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The conference was organized by D. Hershkowitz (Haifa), V. Mehrmann (Berlin) and H.
Schneider (Madison). The topics of the conference were the theory and applications of
nonnegative matrices, M-matrices and their generalizations. There were 31 plenary talks
and informal research sessions and an open problem session. The five days were organized
along the themes general theory of nonnegative matrices, nonnegative matrices and M-
matrices in Markov chains, combinatorial aspects of nonnegative matrices, convergence of
iterative methods for nonnegative matrices and spectral theory of graphs. Informal sessions
took place on nonnegative matrices in control, inverse eigenvalue problems, Markov chains,
and Perron Frobenius theory. The list of abstracts includes those talks in plenary sessions
as well as talks and problems given during informal sessions or the open problem session.
A special issue of Linear Algebra And Its Applications will be devoted to the talks of the
conference as well as papers based on problems posed during the conference and their
solution.



Abstracts

Perron eigenvector of the Tsetlin matrix
RAvI BAPAT

We consider the Markov chain on the set of permutations on n symbols arising from the
operation of move-to-position k scheme. Explicit formulas are presented for the stationary
distribution of the chain for £k = 1,2,n — 1,n. Partial results for other values of k are
obtained. The formulas and the techniques employ the concept of the Perron complement.

Upper bounds for graphs and matrices
Avi BERMAN

The following results were discussed

1. Of all the connected graphs with n vertices and & cut vertices, the maximal spectral
radius is obtained uniquely at the graph obtained by adding paths of (almost) equal
lengths to K, .

2. Let G be a cubic graph on n vertices. Then an upper bound for the bipartite density

of G, is m, where Apin(G) is the smallest eigenvalue of the adjacency matrix of
G.
3. The maximum of CP-rank A, taken over all completely positive matrices A of rank
. r(r41)
r,is —— — 1.

The first two results were obtained with Xiao Dong Zhang. The third with Francesco
Barioli.

Monomial and canonical subgraphs of reachable positive discrete-time systems
RAFAEL BRU

Based upon monomial paths and cycles properties of canonical subgraphs are studied in
order to characterize whether or not a positive discrete-time linear control system (A, B) is
reachable. The criteria is given in terms of the digraph of A, which must be a disjoint union
of some specific canonical subgraphs as tree, flowers, palms and non-monomial cycles. The
controllability property is studied in the same way. This is joint work with Louis Caccetta
and Ventsi G. Rumchev.



Generalised M-matrices, rational matrix equations and Newton’s method
ToBIAS DAMM

We recall an extension of the concept of Z- and M-matrices to general spaces. Let X be
a real Banach space ordered by a proper cone C. A linear operator T : X — X is called
“positive” if T(C') C C,. It is called “resolvent positive” if for all large enough o € R
their resolvent (al — T)~! is positive. We call T stable if o(T)) C C_ Resolvent positive
operators (e.g.the Lyapunov operator) play an important role in stability theory. They also
arise naturally as the linearizations of quadratic and rational matrix equations occurring in
optimal control theory (e.g. Riccati equations). We show, how the properties of resolvent
positive operators can be used to solve such equations. More specifically we prove a non-
local convergence result for Newton’s method, roughly speaking, the following holds: let
R : X — X be concave with resolvent positive derivatives. If then exist z¢,Z € X such
that R(z) > 0 and the derivative of R at x, is stable, then the Newton iterations starting
at ro converges to the largest solution x of the equation R(z,) = 0.

Spectral Structures of Totally Nonnegative matrices
SHAUN FALLAT

An n-by-n matrix A is called totally nonnegative if every minor of A is nonnegative.
The problem of interest is to characterize all possible Jordan canonical forms (also called
Jordan structures) of irreducible totally nonnegative matrices. In this talk we prove that
the positive eigenvalues of an irreducible totally nonnegative matrix are always distinct,
which can be viewed as a generalization of the classical spectral result for totally positive
matrices by Gantmacher and Krein. We also demonstrate key relationships between the
number and sizes of the Jordan blocks corresponding to zero. These notions initiate a
characterization of all possible Jordan canonical forms for irreducible totally nonnegative
matrices.

