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The topic of this conference was convex geometry with emphasis on the analytic aspect.

The 11 main lectures dealt with the following subjects:

Geometric probability

Local theory of normed spaces

Convexity and a�ne geometry

Relations to topology

Geometric inequalities

Measures related to convex bodies

Convex polytopes

Various problems of convex geometry

A majority of the presented posters and short communications were related to these sub-

jects. It was interesting to see the numerous relations convexity has to other areas of

mathematics and that these areas have a strong impact on the development of modern

convex geometry.

Paul Goodey

Peter M. Gruber
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A survey on recent results and open problems in 
exible polyhedra and

related topics

Victor Alexandrov

Let

P

be a connected two-dimensional simplicial complex. A continuous mapping P :

P

! E

3

is said to be a polyhedron if it is a�ne over each simplex of

P

. However we call

the image P (

P

) a polyhedron, too.

A polyhedron P = P (

P

) is said to be 
exible if there exists an analytic (with respect

to a parameter) family of polyhedra P

t

= P

t

(

P

) (0 � t � 1) such that

i) P

0

= P ;

ii) the length of each edge of P

t

is independent of t;

iii) there exist two vertices of P

t

such that the (spatial) distance between them is not

constant in t.

The family P

t

(0 � t � 1) is called a nontrivial 
ex of P .

Similarly one can de�ne the notion of a 
exible polyhedra in spherical, hyperbolic and

Minkowski spaces of arbitrary dimension.

The most important results in the theory of 
exible polyhedra in Euclidean 3-space are

as follows:

a) there are no convex 
exible polyhedra (A.Cauchy, 1813, A.D.Aleksandrov, 1950);

b) there exist 
exible sphere-homeomorphic embedded polyhedra (R.Connelly, 1976,

K.Ste�en, 1980);

c) each 
exible polyhedron preserves its mean curvature during a 
ex (R.Alexander,

1985);

d) each 
exible polyhedron preserves its (generalized) volume during a 
ex (I.Kh. Sabitov,

1996, R.Connelly, I.Sabitov, A.Walz, 1997).

In the present talk, we will present the following recent results in 
exible polyhedra:

1) application of Cauchy's method to studying rigidity of certain non-convex polyhedra

in E

3

(rigidity results for polyhedral herissons obtained by L.Rodriguez and H.Rosenberg);

2) existence of 
exible polyhedra in Euclidean 4-space E

4

(results by R.Connelly and

H.Stachel);

3) existence of 
exible polyhedra in Minkowski 3-space and volume conservation for

them;

4) 
exibility and rigidity of polyhedra via in�nitesimal bending.

We are going to discuss also some related results about smooth herissons (by Y.Martinez-

Maure) and about invariance of the mean curvature of a smooth surface under in�nitesimal

bending (by I.Rivin).

The complex plank problem

Keith M. Ball

A plank theorem is a result of the following type. X is a normed space, �

1

; : : : ; �

n

are

unit functionals on X and w

1

; : : : w

n

are positive numbers satisfying a size condition. The

conclusion is that there is a vector x in X of norm at most 1 for which j�

k

(x)j � w

k

for

each k. This talk discusses 5 such results and some applications.

1) The original plank theorem of Bang in which X is Hilbert space and

P

w

k

� 1, which

solved the plank problem of Tarski and has an application to sphere-packing.

2) The author's plank theorem in which X is an arbitrary normed space and

P

w

k

� 1,

which provides a sharp quantitative version of the Banach-Steinhaus Theorem.
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3) Nazarov's solution of the coe�cient problem for Fourier series in which X is L

1

,

P

w

2

k

� 1 and the functionals satisfy a Bessel inequality.

4) Lust-Piquard's non-commutative plank theorem which shows that bounded operators

on Hilbert space satisfy no non-trivial size estimates on their entries.

5) The author's recent complex plank theorem in which X is complex Hilbert space and

P

w

2

k

� 1, which is related to topics in control theory.

