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1 The workshop.

This mini{workshop aimed at discussing existent and potential connections between certain

algebraic and geometric objects, in particular Schur algebras and quantum groups. The

main focus was on the known epimorphisms from type A quantized enveloping algebras

to Schur algebras, their restriction to Hall algebras and their potential analogues for other

types. A description of these problems and a reading list had been circulated beforehand.

At the workshop, there were survey lectures and more specialized presentations, includ-

ing suggestions to attack the central problems (some of them stimulated by the material
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distributed earlier). During the discussions, new links were discovered between di�erent

approaches, proofs were simpli�ed and a conjecture arose on the type C situation.

The schedule was very 
exible and no time constraints were imposed on speakers;

this format turned out to be very popular both with speakers and audience. There was

general agreement that mini{workshops provide a very welcome new format for stimulating

research meetings.

There have been 15 participants from Australia, France, Germany, the UK and the

USA. 27 per cent of the participants were female, the majority of the participants was

younger than 35.

2 The subject area.

Schur algebras in arbitrary characteristic (over in�nite �elds) were introduced 1980 in

J.A.Green's in
uential monograph [17] on polynomial representations of the general lin-

ear group. Schur himself had considered the characteristic zero situation in his thesis.

Green also introduced integral Schur algebras and insisted on characteristic free notions

(eg codeterminant basis for Weyl modules). Schur algebras over �nite �elds started to be

used only very recently (by topologists in the context of functor cohomology, or topological

Hochschild cohomology, see [16]).

Classical Schur algebras of type A, as introduced by Green, cover the polynomial repre-

sentation theory of the general linear group over an in�nite �eld. Donkin [10, 11] introduced

more general Schur algebras which cover the rational representation theory of reductive

groups. These algebras somehow lack the nice combinatorial theory of the type A{situation

where the symmetric group (which on that occasion does not wear its usual Weyl group

hat) is of much help. There is some information available on Brauer algebras, which replace

the symmetric group in types B and C, but not much, and type D seems to be completely

unknown. Analogues of many of Green's main results (standard basis with multiplication

formula, bases for Weyl modules, Schur functor, etc) seem to be unknown in the other

types.

Green's and Donkin's Schur algebras are made for de�ning characteristic. In non{

de�ning characteristic (where the group is de�ned over a �eld of characteristic p and rep-

resentations are taken over a �eld of characteristic di�erent from p) one has to use another

kind of Schur algebra, the quantized one, which has been introduced by Dipper and James

[7] in type A by Hecke algebra combinatorics instead of symmetric group combinatorics.

More generally, Dipper, James and Mathas [9] de�ned cyclotomic quantized Schur algebras,

which contain type A and also type B and C. These gadgets correspond to cyclotomic

Hecke algebras, which come from complex re
ection groups (instead of crystallographic

Coxeter groups), but no Schur algebras are known for the other cases occuring there.

2.1 Hyperalgebras and quantum groups

Associated with a semisimple group is a semisimple complex Lie algebra which has a

universal enveloping algebra. This algebra has an integral form which in characteristic p

de�nes the hyperalgebra. Universal enveloping algebras can be quantized and then again

have integral forms (Lusztig's version). Another way to construct these quantum groups

is through Ringel's Hall algebras [29] which in the Dynkin case give the positive part of

the quantum group, and in the a�ne case something bigger than that.
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2.2 Epimorphisms

Carter and Lusztig [5] observed that the hyperalgebra maps onto each Schur algebra (again

in type A). Beilinson, Lusztig and MacPherson [3] used the analogue in the quantized

version to view the quantized enveloping algebra as a subalgebra of a projective limit of

quantized Schur algebras (where the map S(n; r+n)! S(n; r) from degree r+n to degree

r is `cancelling the determinant'). They described the map in an explicit, but not very

pleasant way. Jie Du worked this out in more detail. R.M.Green [19] found a precise

description of the kernel of this map (giving a basis of the kernel as a vector space). This

description looks much nicer if one restricts the map to the positive part of the quantum

group. Then the kernel has as a basis those elements of the PBW basis which have a sum

of root multiplicities bigger than r { where r is the degree of the Schur algebra (Corollary

2.4. in [19]).

R.M.Green also de�ned a�ne q{Schur algebras [20]. Varagnolo and Vasserot [32] have

used a�ne q{Schur algebras (for the cyclic quiver of type A) in their proof of LLT{

conjecture through Lusztig's q{conjecture. Their approach is based on Hall algebras, and

they are using the Hall algebra version of Green's Corollary 2.4. Standard basis elements

of the Hall algebra are representations of the corresponding quiver (with respect to some

�xed orientation), and the condition then reads that representations with not more than r

indecomposable direct summands are mapped to basis elements of the Schur algebra and

the other basis elements are in the kernel.