M-matrices and related classes
MirosLAvV FIEDLER

1. Ultrametric matrices (a;; > ming(aig, axj) Vi, j, k, a; > maxgz; @k, a;; > 0).
Every symmetric u.m. is a sum of a nonnegative diagonal matrix and a ,,special”
s.u.m. which satisfies a;; = maxy; a;; and can be obtained as follows from a positively
edge-weighted undirected connected graph G with vertices 1,...,n: If 7, j distinct and
P,; is a path in G joining them, let y(P;;) be the minimum of the weights of edges in
P,;;. Then a;; = maxy(P;;), over all such paths. Also, a;; is the maximum of weights
on edges incident with 7.

2. We study inverse M-matrices with constant row- and column sums in the neighbor-
hood of the matrix J with all ones.

3. We present inequalities completely characterizing the relationship between the diago-
nal entries of an M-matrix and its inverse and partly generalize them to relationship
between square diagonal blocks of M-matrices.



4. We study equilibrated anti-Monge matrices, i.e. real m X n matrices (e;;) satisfying
ek +ej > eq + e Vi, gkl i < gk <1, as well as > e = 0, i, = 0. Main
results: Every square non-zero e.a.-Monge matrix has a monotone eigenvector which
corresponds to the positive eigenvalue of maximum modulus. The product of e.a.-
Monge matrices which can be multiplied is again an e.a.-Monge matrix.

Spectra of operator polynomials and of graph expansions
KARL-HEINZ FORSTER

Let G be the directed weighted graph of a matrix S. If S = Ay+- - -+ A;, then the expanded
graph G, is defined as follows: The vertices of G are vertices of G.,, and of A, (7, ) # 0,
replace the edge (i,7) in G by [ —k + 1 edges (i.e. add [ — k vertices). S.Friedland and H.
Schneider (ELA 6 (1999), 2-10) considered the case of 0 — 1 matrices S and Ag.

There exist some relations between the nonzero eigenvalues of the adjacency matrix A
of Geyp and those of the matrix polynomial L(\) = A*! — XA, — .- — A;. Further, A
is irreducible iff S is irreducible; therefore it is possible to extend results of the combi-
natorial spectral theory of nonnegative matrices to matrix polynomials with nonnegative
coefficients.

On nonnegative matrix splittings
ANDREAS FROMMER

(Almost) all comparison theorems for two splittings A = M; — N; = M, — N, with
M;' > M3 can be viewed as special cases of the following proposition: let M;'N; > 0 and
assume that M; ' N, admits a nonnegative eigenvector z such that My ' Noz = p(M; ' Ny)z
and Arx > 0. The talk proves this proposition and shows how the other comparison
theorems appear as special cases. We then discuss applications in comparison results for
additive and multiplicative Schwarz methods for M-matrices where the amount of overlap
is increased.

Intervals of totally nonnegative matrices
JURGEN GARLOFF

We consider the class of the totally nonnegative (t.n.n.) matrices, i.e., the matrices having
all minors nonnegative, and intervals of matrices with respect to the chequerbord ordering.
For these intervals we had stated in 1982 the following conjecture: If the left and the
right endpoints of the interval are nonsingular and t.n.n. then all matrices taken from the
interval are nonsingular and t.n.n. In our talk we survey previous results on settling this
conjecture and present a new class of t.n.n. matrices for which the conjecture holds true.



Quasipositive elements in ordered Banach algebras
GERD HERZOG

A matrix A € R**" is an M-matrix if and only if the mapping x — — Az is quasimonotone
increasing (qmi) and if the right spectral bound of —A is negative. Here qmi is meant
with respect to the natural cone K = {z € R" : x; > 0}. One possibility of generalizing
M-matrices is to consider qmi linear mappings on R” with respect to other cones K C R”.
We will present results on such matrices in the Banach algebra setting and discuss some
special cones. Moreover, by means of one-sided estimates it is possible to get informations
on the right spectral bound of such matrices.

Bounded invertibility of special collections of matrices
OrcA Hovrz

The basic question addressed in the talk is the following. Given a collection A of matrices
bounded in some matrix norm and such that the spectrum of each A € A lies outside a
disk of fixed radius centered at zero, determine whether the collection A~! is bounded in
the same norm. For any norm, the answer is yes for matrices of bounded order, which
is an easy consequence of the compactness of the unit ball in a finite-dimensional space.
The talk is devoted to collections of matrices of unbounded order and the ‘simplest’ oco-
norm, the choice motivated by applications. It turns out that the answer is still yes for
totally nonnegative Hermitian matrices, but, in general, no for positive definite Hermitian
matrices. Two counterexamples are presented, one based on the Hilbert matrix and the
other with Hermitian Toeplitz matrices. Finally, an interesting problem of the same type
is discussed that arises in spline theory.

