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The present conference was organized by V. Bangert (Freiburg), Yu. D. Burago (St. Pe-

tersburg) and U. Pinkall (Berlin). The 47 participants came from 9 countries, about half

of them from Germany and larger groups from Switzerland, the U.S.A., Russia and Bel-

gium. The o�cial program consisted of 20 lectures among them two mini-series (of 2 talks

each) given by S. Buyalo (St. Petersburg) on \Spaces of curvature bounded above" and by S.

Tabachnikov (University Park) on \Billiards".

The lectures covered a wide range of new developments in geometry with emphasis on the

areas \submanifolds, Dirac operators and integrable systems" and \Riemannian geometry and

its generalizations". Thursday evening was devoted to geometric videos and to a computer

demonstration by K. Polthier.

Every participant had prepared a poster on his/her recent research. These were posted

in the lecture building and stimulated scienti�c exchange among the participants that ranged

from private discussions to informally organized additional talks.
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Abstracts

A Modern Introduction to Finsler geometry

Juan Carlos Alvarez Paiva

A Finsler manifold is a manifold together with the choice of a norm on each tangent space.

The length of a curve is de�ned as the integral of the norms of its velocity vectors and the

distance between two points is de�ned as the in�mum of the lengths of all curves joining

them. In this talk I stress the interactions between metric geometry, calculus of variations,

and convex geometry as the way to approach Finsler geometry.

After de�ning the volume of an n-dimensional Finsler manifold as the symplectic volume

of its unit codisc bundle divided by the volume of the n-dimensional euclidean unit ball, I

discuss the recent results of Burago, Alvarez and Fernandes on the minimality of k-planes in

�nite-dimensional normed spaces and Finsler metrics on R

n

for which geodesics are straight

lines (Hilbert's fourth problem).

We shall also study the geometry of unit spheres on normed spaces and sketch the recent

proof by Alvarez of the following conjecture of J.J. Sch�a�er.

The girth of a normed space - the in�mum of the lengths of all curves on the unit sphere

joining a pair of antipodes - equals the girth of its dual.

Properties of the stable norm in codimension one

Franz Auer (joint work with Victor Bangert)

Let (M; g) be an n-dimensional compact oriented Riemannian manifold. The stable norm

khk of h 2 H

n�1

(M;R) is de�ned as the in�mum of the volumes vol

g

(c) = �jr

i

jvol

g

(�

i

) of

all Lipschitz cycles c = �r

i

�

i

representing h. It can be equivalently characterized as follows:

khk is the in�mum of the L

1

norm j!j =

R

j!(x)j

g

d vol

g

over all closed 1-forms ! representing

the Poincar�e dual �

h

2 H

1

(M;R) of h; or: khk is the minimum of the masses M

g

(T ) of all

closed (n�1)-currents T representing h.

Properties of the stable norm are described by properties of its unit norm ball B = fh 2

H

n�1

(M;R) j khk = 1g.

In the following theorem h � h

0

2 H

n�2

(M;R) denotes the intersection class of h and

h

0

2 H

n�1

(M;R).

Theorem 1. If @B contains the segment hh

0

then h � h

0

= 0.

To formulate the next theorem we need to introduce the Abelian covering p :

�

M ! M ,

where

�

M is the quotient

~

M= kerH of the universal covering

~

M by the kernel of the natural

map H : �

1

(M) ! H

1

(M;R). Note that the image H

1

(M;Z)

R

:= H(�

1

(M)) � H

1

(M;R)

acts on

�

M as the group of decktransformations and is isomorphic to Z

b

1

(M)

, where b

1

(M) is

the �rst Betti number of M .

Theorem 2. If H

1

(

�

M;R) = 0 then @B is strictly convex.

Theorem 3. On every compact manifold of dimension n � 3 there exists a metric g such that

the unit norm ball B = B

g

of the associated stable norm on H

n�1

(M;R) is strictly convex.

On the other hand, there are examples of Riemannian manifolds where B is a polytope.

We say that the direction of h 2 H

n�1

(M;R) is irrational if h is not a multiple of an integer

class.
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Theorem 4. Assume b := b

1

(M) � 2. Then every face F of B is a polytope with a most

2(b � 1) vertices. If e is the number of vertices of F with irrational direction then e � b� 1

and F has at most 2(b� 1)� e vertices.