Recently, Doty and Giaquinto [13, 14] found a nice description of the kernel as an ideal;

at present their result only covers GL(2) (classical and quantized), but they hope to cover

the general situation in a similar way.
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3 Abstracts.

(In the order of the talks.)

Introduction to q-Schur algebras

Richard Dipper, Stuttgart

This was an introductory survey talk on the construction of q�Schur algebras and some

basic facts on their representations.

Hecke algebras H

R;q

(�

r

) = H associated with symmetric groups �

r

are remarkable q-

deformations of the group algebras R�

r

. They are generated by elements T

i

(1 � i � r�1)

subject to relations T

i

T

j

= T

j

T

i

, T

i

T

i+1

T

i

= T

i+1

T

i

T

i+1

and (T

i

+ 1)(T

i

� q) = 0 for

1 � i; j � r and ji � jj � 2. Here q 2 R is assumed to be invertible. Let V be an

n-dimensional R-free R�module, the action of �

r

on V


r

by place permutation can be

q-deformed to produce an action of the Hecke algebra H on V


r

. The q-Schur algebra

S := S

R;q

(n; r) is de�ned to be the centralizing R-algebra of this H-action on tensor space

V


r

.

One has that V


r

as an H-module is the direct sum �

�2�(n;r)

M

�

of 'permutation type'

modules M

�

. Here �(n; r) is the set of compositions of r into n parts. This gives rise to

the standard basis f�

d

�;�

: �; � 2 �(n; r); d 2 D

�;�

g of the q-Schur algebra, where D

�;�

is a

certain set of double coset representatives on �

r

.

Next, a cellular basis of H, the Murphy basis, is constructed, which is indexed by pairs

of standard �-tableaux, where � runs through the partitions of r. This can be extended to

obtain the semistandard basis of S, which is labelled by pairs of semistandard �-tableaux

of type � 2 �(n; r). Here � runs through �

+

(n; r), the set of partitions of r into at most n

parts. This basis is cellular too. As a consequence we de�ne for each partition � 2 �

+

(n; r)

the Weyl module W

�

and the irreducible S-module F

�

:= W

�

=radW

�

(when R is a �eld).

Then the set of all F

�

for � 2 �

+

(n; r) is a complete set of pairwise non-isomorphic

irreducible S-modules, and the matrix [d

�;�

] describing the composition multiplicities of

the F

�

in W

�

is upper unitriangular and is a square matrix. Thus S is quasi-hereditary.

q-Schur algebras as quotients of quantized enveloping algebras

Richard M. Green, Lancaster

This talk summarized the results in the paper \q-Schur algebras as quotients of quan-

tized enveloping algebras". The main result is an explicit description of the kernel of the

map from U(gl

n

) to the q-Schur algebra S

q

(n; r).

The a�ne q-Schur algebra

Richard M. Green

This talk discussed connections with Du's IC basis for the q-Schur algebra, Lusztig's

algebra

_

U and a�ne q-Schur algebras, and furthermore a�ne Schur-Weyl duality.

Hall algebras, geometry of quiver representations and qunatum groups

Markus Reineke, BUGH Wuppertal

This is an introductory talk on the Hall algebra approach to quantum groups, which was

used is later talks to study the epimorphisms from quantum groups to Schur algebras using

the geometry of representations of quivers. First, some basic results on the representation
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theory of Dynkin quivers are reviewed, concentrating on Gabriel's Theorem classifying

the indecomposable representations, and on the representation-directedness of the path

algebra. Next, some basic properties of varieties of representations are discussed, and

K. Bongartz' description of the orbit closures in these varieties is given. C. M. Ringel's

Hall algebra approach to quantum groups is recalled by realising the positive part of a

quantized enveloping algebra via a convolution product on functions on representation

varieties. Using this approach, PBW type bases for quantum groups are constructed,

and G. Lusztig's canonical basis is de�ned in terms of perverse sheaves on representation

varieties.

Hall algebras, geometry of quiver representations and quantum groups, II

Thomas Br�ustle, Bielefeld

We discuss di�erent aspects of the epimorphism  from the quantum group U

q

of SL

n

to

the q�Schur algebra S

q

(n; r). In particular,we give an explicit description of the restriction

of  to the Hall algebra U

+

q

: Essentially, the morphism  associates to a module M its

projective resolution, in case M lies not in the kernel. The kernel is described as the ideal

of the Hall algebra formed by isoclasses of modules having more than r direct summands.

We show that this description does not work for other types than the linear oriented quiver

of type A

n

.

Some �nite dimensional quotients of the quantum group U

q

(n

+

)

Markus Reineke

Let �

d

: U

q

(gl

n

)! S

q

(n; d) be the natural epimorphism from the quantum group to the

q-Schur algebra. The kernel of its restriction to U

q

(n

+

) is an ideal I(d) which is compatible

with a PBW basis and Lusztig's canonical basis; if the PBW basis is parametrized by

isoclasses of representations of an equioriented quiver of type A, it is spanned by those

representations which have more than d indecomposable direct summands.