On 0-1 and Stochastic Matrices Satisfying a Certain Condition, Preliminary
Report

SURRENDER JAIN

We characterize nonnegative matrices A satisfying (A7)? = Zle @A™, p<my <o <
my, and in particular, describe stochastic matrices and 0—1 matrices satisfying the above
constraint. The interpretation of (AT)? = A™ may be of interest in probability theory, and
of the equation, (AT)P = Zle A™i may be of interest in the work dealing with incidence
matrices of graphs. Our approach provides also a shorter proof of the main theorem in our
earlier paper (Bapat - Jain - Prasad, Generalized Power Symmetric Stochastic Matrices,
Proc AMS(1999), 1987-94). Our main technique relies on showing that the group inverse
A# is nonnegative in case index A = 1 (or AP)# > 0, in general), and then invoking the
characterization of nonnegative group inverses (see Jain - Kwak - Goel, Trans AMS (1980),
371-385).



A Smorgasboard of Nonnegativity
CHARLES R. JOHNSON

Entry-wise nonnegative matrices have been a a central and, perhaps, the most enduring
theme of matrix analysis and its applications for 100 years. The feast will include sev-
eral different recent results on nonnegative matrices and closely related topics. The Hors
d’oeurves (brief reports on several different topics) are

(1) those matrices that occur as arbitrary products of M-matrices and inverse M-matrices

(2) resolution of the nonnegative inverse eigenvalue problem for symmetric nonnegative
matrices subordinate to a given bipartite graph

(3) characterization of those totally nonnegative (TN) matrices whose Hadamard product
with any TN matrix is TN

(4) precise relations among zero patterns of inverses of principal submatrices of inverse
M-matrices

(5) the completion problem for partial TN matrices whose graph is a standardly labelled
cycle.

The Hauptspeise is a more detailed discussion of recent progress on determinantal inequali-
ties for M-matrices, inverse M-matrices, positive definite matrices, totally positive matrices
and tridiagonal sign-symmetric P-matrices. In three of these cases a complete description
is given.

For Nachspeise a brief report is given on the status of a long term project to determine all
possible lists of multiplicities for the eigenvalues of real symmetric matrices with a given
graph and unrestricted diagonal.

Question: How to compute the operator norm || M| ?
MICHAEL KAROW

The operator norm ||M||s,1 = max{||Mz|; | x € C, ||z]|lc = 1}, M € C"", occurs
in the following way in the theory of spectral value sets (Pseudospectra). Let A € C"*"
p >0, and let || || be an arbitrary norm on C**™. The spectral value set o (A, p) is defined
as the union of all spectra of the matrices A + A, where A € C"" and ||A|| < p. Let
|| - || be the max-norm, i.e. ||All = ||(Ajk)i<jk<nl| = max;;|A;j|. Then the boundary of
o(A, p) is given by
00(A,p) ={s€C|l(s=A) wa=p"}
Thus spectral value sets with respect to the max-norm can be visualized by plotting the
level sets of the function s — ||(s — A) oo
It is easily seen that the computation of || M|« 1 is a maximization problem on the n-torus,
ie.
|M||so.1 = max{ [|Mz||; | z € C", |z1]|=|as|=...=|z,| =1}.
If M is a real matrix then the maximum is attained at a real vector x € R". Thus
IM||so.1 = max{ [|Mz||; | z € {-1,1}"} forall M € R"™™".

Recently, Jiri Rohn has shown that the latter maximization problem is N P-hard.



Minimizing algebraic connectivity over the class of connected graphs on n
vertices with girth ¢

STEVE KIRKLAND

For a graph G, its Laplacian matrix is L = D — A, where A is the adjacency matrix and
D is the diagonal matrix of vertex degrees. The algebraic connectivity of G is the second
smallest eigenvalue of the singular M-matrix L.

In this talk, we use nonnegative matrix techniques to describe the graph which minimizes
algebraic connectivity over the class of connected graphs on n vertices with girth ¢, under
the hypothesis that n > 3¢9 — 1.