There are in�nitely many irrational values of zeta

at the odd integers

Keith M. Ball

(joint work with T. Rivoal)

This talk outlines a proof of the fact stated in the title. The proof depends upon the

construction of explicit linear forms for each odd d and each even number m,

A

(0)

m

+ A

(3)

m

�(3) + : : :+ A

(d)

m

�(d)

whose coe�cients are integers at most C

md

for some C > 1 and for which the sum is at

most c

md log d

for some c < 1. These forms are derived from series of the following type,

1

X

k=1

q(k)

(k(k + 1)(k + 2) : : : (k +m))

d

where q is a polynomial (of small enough degree) with rational coe�cients. Such series

were already used for various purposes (eg. by Nikishin). Here we choose a polynomial q

which is an even function of k +m=2. This parity constraint ensures that the coe�cients

of the even number values of zeta disappear. The precise series are as follows

(m!)

d�2r

1

X

k=1

(k � 1)(k � 2) : : : (k � rm):(k +m+ 1)(k +m + 2) : : : (k + (r + 1)m)

(k(k + 1)(k + 2) : : : (k +m))

d

for some integer r. The sums are small because the zeroes in the numerator ensure that

the sum doesn't start until the denominator has become large. The size conditions will

hold as long as r is at most d=log d and at least some power of d.

Hyperplane projections of the unit ball of `

n

p

Franck Barthe

(joint work with Assaf Naor)

For p � 1, let B

n

p

= fx 2 R

n

;

P

n

i=1

jx

i

j

p

� 1g. We are interested in the extreme values of

the volume of the orthogonal projections of B

n

p

onto hyperplanes. For a �xed hyperplane

H � R

n

we show that the ratio vol(P

H

B

n

p

)=Vol(B

n�1

p

) of the volume of the projection

onto H to the volume of the canonical projection, is a non-decreasing function of p. This

analogue of the Meyer-Pajor theorem for sections immediately gives informations about

largest projections for p � 2, since the latter ratio is 1 for every direction H when p = 2.

Using Fourier transforms and elementary results on completely monotonic functions, we

determine the extremal projections for p � 2. All this work relies on an explicit formula for

the volumes of projections in terms of the �rst moment of a combination of independent

random variables.
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The covariogram problem

Gabriele Bianchi

The covariogram C

K

(x) of a convex body K � R

n

is de�ned for x 2 R

n

as

C

K

(x) = V ol(K \ (K + x)) = �

K

� �

(�K)

(x) :(1)

where �

n

denotes the Lebesgue measure on R

n

. The covariogram is invariant with respect

to translations or re
ections of K. G. Matheron asked whether the covariogram determine

a convex body among all convex bodies up to translations and re
ections.

The covariogram C

K

coincides, up to a constant, with the distribution of the di�erence

X � Y of two independent random variables X; Y which are uniformly distributed over

K. Knowing C

K

is equivalent to knowing for each direction u 2 S

1

the distribution of the

lengths of the chords of K which are parallel to u.

Passing to the Fourier transforms formula (1) becomes

^

C

K

= j�̂

K

j

2

: thus the problem

of determining K from the knowledge of C

K

is equivalent to the phase retrieval problem

in Fourier analysis, restricted to the class of characteristic functions of convex bodies.

The following theorem has been proved by G. Bianchi, F. Segala and A. Vol�ci�c in the

case of C

2

bodies with strictly positive curvature, and by G. Bianchi alone in the general

case.

Theorem: Let K be a plane convex body whose boundary is the union of a �nite number

of C

2

arcs which meet in points where the boundary is not C

1

. Let us assume moreover that

@K contains at most a �nite number of segments. Its covariogram determines K uniquely

(up to translations and re
ections) among all convex bodies.

Random polytopes: expected values, variances, distributions

Christian Buchta

Given a convex body K � IR

d

, a random polytope is de�ned as the convex hull of n

independent random points distributed uniformly in K. Denote by K

n

the convex hull of

n such points, by V

n

the volume of K

n

, by D

n

the volume of KnK

n

, and by N

n

the number

of vertices of K

n

.

In the �rst part of the talk a survey on results about the expected values EV

n

; ED

n

, and

EN

n

is given. It is pointed out that an identity due to Efron relates the expected volume

ED

n

| and thus EV

n

| to the expected number EN

n+1

.

In the second part of the talk it is described how this identity can be extended from

expected values to higher moments. The planar case of the arising identity for the variances

provides in a simple way the corrected version of a result by Cabo and Groeneboom and

an improvement of a result by Hsing. Estimates of varD

n

and varN

n

are obtained in the

cases that K is a d-dimensional convex polytope or a d-dimensional smooth convex body,

respectively.