Normal biquotients with completely integrable geodesic 
ows

Yaroslav V. Bazaikin

Let M be a Riemannian manifold of dimension n. The geodesic 
ow on M is integrable,

if there exist �rst integrals f

1

; : : : ; f

n

: T

�

M ! R which are independent almost everywhere

and in involution (i.e. all Poisson brackets ff

i

; f

j

g vanish).

Thimm proposed a method which allows one to construct �rst integrals using isometries of

M , and integrability of the geodesic 
ow under Thimm's method takes place if the isometry

group of M is large. He used this method for real and complex Grassmanian manifolds,

which are homogeneous spaces. The next natural step was done by Paternain and Spatzier:

they used Thimm's method for the Gromoll-Meyer sphere and Eschenburg spaces, which are

biquotients of Lie group. The biquotient construction is the following. Let G be a Lie group

with some (usually homogeneous) metric and U � G � G be a Lie subgroup which acts on

G : (g

1

; g

2

) 2 U : g 7! g

1

gg

�1

2

. If this action is free and isometric, the factor-space of G by U

is a Riemannian manifold G=U and is called biquotient of G.

Biquotients were introduced by Gromoll and Meyer for describing the �rst nonnegatively

curved metric on one exotic Milnor sphere. Then biquotients were used for constructions of

positively curved metrics (�rst such examples were found by Eschenburg).

In order to study properties of known examples of positively curved metrics, the author

used Thimm's method for normal biquotients of general form and obtained the following

estimate for the numbers of independent �rst integrals:

Theorem. Let M = H nG=K be a biquotient of a compact Lie group G with biinvariant

metric. Let v = (h + k)

?

� g, where g; h; k are the Lie algebras of the groups G;H;K.

Consider some chains of Lie algebras

h = h

0

� : : : � h

l

= g; k = k

0

� : : : � k

m

= g;

and r

1

= rank(fh

i

g

i

; v); r

2

= rank(fk

i

g

i

; v); r

3

= rank(G). Then the geodesic 
ow on M has

at least r

1

+ r

2

� r

3

independent integrals in involution.

The de�nition of rank of a chain is the following. If h � g is a short 2-chain and v � g, then

let rank((g; h); v) = max

X2v

dimpr

h

?

(Z(Ker(ad(X)))). For an arbitrary chain fh

i

g

i

; v � h

l

let rank(fh

i

g

i

; v) = �

l�1

i=0

rank((h

i+1

; h

i

); pr

i+1

(v)), where pr

i

: h

l

! h

i

is the orthogonal

projection. Using this theorem the author established the following fact:

Proposition. All known manifolds with nonhomogeneous positively curved metrics have ones

with completely integrable geodesic 
ows.

Harmonic maps in unfashionable geometries

Francis E. Burstall

Many special surfaces in classical di�erential geometry are characterised by the property

that an appropriate Gauss map is harmonic and then the integrable features of their geometry

3



(spectral deformation, B�acklund transformation, algebro-geometric solutions and so on) can

be inferred from those of harmonic maps.

Thus a special case of the Ruh-Vilms theorem asserts that a surface has constant mean

curvature if and only if its Gauss map is a harmonic map into the 2-sphere and, similarly, a

surface has constant negative Gauss curvature if and only if its Gauss map is Lorentz harmonic

with respect to the metric induced on the surface by the second fundamental form.

It is interesting that harmonic maps into pseudo-Riemannian symmetric spaces also arise

in this context: a surface in S

n

is Willmore if and only if its conformal Gauss map is harmonic.