Whose Transition Matrix has large Exponent
STEVE KIRKLAND

Let T be an n X n primitive stochastic matrix, and suppose that its exponent is at least
L%J + 2. Using a combinatorial approach, we give a formula for (I —T)#, the group
inverse of (I — T). The formula is then used to discuss the stability of the stationary
distribution vector corresponding to 7. (Joint work with M. Neumann)

Inverse eigenvalue problem for nonnegative matrices
THOMAS J. LAFFEY

Let 0 = (A1, Ay, -+, Ay) be a list of complex numbers. The NIEP (nonnegative inverse
eigenvalue problem) asks for necessary and sufficient conditions for the existence of an
(entrywise) nonnegative n X n matrix A with spectrum o.

A number of necessary and sufficient conditions are known from which the solution of the
problem for n = 2 and n = 3 have been deduced. The n = 3 result is due to Loewy and
London and they have also solved the problem in the case n = 4 on the assumption that
o is a list of real numbers. The case n = 4 and A; + Ay + A3 + Ay = 0 has been solved
by Reams. In this talk we present joint work with Eleanor Meehan which completes the
solution when n = 4. An algorithm will be described which implements the solution.

A Pair of Matrices Sharing Common Lyapunov Solutions — A Closer View
[zcHAK LEWKOWICZ

Let A, B be a pair of matrices with the same regular inertia. If A and B share common
solutions to Lyapunov matrix inclusion, then all matrices in conv(A, A~', B, B™") have
identical regular inertia. This, in turn, implies that both conv(A, B) and conv(A, B™")
are non-singular.



In general, neither of the converse implications holds. If however A and B are real
2 x 2 matrices, both converse implications do hold.

These and additional aspects of the above statements will be discussed. Joint work
with Nir Cohen.

CP Rank of Completely Positive Matrices
RAPHAEL LOEWY

An n x n symmetric matrix A is called completely positive (CP) if A can be written
as A = BB' for some n X m nonnegative (entrywise) matrix B. The smallest m in a
factorization of A of this type is called the C'P rank of A, and is denoted by #(A).

Let C'P, denote the set of all n x n completely positive matrices. It is natural to ask what
is the maximum value of #(A) as A ranges over C'P,. An obvious upper bound for #(A) is
n(n+1)/2, and it has been conjectured that this bound can be replaced by [n?/4], provided
that n > 4. This conjecture is still open, although it has been solved in some special cases.
For example, if the graph of A is triangle free; if the graph of A contains no odd cycle of
length 5 or more; if the comparison matrix of A is an M-matrix.

It is our purpose to consider #(A). We state some general remarks about #(A) for an
arbitrary n, and then prove the conjecture for any A € C'Ps which has at least one zero
entry.

This is a joint work with Bit-Shun Tam.

Markov chains and aggregation techniques
Ivo MAREK

There are very many examples of mathematical models in which central state variables
are represented by stationary probability vectors of Markov chains. Our motivation comes
from biology [1, 2, 3, 4] and from reliable safety systems engineering [6]. In the latter
area of applications the problem consists of computing probabilities of some events with
extremely high accuracy: e.g. the computed probability should not exceed 1.107'2. To this
purpose very efficient methods of computing stationary probability vectors of stochastic
matrices are required.

We propose and analyze aggregation/disaggregation iteration algorithms. We introduce
a new concept of Y—convergent iteration process and show its usefulness in our analysis
of some classes of aggregation/disaggregation iteration algorithms based on quite general
splittings of the original stochastic matrices. We show that the speed of convergence of
such processes may be very high: We identify some special cases in which just one or
two iterations return the exact solutions. It should also be mentioned that the splittings
defining the basic iterations may generally be divergent. This possibility not only does not
exclude convergence of the appropriate aggregation/disaggregation algorithms but may
offer an optimal rate of convergence.



One the most important tools in our investigations is introducing new inner products that
alow us to treat the appropriate Perron eigenprojections as orthogonal projections. Some
optimal error estimates are then established.

Our analysis does not exploit any particular features of special stochastic matrices under
consideration such as the concept of near complete decomposability of Markov chains etc.

Our theory is valid for any stochastic matrix with no restrictions on its elements and/or
blocks.
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An application of the Krein-Schaefer spectral Radius Theorem
Ivo MAREK

Motivating Problem. To find necessary and sufficient conditions guaranteeing that a dif-
ference equation

TpyN+1 = Q1 Tpy1 + A2Tpyo + - -+ ANTpy N,

where a; € R, j=1,..., N, posesses a strictly monotone solution {z;},i.e. either z,; —
x> 0,0r xp —x <0, B> M.