Starting from this observation, we consider two-sided ideals of U

q

(n

+

) in type A;D;E

which have �nite dimensional quotients, and are compatible with a PBW basis and with

the canonical basis. We describe those additive functions f de�ned on isoclasses of rep-

resentations of quivers for which the subspaces I

f

(d), spanned by PBW basis elements

corresponding to isoclasses of representations M such that f(M) � d, are such 'good'

ideals. Among those functions, there is a unique choice f

0

for which all the I

f

0

(d) are mini-

mal. For equioriented type A, the ideal de�ning (part of) the q-Schur algebra is recovered.

Thus, the ideals I

f

0

(d) could possibly serve as candidates for generalizing the de�nition of

q-Schur algebras.

Cyclotomic q{Schur algebras.

Andrew Mathas, University of Sydney

This talk was a survey of the representation theory of the cyclotomic q{Schur algebras

studied by Dipper, James and Mathas. These algebras were introduced because of the

success of the Schur algebras and the q{Schur algebras of Dipper and James. The q{

Schur algebra can be de�ned as the endomorphism algebra of a certain module for the

Iwahori{Hecke algebra of the symmetric group; similarly, a cyclotomic q{Schur algebra

is the endomorphism ring of a module for the Ariki{Koike algebras | or the cyclotomic

Hecke algebras of type G(r; 1; n).

7



The Ariki{Koike algebra H is a cyclotomic algebra of type G(r; 1; n), and it becomes

the Iwahori{Hecke algebra of type A or B when r = 1 or 2 respectively. By working over

a ring R which contains a primitive rth root of unity, and by specializing the parameters

appropriately, the Ariki{Koike algebra turns into the group algebra R(C

r

S

n

) of the wreath

product of the cyclic group C

r

of order r with the symmetric group S

n

of degree n.

For each multicomposition � of n there is an interesting right ideal M

�

of H. The

cyclotomic q{Schur algebra is the endomorphism algebra S = End

H

�

�

�

M

�

�

: Under the

specialization above where H

�

=

R(C

r

o S

n

), the module M

�

becomes a module induced

from a subgroup of the form (C

r

� � � � � C

r

)� S

�

.

This talk described how to construct a cellular basis for the cyclotomic q{Schur algebra.

The �rst step was to give a cellular basis for H. This basis can be modi�ed to give a basis

of the ideals M

�

; in particular, this shows that each M

�

has a \Specht series" (that is, a

�ltration with each subquotient isomorphism to a Specht module). Finally, the bases of

the M

�

can be \lifted" to give a basis of S.

As a consequence, for each multipartition � there is a Weyl module W

�

and W

�

has

simple head F

�

; further, fF

�

g is a complete set of pairwise inequivalent irreducible S{

modules. Using the cellular structure of S, it is now easy to see that the cyclotomic

q{Schur algebra is quasi{hereditary.

Generators and relations for Schur algebras

S. Doty, Loyola University Chicago.

This is a report of some recent joint work with Giaquinto. We obtain a new presentation

of Schur algebras via generators and relations. The presentation is compatible with the

usual presentation of the universal enveloping algebra of the general linear Lie algebra. We

also give an explicit description of the integral form of the Schur algebra as an analogue of

Kostant's integral form of U , and �nd new integral bases of this integral form.

This talk outlined the important steps of the proof of these results in the classical case.

Generators and relations for Schur algebras, continued

A. Giaquinto, Loyola University, Chicago.

This discusses aspects of the proof which are di�erent for the quantum case as compared

with the classical case. This makes essential juse of some explicit commutation formulas

(which are fortunately available, from work of N. Xi).

On Oehms' construction of symplectic q-Schur algebras

Anton Cox, City University, London.

This talk gave be a survey of the thesis of Oehms, in which he constructs candidates

for the title of symplectic q-Schur algebras. We outlined the principle ideas behind this

construction, and the results thus obtained.

Intersection of opposed real big cells

Robert Marsh, University of Leicester

Let G be a connected linear algebraic group. Any 
ag variety has many di�erent cell

decompositions, the so-called 'Bruhat decompositions'. There is precisely one for each

Borel subgroup; and furthermore there is always a unique open dense orbit called the big

8



cell. In this joint work with Konstanze Rietsch, we �x two opposite Borel subgroups and

study the intersection of the two resulting big cells.

More precisely, we are interested in the real points of this variety, in the case where

everything is split over the real numbers. There has been some recent work determining

the number of its connected components and their Euler characteristics (Rietsch, Shapiro-

Shapiro-Vainshtein, SSV- Zelevinsky). Such characteristics associate an as yet unexplained

integer to each element in the canonical basis. We show how to compute the Euler charac-

teristics of the individual connected components of the intersection of two opposed big cells

in the real 
ag variety of type G

2

, by employing the 'Chamber Ansatz' of Berenstein-Fomin-

Zelevinsky.