This is a map into the inde�nite Grassmannian that parametrises 2-spheres in S

n

and geo-

metrically represents a congruence of 2-spheres having partial second order contact with the

Willmore surface. In this talk I shall report on work in progress with Udo Hertrich-Jeromin

and show that similar constructions are available in Lie sphere and projective di�erential

geometry. Moreover, both geometries can be treated at the same time in a practical manifes-

tation of the celebrated line-sphere correspondence of Lie. In both cases, surfaces in 3-space

are studied via their lifts into a contact manifold which can be viewed as the space of lines in a

quadric. From this lift we construct a \Gauss map" taking values in a certain Grassmannian

which can be viewed as a congruence having partial third order contact with the underly-

ing surface. In Lie sphere geometry our Gauss map is the Lie congruence of cyclides while

in projective di�erential geometry it is the Lie congruence of quadrics. The Gauss map we

construct is conformal in an appropriate sense and its energy integral de�nes a functional on

the underlying surface whose extremals are the minimal surfaces of Lie sphere and projective

geometry. I shall give a simple, conceptual and uniform argument to show that a surface is

minimal in Lie sphere or projective geometry precisely when its Gauss map is harmonic.

Spaces of Curvature Bounded Above, Parts 1 and 2

Sergei V. Buyalo

A short survey von Curvature Bounded Above (CBA) spaces. Local properties, construc-

tions and results are discussed.

Contents

1. Motivation

2. De�ning CBA

3. Propagation from local to global

4. Recognizing CBA-spaces

5. Di�erent types of convergence

6. In�nitesimal properties of CBA-spaces

7. Gluing CBA-spaces

8. 2-dimensional polyhedra

For details see www.pdmi.ras.ru/preprint/2000/index.html

Preprint 15
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Circle Patterns and Integrable Systems

Tim Hoffmann

Circle patterns and packings have been widely studied in the past, as they can be viewed

as discretizations of conformal maps. This basically started with the Theorem of Koebe ('34)

which says that any triangulation of the Riemann sphere may be realized as the tangency

graph of a circle packing and the resulting circle con�guration is unique (up to inversions and

automorphisms). Later Thurston conjectured ('85) that one can approximate the Riemann

map with this. This was proven '87 by Rodin and Sullivan. But until recently there was

no relation to integrable systems. This relation �rst appeared when Bobenko and Pinkall

noticed that Schramm's SG-circle patterns can be viewed as special case of their integrable

discrete conformal maps. With this on hand Bobenko and Agafonov were able to construct

a Schramm pattern analogue of z

�

using methods from integrable theory ('00). The only

explicitly known examples of circle patterns with hexagonal combinatorics have been the

Dayle spirals. This could be extended by Bobenko and H. ('00) to conformally symmetric

packings. They are characterized by the condition that every elementary 
ower of 7 circles

possesses a M�obius involution �xing the centercircle and sending the i-th neighbor to the

(i + 3)rd. This gives a 3-parameter family of packings that can be described explicitly and

that contains the Dayle spirals as a special case. Another example of an integrable circle

pattern was found by Bobenko, H. and Suris in '00. It is a hexagonal pattern where in each

point three circles intersect and the 6 intersection points on each circle have multi-ratio = �1

�

i.e.

z

1

�z

2

z

2

�z

3

z

3

�z

4

z

4

�z

5

z

5

�z

6

z

6

�z

1

= �1

�

: Again using integrable methods one can construct a pattern

analogue of the function z

�

.

Real surfaces in complex surfaces

Wilhelm Klingenberg

We study real surfaces �

2

# (M

4

; J) in almost-complex four-manifolds, and in particular,

the following phenomena:

a) complex points: � 2 � : T

�

� = JT

�

� of embedded surfaces.

b) double points of immersed totally real surfaces.

We give a smoothing construction that transforms a) to b). Secondly, we study the moduli

space of J -holomorphic curves of disc-type in M

4

M

�

M

4

;�

2

�

=

�

f : (D; @D)!

�

M

4

;�

2

�

: @

J

f = 0

	

bounded by �

2

. We prove for � = elliptic complex point of �:

Theorem �) @M� complex points of �.

�) �

2

2 C

k;�

- smooth )M is a C

k

2

;

�

2

smooth 1-manifold.