The identity for moments of arbitrary order shows that the distribution of N

n

determines

EV

n�1

; EV

2

n�2

; : : : ; EV

n�d�1

d+1

. Conversely it is proved that these n�d�1 moments determine

the distribution of N

n

entirely. The resulting formula for the probability that N

n

= k (k =

d+ 1; : : : ; n) appears to be new for k � d+ 2 and yields a solution to a problem raised by

Baryshnikov. For k = d+ 1 the formula reduces to an identity which has repeatedly been

pointed out, e.g., by Henze, Schneider, and Weil and Wieacker.
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Applications and developments of a theorem of Rogers and Shephard on

moving convex sets

Stefano Campi

Given a compact set K 2 IR

d

, a direction v and a bounded real valued function � de�ned

on K, the family of convex sets

K

t

= conv[fx + �(x)tv : x 2 Kg]; t 2 IR

is called a shadow system along v with speed function �. A theorem proved by Rogers

and Shephard in 1958 says that if K

t

is a shadow system, then the volume V (K

t

) is a

convex function of t. The theorem can be used successfully for determining minimizers of

several functionals in Convex Geometry, as functionals of Sylvester-type, of Busemann-type

and functionals involving the volume of p-centroid bodies. In all these cases the theorem

implies, via Steiner's symmetrization, that ellipsoids are minimizers. The theorem also

provides a selection criterion for searching maximizers of the same functionals. Such a

criterion leads to partial results and enforces the conjecture that simplices are solutions of

the maximum problems.

An In�nite Set of Solid Packings on the Sphere

August Florian

The simple concept of solid packing and solid covering was introduced by L. Fejes T�oth.

We consider the following example. We place 2n congruent non-overlapping circles with

their centers at the vertices of the spherical Archimedean tiling (3; 3; n) such that each

circle touches four others. The system is supplemented by two additional circles, each

touching n circles of the system. It can be proved that this packing is solid, for all n � 4.

On the other hand, it can be conjectured that the incircles of (3; 3; 3; n) do not form a solid

packing, and the circumcircles do not form a solid covering of the sphere. This is subject

of current joint work of A. Heppes and A. Florian, and is open at the moment.

Shape reconstruction from brightness functions

Richard J. Gardner

The talk outlined joint work in progress with Peyman Milanfar. The problem is to re-

construct a planar or 3-dimensional convex body from noisy, and possibly sparse, mea-

surements of its brightness function. The approach taken comprises two steps that result

in a polygon or polyhedron that is supposed to approximate the unknown convex body.

In Step 1, an approximation to the surface area measure (sometimes also called the ex-

tended Gaussian image) is obtained by using Cauchy's projection formula and solving a

least squares problem. (A similar but di�erent method was employed and implemented

independently by M. Kiderlen in his 1999 PhD thesis; see also his paper, \Nonparametric

estimation of the directional distribution of stationary line and �bre processes," Adv. Appl.

Probab. 33 (2001), 6{24.) In Step 2, a convex polygon or polyhedron is constructed whose

surface area measure is the output of Step 1. For polygons this is trivial, and for poly-

hedra, an algorithm for this purpose, based on an earlier one of J. Little, was published

by J. Lemordant, P. Tao, and H. Zouaki in RAIRO Mod�el. Math. Anal. Num�er. 27

(1993), 349{374. This involves maximizing over l the concave function V (P (l))

1=3

subject

to linear constraints, where V (P (l)) is the volume of the convex polyhedron P (l) and l

denotes the vector of distances of its facets from the origin. The output l

�

, together with
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the unit normals from the input for Step 2, give the so-called H-representation of the

reconstructed polyhedron. This must be converted to its V -representation, the set of its

vertices, and the convex hull produced from this set. Our implementation of the whole

reconstruction process is not yet complete, but will utilize Matlab's optimization toolbox

to solve the nonlinear programming problems in Steps 1 and 2, the C++ program Vinci by

B. B�ueler, A. Enge, and K. Fukuda to compute the function V (P (l)) and to convert the

H-representation to the V -representation, the program Qhull from The Geometry Center

at the University of Minnesota to calculate the convex hull, and Mathematica to display

the reconstructed polyhedron.