The Global Dimension of S(2; r) and S(3; r)

Alison Parker, QMW London.

We �rst look at quasi-hereditary algebras and review the notions of good �ltration

dimension and Weyl �ltration dimension. This then gives us an upper bound for the global

dimension. We outline how to calculate the good �ltration dimension and Weyl �ltration

dimension for all irreducible modules for S(2; r) and S(3; r) (r arbitrary). We then show

that the global dimension is twice the maximum of the good �ltration dimensions. To do

this we introduce modules of the form r(�)

F


 L(�) (� dominant. � p-restricted, r(�)

the induced module). The induced modules r(�) are �ltered by such modules and we give

explicitly the �ltration for SL

2

and SL

3

.

Structure constants of q-Schur algebras (type A)

Richard M. Green

This was a contribution which was inspired by the lecture(s) of M. Reineke. It presented

a method how to determine structure constants for S

q

(n; r) by using the positive part

S

+

q

(3n; r). That is, all structure constants of q-Schur algebras are in principle obtainable

from the Hall algebra approach.

Having seen this, Markus Reineke was able to give an argument in terms of the

Auslander-Reiten quiver which explains why this is possible.

ZS

n

and modular morphisms

Matthias K�unzer, Bielefeld

We consider the integral group ring of the symmetric group on n letters ZS

n

as a subring

of a direct product of matrix rings over Z via the restriction of the rational Wedderburn

isomorphism to the integral situation, that is

(�) ZS

n

-

Y

� `n

(Z)

n

�

�n

�

;

given by sending a group element to the tuple of its operations on the integral Specht

modules with respect to chosen Z-linear bases. The image � of the embedding (�) is thus

an isomorphic copy of the integral group ring we are interested in.

Once suitable bases for these integral Specht modules chosen, we can read o� a presen-

tation of Z

(p)

S

n

(' �

(p)

) by quiver and relations, where p is a prime dividing n!. Reducing

modulo p, we may then derive a presentation by quiver and relations of the modular group
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ring F

p

S

n

. Moreover, we can read o� the multiplicities of the Specht modules in the inde-

composable projectives of Z

(p)

S

n

. But so far, such a suitable choice has only been achieved

for n small.

The cokernel of the embedding (�) has cardinality

q

n!

n!

=

Q

�

n

(n

2

�

)

�

. In particular, our

embedding is not an isomorphism for n � 2, and we can ask for necessary conditions on

a tuple of integral matrices to lie in �. Given Z-free ZS

n

-modules X and Y , an integer

m � 2 and a ZS

n

-linear map X=mX

f

! Y=mY , this yields a such a necessary condition on

a tuple of matrices to lie in �. For instance, if X = S

�

and Y = S

�

are Specht modules,

with operating matrices �

�

(�) and �

�

(�) of � 2 S

n

respectively, the morphism property

of (a Z-linear integral inverse image of) f reads f � �

�

(�) �

m

�

�

(�) � f:. Hence, given a

tuple of integral matrices (�

�

)

�

, we obtain the necessary condition f � �

�

�

m

�

�

�f: It can

be shown that there is a system of such modular morphisms that yields a condition which

is necessary and su�cient for a tuple of matrices to lie in �. In general, however, such a

system involves not only Specht modules.

We intend to discuss certain modular morphisms between Specht modules, of type

`one-box-shift' and `two-box-shift', and to explain the consequences for � in case n = 4.

Generators and relations for symplectic Schur algebras

S. Doty.

In this talk I present a conjecture for the type C analogue of the type A presentation of

Schur algebras, obtained recently in joint work with Giaquinto. The conjecture is based on

that result, along with results of Donkin in the 1980's. The conjecture has both a classical

and a quantum version.

The conjecture was obtained at this workshop.

Determining distant decomposition numbers

Anton Cox

Let G be a semisimple, connected, simply-connected algebraic group over an alge-

braically closed �eld of characteristic p > 0. In order to determine the characters of the

simple modules for G it is enough | by Steinberg's tensor product theorem | to de-

termine the characters for a certain �nite set of weights. In principle this allows one to

determine the composition multiplicities of simple modules inside Weyl modules, but not

in a practical manner. We give an algorithm for determining these decomposition numbers

in general from those for another �nite set of weights.

There is another such algorithm due to Jantzen, which corresponds to a �ltration of

the Weyl module. A priori, it is not clear that the stages in our algorithm have such a

representation-theoretic interpretation. We shall however show that they can be interpreted

in terms of lifts of certain modules from a corresponding family of quantum groups, and

also relate them to results of Doty on the structure of symmetric powers.
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