The proof involves an asymptotic analysis of a Riemann - Hilbert problem via a blow-up

of the CR-singularity of � that transforms a) to b). The regularity result is optimal.
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Total curvature of complete submanifolds of E

n

Wolfgang K

�

uhnel (joint work with Franki Dillen)

The classical Cohn-Vossen inequality states that for any Riemannian 2-manifold the di�er-

ence between 2��(M) and the total curvature

R

M

K dA is always nonnegative. For complete

open surfaces in E

3

this curvature defect can be interpreted in terms of the length of the

curve \at in�nity". The goal of this paper is to investigate higher dimensional analogues

for open submanifolds of euclidean space with cone-like ends. This is based on the extrinsic

Gauss-Bonnet formula for compact submanifolds with boundary and its extension \to in�n-

ity". It turns out that the curvature defect can be positive, zero, or negative, depending

on the shapespac of the ends \at in�nity". We give an explicit example of a 4-dimensional

hypersurface in E

5

where the curvature defect is negative, so that the direct analogue of the

Cohn-Vossen inequality does not hold. Furthermore we study the variational problem for

the total curvature of hypersurfaces. It turns out that for open hypersurfaces with cone-like

ends the total curvature is stationary if and only if each end has vanishing Gauss-Kronecker

curvature in the sphere \at in�nity". For this case of stationary total curvature we prove a

result on the quantization of the total curvature.

Can one tie a knot with 1 foot of 1 inch (or 12 cm of 1 cm) rope?

Robert Kusner

The geometric complexity of a knot might be measured by the shortest length of rope

with given diameter needed to tie the knot; a combinatorial measure of knot complexity is

the minimum number of crossings in a planar representation of the knot. Biologists studying

knotted DNA are now interested in ropelength, while mathematicians have used the minimum

crossing number for more than a century to help classify knots. Both of these knot invariants

are simple to de�ne, yet di�cult to compute. This talk explores the relationship between

them, using some simple notions from the theory of minimal surfaces. Two new geometric

ideas - the overcrossing number of, and the cone angle subtended by, a knot or link - are

introduced; these bring us very close to answering the title question!

Bilipschitz embeddings of metric spaces into space forms

Urs Lang (joint work with Conrad Plaut)

The question of which metric spaces admit a bilipschitz embedding into some (�nite-

dimensional) euclidean space has received a lot of attention in recent work. The results

obtained so far indicate that there is no simple answer to this question. An obvious fact is

that a metric space X which is bilipschitz embeddable into a euclidean space is necessarily

doubling, i.e., there is a constant L such that for all x 2 X and r > 0, the closed ball B(x; 2r)

can be covered by L closed balls of radius r. On the other hand, the Heisenberg group with its

Carnot-Carath�eodory metric is an example of a doubling metric space that is not bilipschitz

embeddable in any euclidean space. We develop some basic geometric tools for studying

this problem, such as decomposition and gluing and embedding via distance functions. As it

comes to global issues we admit also real hyperbolic spaces as targets. The theorem stated
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below subsumes some of the obtained results. A geodesic bicombing of a geodesic metric space

(X; d) is an assignment of a (minimizing) geodesic c

xz

: [0; 1] ! X from x to z to every pair

(x; z) 2 X�X. We call a geodesic bicombing fc

xz

g weakly convex if there is a constant 
 � 1

such that

d(c

xz

(t); c

xz

0

(t)) � 
td(z; z

0

)

for all x; z; z

0

2 X and t 2 [0; 1].

Theorem. Let (X; d) be a metric space with a weakly convex geodesic bicombing fc

xz

g.

Suppose that for all x; y 2 X and t 2 (0; 1) there exists a z 2 X with y = c

xz

(t). Then the

following holds: X admits a bilipschitz embedding into some euclidean space if and only if X

is doubling. X admits a bilipschitz embedding into some real hyperbolic space if and only if

X is Gromov hyperbolic and doubling up to some scale. Moreover, if X is complete, then in

either case the image of such an embedding is a lipschitz retract in the target space.

The proof of the \hyperbolic" part of this result uses a quasi-isometric embedding theorem

for Gromov hyperbolic spaces proved recently by Bonk and Schramm. We discuss some

applications to isoperimetric �lling inequalities for cycles in all dimensions. The new theory

of currents in metric spaces due to Ambrosio and Kirchheim provides a suitable framework to

formulate isoperimetric inequalities in metric spaces. Our embedding results can be used to

extend Gromov's construction of isoperimetric �llings for cycles in Hadamard manifolds to a

class of weakly convex metric spaces, as well as to prove in a simple way (higher-dimensional)

linear isoperimetric inequalities for certain Gromov hyperbolic spaces.