Such and similar problems appear in estimating the topological entropy of some classes of
functional spaces. The required necessary and sufficient conditions are derived by applying
the Krein-Schaefer spectral radius theorem. Some generalisations of the above problem to
abstract operator equations are discussed.

On the fixed points of the interval function [f]([z]) = [A][z] + [b]
GUNTER MAYER

Let [A] be a real nxn interval matrix and let [b] be a real interval vector with n components.
We consider the fixed points [z]* of the interval function [f] defined by [f]([x]) = [A][x]+[b]
under the following points of view: Existence, uniqueness, shape, degeneracy, connection
with the solution set S = {z| (I — A)x = b, A € [A], b € [b]}. The results are based
on nonnegative matrices of auxiliary character such as the absolute value |[A]| and the



diameter d([A]) of [A]. In addition we apply parts of the Perron and Frobenius theory
for irreducible matrices. We extend a well-known theorem of O. Mayer which assumes
p(|[A4]]) < 1 where p(-) denotes the spectral radius of a matrix. For |[A]| being irreducible
with p(|[A]]) > 1 we were able to study the above-mentioned items exhaustively. For
p(|[A]]) < 1 we present some results on the shape of [x]* for selected classes of [A] and [b].

Eventually Nonnegative Matrices
JupIiTH J. MCDONALD

An n x n matrix A is said to be eventually nonnegative if there exists an integer N such
that A™ > 0 for all m > N. In this talk we will draw some comparisons between the
properties of eventually nonnegative matrices with those of nonnegative matrices. We will
look at some results by Zaslavsky and Tam on the Jordan forms of irreducible eventually
nonnegative matrices. Lastly, we will examine necessary and sufficient conditions for a
matrix in Jordan canonical form to be similar to an eventually nonnegative matrix whose
irreducible diagonal blocks satisfy the cyclicity conditions identified by Zaslavsky and Tam,
and whose subdiagonal blocks are nonnegative. Joint work with B. Zaslavsky.

The recursive inverse eigenvalue problem for nonnegative matrices
VOLKER MEHRMANN

Given a sequence of nonnegative vectors [;, r; of increasing size and nonnegative numbers
p; we discuss the problem of finding a matrix A, such that [; and r; are left and right
eigenvectors of the i—th principal submatrix associated with the eigenvalue p;. We give
necessary and sufficient conditions for the existence of a solution as well as an explicit
solution formula.

Joint work with M. Arav, D. Hershkowitz and H. Schneider.

Algebraic Theory of Multiplicative and Additive Schwarz Methods
REINHARD NABBEN

The convergence of multiplicative and additive Schwarz-type methods for solving linear
systems when the coefficient matrix is either a nonsingular M-matrix or a symmetric posi-
tive definite matrix is studied using classical and new results from the theory of splittings.
The algebraic analysis presented complements the analysis usually done on these meth-
ods using Sobolev spaces. The effect on convergence of algorithmic parameters such as
the number of subdomains, the amount of overlap, the result of inexact local solves and
of coarse grid corrections (global coarse solves) is analyzed in an algebraic setting. Joint
work with Michele Benzi, Andreas Frommer and Daniel B. Szyld
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A Divide And Conquer Approach To Computing The Mean First Passage
Matrix For Markov Chains Via Perron Complement Reductions

MIiCHAEL NEUMANN

Let Mp be the mean first passage matrix for an n-state ergodic Markov chain with a
transition matrix 7. We partition 7" as a 2 X 2 block matrix and show how to reconstruct
Mr efficiently by using the blocks of T" and the mean first passage matrices associated with
the nonoverlapping Perron complements of 7. We present a schematic diagram showing
how this method for computing My can be implemented in parallel. We analyze the
asymptotic number of multiplication operations necessary to compute My by our method,
and show that for large size problems, the number of multiplications is reduced by about
1/8, even if the algorithm is implemented in serial. We present five examples of moderate
size (orders 20 to 200) and give the reduction in the total number of flops (as opposed to
multiplications) in the computation of M7. The examples show that when the diagonal
blocks in the partitioning of T" are of equal size, the reduction in the number of flops can
be much better than 1/8. Joint work with Stephen J. Kirkland and Jianhong Xu.

