c)/im(c), where ¢: H(X;Q) — H3(X;Q) is
multiplication by the class ¢ of P.

An equivariant version of this theory can be defined when a compact Lie group G acts
on X: the twisting is then by elements of H}(X;Z).

The central extensions by T of the loop-group LG correspond to elements ¢ € H2(G; Z),
where GG acts on itself by conjugation. Recently D. Freed, M. Hopkins, and C. Teleman have
proved a remarkable theorem identifying the Verlinde algebra of positive energy projective
representations of LG with class ¢ with the twisted K-group K¢, p(G), where the twisting P
is simply related to ¢. The multiplication in the Verlinde algebra—essentially defined by
concatenation of loops—corresponds to the direct-image map in twisted K-theory induced
by the product G x G — G.

IIT Two-dimensional topological field theories

In string theory Riemannian manifolds X (with B-fields) correspond to conformal theories
with certain properties. As a toy model of these structures we can consider two-dimensional
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topological field theories, which are known to correspond precisely to commutative Frobe-
nius algebras. Recently it has emerged that string theory should allow more general space-
times X whose metrics have singularities along submanifolds Y of X known as D-branes:
the string description is to supplement the closed strings of the usual theory by open strings
with end-points on the D-brane Y. It is believed that D-branes in X have “charges” lying
in the twisted K-theory K .(X), where ¢ is the B-field of X.

Jointly with G. Moore I have analysed the toy topological version of this situation,
showing that the possible D-brane theories compatible with a commutative Frobenius
algebra A of “closed strings” correspond to non-commutative Frobenius algebra B related
to A in a specific way. If A is semisimple these are indeed classified by elements of the
K-theory of the spectrum of A. A less trivial model, which illuminates the role of the
B-field, is obtained by considering gauged topological field theories, making use of results
of Turaev.

VLADIMIR TURAEV

Homotopy field theory in dimension 3 and group-categories

We apply the idea of a topological quantum field theory (TQFT) to maps from man-
ifolds into topological spaces. This leads to a notion of a (d + 1)-dimensional homotopy
quantum field theory (HQFT) which may be described as a TQFT for closed d-dimensional
manifolds and (d+1)-dimensional cobordisms endowed with homotopy classes of maps into
a given space. For a group 7, we introduce cohomological HQFT’s with target K (m, 1) de-
rived from cohomology classes of 7w and its subgroups of finite index. The main part of the
talk is concerned with (14 1)-dimensional HQFT’s. We classify them in terms of so-called
crossed group-algebras. In particular, the cohomological (1 + 1)-dimensional HQFT’s over
a field of characteristic 0 are classified by simple crossed group-algebras. We also dis-
cuss (2 + 1)-dimensional HQFT’s and derive such HQFT’s from so-called crossed braided
categories.

ELMAR VOGT
Tangential Lyusternik-Shnirelman category of foliations

(joint work with Wilhelm Singhof)

Call an open set U of a foliated manifold M categorical if U can be homotoped inside M
via a homotopy which moves points only inside their leaves to a map which contracts every
leaf of the foliation induced on U to a point. The tangential category of the foliation
is the smallest cardinal of an open covering of M by categorical sets. This concept was
introduced by Hellen Colman in her 1998 Santiago thesis and is an invariant of foliated
homotopy type. As with the usual category there is a cup-length lower bound using foliated
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cohomology (which is usually hard to compute).
We have the following results.

A. The tangential category is at most equal to dim(foliation)+1.

B. Tangential category is upper semi-continuous on the space of foliations of a manifold.
(We use the C'-topology on plane fields of C?-foliations.)

C. A cup-length criterion using ordinary cohomology instead of foliated cohomology:

if there are z1,29,... ,2, € H> cOdimf(Z\/[; A) with z129-- -z, # 0, then the tangential
category of the foliation F is greater than r.

D. A characterization of C%-foliations of codimension 1 with tangential category < 2 on
closed n-manifolds, n > 3:

these are exactly the fibre bundles over S with homotopy spheres as fibres.

In particular this determines the tangential category of all foliations on closed 2- and
3-manifolds.

Edited by Marco Varisco
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