Quaternionic Pl�ucker Formula and Dirac Eigenvalue Estimates

Franz Pedit (joint work with D. Ferus, K. Leschke, U. Pinkall)

Let L be a quaternionic holomorphic line bundle of degree d over a compact Riemann

surface M of genus g, and let H � H

0

(L) be an n+ 1 dimensional linear system. Then the

Willmore energy of L satis�es the quaternionic Pl�ucker formula:

W

4�

� (n+ 1)(n(1� g)� d) + ord H;

where ord H is the total singularity order of the linear system computed similarly to the

complex holomorphic case. We give three applications of this formula:

1. Classical Pl�ucker formula for holomorphic curves in C P

n

2. Lower bounds for an eigenvalue � of multiplicity m of the Dirac operator over a surface

of genus g:

area

M

�

2

�

8

<

:

4�m

2

g = 0

�

g

(m

2

� g

2

) g � 1

3. Area estimates for constant mean curvature tori in 3-space in terms of their spectral

genus g:

area �

8

<

:

�

4

(g + 2)

2

g even

�

4

((g + 2)

2

� 1) g odd
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Isospectral Metrics on Spheres

Dorothee Sch

�

uth

The Laplace operator acting on functions on a closed Riemannian manifold has a discrete

spectrum of eigenvalues. Two manifolds are isospectral if they have the same spectrum. The

\classical" way of constructing such manifolds is by the so-called Sunada method. With

this method, families of isospectral manifolds arose as quotients of a common Riemannian

covering by di�erent discrete subgroups of isometries. In particular, those manifolds were

always locally isometric to each other and (at least in the case of closed manifolds) never

simply connected.

Various examples of locally nonisometric and even simply connected isospectral manifolds

were discovered in the 1990's. All of these manifolds arose as principal torus bundles endowed

with certain invariant Riemannian metrics. The dimension of the torus must be at least two

in order to allow nontrivial examples. Since a sphere is never realizable as a principal T

k�2

-

bundle, it seemed at �rst hopeless to obtain in this way any examples of isospectral metrics

on spheres (a longstanding dream of the isospectral community). Recently, however, Carolyn

Gordon developed a generalized version in which the torus actions used for the construction

are no longer assumed to be free, but just e�ective. Using her new method, she obtained

continuous families of isospectral metrics on the spheres S

n�8

of dimension at least eight.

We reformulate Gordon's method in a slightly streamlined way and apply it to construct

pairs of isospectral metrics on S

6

and even on S

5

. We also obtain continuous isospectral

families of metrics on S

7

. Moreover, we show that in each of these examples the metrics can

be chosen equal to the standard metric outside subsets of arbitrarily small volume.

Connections with Proper Symplectic Holonomy Groups

Lorenz Schwachh

�

ofer

Let (M;!) be a symplectic manifold. We call a torsion free connection r onM symplectic

if r! � 0. This is equivalent to saying that the holonomy of r is contained in the symplectic

group Sp(V ). We say that such a connection has proper symplectic holonomy if the holonomy

of r is irreducible and properly contained in Sp(V ).

The classi�cation of possible irreducible holonomy groups of torsion free connections has

been completed some time ago. In the process of this classi�cation, some holonomies were

discovered which were not contained in the classical list of Berger. As it turns out, the

missing entries are precisely the proper symplectic holonomy groups and there is a one-to-

one correspondence between proper symplectic holonomy groups and quaternionic symmetric

spaces.

Recently, the following has been achieved.

Theorem 1 For each connection with proper symplectic holonomy, the dimension of the

local symmetry group is at least the rank of the holonomy group (and thus, in particular,

positive). Moreover, equality holds i� the local symmetry group is abelian.

Since there is always a large amount of symmetries, it is a reasonable question to consider

homogeneous manifolds with proper symplectic holonomy. Here, our results are the following.

Theorem 2 A manifold with a connection with proper symplectic holonomy is locally

homogeneous i� its scalar curvature is constant. This happens i� the �rst and second order

derivatives of the scalar curvature vanish at a single point of M .
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Theorem 3 For each proper symplectic holonomy group H, there are - up to coverings -

�nitely many homogeneous spaces M = G=K with a G-invariant torsion free connection with

holonomy H.