On the Roots of Certain Polynomials Arising From Analysis of the
Nelder—Mead Simplex Method

MIiCHAEL NEUMANN

The analysis of the convergence of the Nelder-Mead method for the unconstrained min-
imization of the function f(xy,...,x,) = 23 + 235 + --- + 22 leads us to study the two
parametric family of polynomials of the form p,(2) =b—az —--- — az""' + 2. We show
that provided that a(b — 1) is real, it is possible to use the Schur-Cohn criterion in order
to determine the configuration of the roots of p,(z) with respect to the unit circle. Joint
work with Lixing Han and Jianhong Xu.

Digraphs With Large Exponent
DALE OLESKY

Primitive digraphs on n vertices with exponents at least |w, /2] +2, where w, = (n—1)?+1,
are considered. For n > 3, all such digraphs containing a Hamilton cycle an characterized;
and for n > 6, all such digraphs containing a cycle of length n — 1 are characterized. Each
eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved
to be geometrically simple.
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On some classes of matrices related to P-matrices
JUAN MANUEL PENA

We study the closure properties of the following class of P-matrices. Matrices with positive
row sums and whose off-diagonal elements are bounded above by the row means. These
matrices have been called B-matrices and applied to the localization of the eigenvalues
of a real matrix. We consider some properties common to B-matrices and other classes
of P-matrices, such as symmetric positive definite matrices, nonsingular totally positive
matrices, nonsingular M-matrices and strictly diagonally dominant by rows with positive
diagonal elements. Classes of matrices containing the mentioned classes of P-matrices are
also considered.

Combinatorial vis a vis Analytic Analysis of Generalized Eigenspaces of
Nonnegative Matrices Corresponding to the Spectral Radius

URI ROTHBLUM

The classic approach to extend the Perron Frobenius (P-F) Theorem from irreducible to
arbitrary nonnegative matrices is to perturb the zero entries of a nonnegative matric P,
compute a normalized P-F eigenvector of the perturbed matrix and let the perturbation
parameter approach zero, yielding a (nonunique) semipositive eigenvector corresponding to
the spectral radius of P. The specialization of this conclusion to irreducible matrices yield
a weaker result than the one available from the P-F Theorem. A combinatorial approach
was developed in the to‘s to overcome this difficulty by constructing a (preferred) basis of
the generalized eigenspace of nonnegative matrices corresponding to the spectral. For a
matrices with special structure (the basic classes forming a chain) such a basis was recently
constructed from coefficients of truncations of fractional power series expansions of the P-F
eigenvector of perturbation of the underlying matrix. We conjecture that this approach
can be extended to arbitrary nonnegative matrices. (Joint work with Hans Schneider)

Partition polytopes
URI ROTHBLUM

Consider the problem of partitioning a finite set N = {1,...,n} into p parts, where each
element in N is associated with a vector A® € R®. The objective function associated with
a partition 7 = (7y,...,m,) is assumed to depend on the sums of the vectors in each part
of 7, that is, on the matrix A, = (37, A7,--- VD jem A7). One approach to analyze the
problem of optimizing f(A,) over a set of partitions 7 is to study the extension of f on the
partition polytope P defined as the convex hull of the A,’s. When k=1, A < ... < A",
and 7 consists of all partitions 7 with prescribed part—sizes. We show that the vertices of
the partition polytope correspond to portions whose parts consist of consecutive integers
and whose edges have directions in {e’ — e’ : 4,7,=1,...,p} (here e’ is the t-unit vector in
RP). The latter ensures that if f is asymmetric Schur convex, f attains a maximum over
P™ at a vertex. It follows that a consecutive partition is optimal. Some of this result have
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been extended to situations where the set of partitions 7 is determined by lower and upper
bounds on the part—sizes.

3 open problems — 1 solution
SIEGFRIED M. RumMP

The 3 open problems are

i) an extension of Perron-Frobenius theory to general real and complex matrices,
ii) the conjecture, that the componentwise distance to the nearest singular matrix is
inverse proportional to the (componentwise) condition number, and
iii) the conservatism of the circle criterion in control theory.

The first problem is solved by the sign-real and sign-complex spectral radius. The striking
similarities of the Perron root in the nonnegative case to these quantities is elaborated.
We show that lower bounds are easily obtained by max-min bounds, almost identical
to Perron-Frobenius, but upper bounds are NP-hard to calculate. Especially one lower
bound depending on the maximum geometric mean of cycles turns out to solve the second
problem. The obtained bounds are sharp up to a constant factor. The third problem is No.
30 in ”Open Problems in Mathematical Systems and Control Theory” edited by Blondel et
al. According to the author of the problem, Alexander Megretski, the solution establishes
an unexpected link between control theory, harmonic analysis and combinatorics, and it
determines the conservatism of the so-called circle criterion in control theory. This problem
is solved by a characterization of the sign-real spectral radius that the Cayley transform
of a certain matrix is a P-matrix. We show that our bounds obtained for problem iii) are
sharp up to a constant factor. Using this and triggered by the nice algorithm by Michael
Tsatsomeros for checking whether a matrix is a P-matrix, also an NP-hard problem, we
found during the enjoyable meeting in Oberwolfach new necessary and sufficient criterions
for this problem, and also an algorithm for checking P-property which is not a priori
exponential.