1. The possible pairs (G;K) can be given explicitly in each case.

2. Only one of these homogeneous spaces is reductive. Its holonomy is the 4-dimensional

representation of H

�

=

SL(2; F) (F = R or C ).

The Second Hull of a Knotted Curve

John M. Sullivan (joint work with J. Cantarella, R. Kusner)

The convex hull of a set K in space consists of points \enclosed" (in a certain sense) by K.

When K is a closed curve, we de�ne its higher hulls, consisting of points which are \multiply

enclosed" by the curve. Our main theorem shows that if a curve is knotted then it has a

nonempty second hull.

Billiards, Parts 1 and 2.

Serge Tabachnikov

This is a survey of selected topics on mathematical billiards. The topics are:

1). de�nitions and principal constructions: conventional and nonconventional billiards (Finsler

billiards, dual billiards, projective billiards)

2). periodic orbits in multi-dimensional billiards (recent result by M. Farber and myself)

3). integrable billiards, around Birkho�'s conjecture (Bialy's theorem; generalized Birkho�'s

conjecture for outer billiards)

4). geometry of projective billiards and exact transverse line �elds (including complete

integrability of geodesically equivalent metrics).

Dirac operators and conformal invariants of tori in 3-space

Iskander A. Taimanov

We show how to assign to any immersed torus in R

3

or S

3

a Riemann surface such that

the immersion is described by functions de�ned on this surface. We call this surface the

spectrum or the spectral curve of the torus. The spectrum contains important information

about conformally invariant properties of the torus and, in particular, relates to the Willmore

functional. We propose a simple proof that for isothermic tori in R

3

(this class includes

constant mean curvature tori and tori of revolution) the spectrum is invariant with respect

to conformal transformations of R

3

. We show that the spectral curves of minimal tori in
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S

3

introduced by Hitchin and of constant mean curvature tori in R

3

introduced by Pinkall

and Sterling are particular cases of this general spectrum. The construction is based on the

Weierstrass representation of closed surfaces in R

3

and the construction of the Floquet-Bloch

varieties of periodic di�erential operators.

A-integrability of geodesic 
ows

Peter J. Topalov

We consider a class of (pseudo) Riemannian metrics, called A-integrable metrics, that

admit integrals in involution of a special form. One of the main properties of these metrics

is the existence of hierarchies. Any A-integrable metric de�nes a big family (hierarchy) of A-

integrable metrics and any A-integrable metric from a given hierarchy determines uniquely the

whole hierarchy. Many classical integrable Hamiltonian systems that appear in geometry and

mechanics lie in such hierarchies. For example, the hierarchy that corresponds to the standard

sphere includes also the Poisson sphere and the ellipsoid. The hierarchy of the Hyperbolic

plane includes the analog of the Poisson sphere that corresponds to the free motion of the

rigid body in Minkowski space. The Clebsch case of motion of the rigid body corresponds

to the hierarchy of the Euclidean space. The main properties of the A-integrable metrics are

investigated.

Exotic spheres and positive Ricci curvature

Wilderich Tuschmann

The relations between curvature and di�erentiable structures on spheres are still quite

obscure. Whereas many exotic spheres admit metrics with positive Ricci curvature, not a

single such sphere is known to carry a positive sectional curvature metric, and in certain

dimensions half of the exotic spheres do not even support positive scalar curvature.

In view of Cheng's maximal diameter theorem - though this result is known to be not even

topologically rigid - one may ask whether it is possible to isolate the standard sphere among all

other topological spheres or, more generally, among all other complete Riemannian manifolds

with positive Ricci curvature by using merely curvature and diameter assumptions.

The following di�erentiable diameter sphere theorem which I discussed in my talk gives a

positive answer to this question and shows that any violation of smooth rigidity, in particular

any which is modelled on an exotic sphere, must be accompanied by a blow-up of sectional

curvatures:

For any given m and C there exists a positive constant � = �(m;C) > 0 such that any

m-dimensional complete Riemannian manifold with Ricc � m � 1, K � C and diameter

� � � � is di�eomorphic to the standard m-sphere.

Edited by Ursula W�oske
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