Conditions for strict inequality in comparisons of spectral radii of
nonnegative matrices

HANS SCHNEIDER

Let F,T and T" be nonnegative matrices such that F' + T is irreducible. Suppose that
F#0, T <T, T"#Tand p(T) <1. Let Q =FI—-T) 'amd Q' = F(I —T')"L.
At the 1982 Oberwolfach meeting on Linear Algebra we presented a result that implied
that p(Q) > 0. We now amplify this result to prove that Q' < @, @' # @ and that
p(Q") < p(Q). We reformulate our in terms of M-splittings of M-matrices and we pose the
question whether it extends to regular splittings.
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Exponents of nonnegative matrix pairs
BRYAN SHADER

The notion of the exponent of a nonnegative matrix is generalized to a pair of nonnegative

matrices. It is shown that the largest exponent of a pair of n by n nonnegative matrices
[(71375712) 3n3+2n272n]
2 2

lies in the interval , . In addition, the exponent of a pair of nonnegative
matrices is related to properties of an associated 2-dimensional dynamical system.

Comparison Theorems for the convergence factor of iterative methods for
singular Matrices

DANIEL B. SzZYLD

We consider the solution of Az = b with iterative methods based on splittings A = M — N.
These are of the form X, = M*INXIc + M ', k=1,.... Asis well known, when A
is non-singular, the convergence rate of the iterative method is governed by the spectral
radius of the iteration matrix, i.e., by p(M~'N). There are several comparison theorems
in the literature of the following form: If A = M; — N; = M, — N, are regular splittings
and A~! > 0, with

() either Ny < Ny or M[" > M;!

then p(M; ' Ny) < p(M; ' Ny).

When A is singular, the convergence rate of the iterative method is governed by v(M ! N) =
max (\), A # 1,\ € o(M!N), where o(T) is the spectrum of T. Since the early 1980s
there have been examples is the literature showing that conditions such as (*) do not im-
ply v(M; *Ny) < v(M, ' Ny). In this talk, we present comparison theorems for splittings of
singular matrices. We use a partial order different than the used one given by R’ . With
this new partial order, if either Ny < N, or Mfl > M{l and the splittings are regular
with respect to the new partial order, then y(M;'Ny) < v(M;'Ny).

Joint work with Ivo Marek.

On a Class of Di-symmetrizable Matrices
ToMAsz SzZULC

It is known that for every real square matrix A there exists a nonsingular real symmetric
matrix S such that SA = A’S, where A’ is the transpose of A.

Using the notion of an M-matrix we derive a criterion for A to satisfy the above equality
with a diagonal S having signature k. Such A will be called Dy-symmetrizable and the
work presents some results on this concept. In particular, we show that a Di-symmetrizable
matrix shares many properties with a real symmetric matrix and that any A is, up to an
orthogonal similarity, Dj-symmetrizable. (Joint work with Stawonir Jonek, and Frank
Uhlig)
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Linear Equations over Cones. Collatz-Wielandt Numbers and Local
Perron—Schaefer Conditions

BiT-SuuN TAM

Let K be a proper cone in R”, let A be an n x n real matrix that satisfies AK C K, let b
be a given vector of K, and let A be a given positive real number. The following two linear
equations are considered in this talk: (i) (A, — A)x = b, v € K, and (i) (A — \,,)x =
b, x € K. We obtain several equivalent conditions for the solvability of the first equation.
For the second equation, we give an equivalent condition for its solvability in case when
A > py(A), where py(A) denotes the local spectral radius of A at b, and we also find a
necessary condition when A = p(A), where p(A) is the spectral radius of A. Then we
derive some new results about local spectral radii and Collatz—Wielandt sets (or numbers)
associated with a cone-preserving map, and extend a known characterization of M-matrices
among Z-matrices in terms of alternating sequences. In the last part of my talk I introduce
the local Perron-Schaefer condition, prove several equivalent conditions, and deduce some
known intrinsic Perron-Frobenius theorem, discovered by Hans Schneider in the early 80’s.

A Recursive Test for P-Matrices and Methods for Constructing P-Matrices
MICHAEL J. TSATSOMEROS

P-matrices, i.e., matrices all of whose principal minors are positive, are associated with
nonnegative matrix theory in many ways, most notably via the unification theory of var-
ious subclasses of P-matrices (e.g., M-matrices, totally nonnegative matrices and positive
definite matrices).

How would you test whether a given ‘large’ matrix is a P-matrix or not?

If no other information is known about the matrix, this is a co-NP-complete problem. So
how would you test a 25 x 25 matrix? An answer is provided based on a new algorithm
that reduces the time complexity of such a test from O(2"n*) to O(2"). This is achieved
by applying recursively a criterion for P-matrices based on Schur complementation. A
Matlab program implementing this algorithm (for complex matrices) is provided, as well
as information on how to exploit its parallel nature.

We also discuss two methods for generating P-matrices borrowed from mathematical pro-
gramming. One of them involves the principal pivot transform and the other is a little bit
of a mystery.
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Maximal graphs with maximal spectral radius
PAULINE VAN DEN DRIESSCHE

A maximal graph is a connected graph with degree sequence not majorized by the degree
sequence of any other graph. Relationships between different sequences of integers that
describe maximal graphs are given. A correspondence between maximal graphs and con-
nected graphs with stepwise adjacency matrices shows that, among all connected graphs
with n vertices and e edges, the graph with maximal spectral radius is a maximal graph.
Such maximal graphs are identified for certain values of n and e.

Joint work with Dale D.Olesky and Aidan Roy.

A Sign Pattern Inertia and Eigenvalue Problem
PAULINE VAN DEN DRIESSCHE

For n > 2, let T,, = [t;;] be the fixed n-by-n tridiagonal sign pattern with ¢, = —, t,, = +,
tijiy1 =+, tiy1, = —fori=1,... ,n—1, and all other entries equal to zero. A real matrix
A = la;j] € T, if sign(a;;) = t;; for all 4, j. In [2], the conjecture was made that 7,, allows
any inertia (i.e., given any triple of nonnegative integers (n,ns, n3) that sum to n, there
exists A € T,, so that the inertia of A is (ny,n2,n3)). A stronger conjecture was also made,
namely that T, allows any spectrum (i.e., for any set of n complex numbers with nonreals
occurring as complex conjugates, there exists A € T,, that has this set as spectrum). If
true, this second conjecture would imply the truth of the first. By constructing matrices,
the inertia result is proved for nz € {0,1,2,n — 1,n} for all values of n > 2, see [2, section
3]. In [2, Section 4], the spectral conjecture (and thus the inertia conjecture) is proved
for each n € {2,...,7} by constructing a nilpotent matrix and showing that a certain
Jacobian is nonzero so that the implicit function theorem applies. More recently [1] this
spectral result has been extended to n = 8 by this same method and the use of MAPLE.
For the remaining values of ng (for the inertia) and n > 9 (for the spectrum), this real
inverse eigenvalue problem for the sign pattern 7, remains open. It appears that some new
tools are needed, as the methods used above do not easily extend.

REFERENCES

[1] J.H. Drew and C.R. Johnson, Personal communication.
[2] J.H. Drew, C.R. Johnson, D.D. Olesky and P. van den Driessche, Spectrally arbitrary patterns, Linear
Algebra Appl. 308 (2000): 121-137.
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Blockwise perturbation theory for nearly uncoupled Markov chains and its
application

JUNGONG XUE

Let P be the transition matrix of a nearly uncoupled Markov chain. The states can be

grouped into aggregates such that P has the block form P = (Pij)ﬁjzl where Pj; is square

and P;; is small for i # j. Let 77 be the stationary distribution partitioned conformally as

7l = (xl',...  «l). In this paper we bound the relative error in each aggregate distribution
71 caused by small relative perturbations in P;;. The error bounds demonstrate that nearly

uncoupled Markov chains usually lead to well conditioned problems in the sense of blockwise
relative error. As an application, we show that with appropriate stopping criteria, iterative
aggregation /disaggregation algorithms will achieve such structured backward errors and
compute each aggregate distribution with high relative accuracy.

Edited by Matthias Bollhofer
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