Local Theory and Convex Geometry

Apostolos Giannopoulos

Let K

n

denote the class of all convex bodies in R

n

. For every K 2 K

n

we consider the

family P (K) = fT (K) : T a�neg of all positions of K. We write w(K) for the mean

width of K and A(K) for the surface area of K. The Banach-Mazur distance of the

convex bodies K and L is de�ned by d(K;L) = minft � 1 : 9K

1

2 P (K); L

1

2 P (L)

such that K

1

� L

1

� tK

1

g and the volume ratio of K and L is the quantity vr(K;L) =

minf(jKj=jL

1

j)

1=n

: L

1

2 P (L); L

1

� Kg. In this talk we discuss basic extremal problems

and results about these quantities.

(i) The reverse isoperimetric inequality of K. Ball:

a

n

:= max

K

min

K

1

2P (K)

A(K

1

)

jK

1

j

(n�1)=n

= A(S

n

) ' n

where S

n

is an n-dimensional simplex of volume 1 (the cube is the extremal body in the

symmetric case).

(ii) The \reverse Urysohn inequality" of G. Pisier (following work of Lewis and Figiel-

Tomczak):

w

n

:= max

K

min

K

1

2P (K)

w(K

1

)

jK

1

j

1=n

� c

p

n logn

(the lower bound w

n

� c

1

p

n logn follows by considering a simplex or the cross-polytope).

(iii) The estimate of Rudelson on the Banach-Mazur distance of an arbitrary pair of convex

bodies: d

n

:= max

K;L

d(K;L) � cn

4=3

log

9

n.

(iv) An estimate for the volume ratio (Giannopoulos-Hartzoulaki):

v

n

:= max

K;L

vr(K;L) � c

p

n logn.

The main point of the talk is the following: although precise \isotropic" geometric

descriptions are available for the extremal positions inside each a�ne class, giving estimates

for the quantities above requires diverse and deep analytic and probabilistic tools. Local

theory and convex geometry meet here in a natural way.

Mixed support functions of convex bodies

Paul R. Goodey and Wolfgang Weil

In 1995, the following translative integral formula for (centred) support functions of convex

bodies K; M � R

d

was established,

Z

R

d

h

�

(K \ (M + x); �)�

d

(dx)
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= V

d

(M)h

�

(K; �) +

d�1

X

j=2

h

�

j

(K;M; �) + V

d

(K)h

�

(M; �) :

In addition to the support functions h

�

(K; �) of K and h

�

(M; �) of M , it contains mixed

functions h

�

j

(K;M; �) which (amongst other properties) have the property that they depend

homogeneously of degree j on K (and of degree d + 1 � j on M). Here we show that

the mixed functions h

�

2

(K;M; �); : : : ; h

�

d�1

(K;M; �) are all convex, hence they are support

functions of convex bodies. For the proof, we replace support functions by �rst surface area

measures and assume that K and M are polytopes. The main tool is then the solution of

the Christo�el problem for polytopes obtained by Schneider in 1977.

Aspects of Random Variables in Convexity Theory

Yehoram Gordon, Carsten Sch

�

utt and Elisabeth Werner

(joint work with Alexander Litvak)

Let f

i

, i = 1; : : : ; n, be copies of a random variable f and N be an Orlicz function. We

show that for every x 2 IR

n

the expectation Ek(x

i

f

i

)

n

i=1

k

N

is maximal (up to an absolute

constant) if f

i

, i = 1; : : : ; n, are independent. In that case we show that the expectation

Ek(x

i

f

i

)

n

i=1

k

N

is equivalent to kxk

M

, for some Orlicz function M depending on N and on

distribution of f only. We provide applications of this result.

Geometry of Spaces Constructed between Polytopes and Zonotopes

Yehoram Gordon, Carsten Sch

�

utt and Elisabeth Werner

(joint work with Alexander Litvak)

Let fa

i

g

N

i=1

� IR

n

span the space, 1 � k; n � N . De�ne on IR

n

the norm kxk

k

=

P

k

i=1

j <

x; a

i

> j

�

, where f�

�

i

g denotes the decreasing rearrangement of a sequence of scalars f�

i

g.

Denote the unit ball of the space (IR

n

; k:k

k

) by B

k

. Clearly B

�

1

= conv(f�a

i

; a

i

g

N

i=1

) de�nes

a symmetric polytope and B

�

N

=

P

N

i=1

[�a

i

; a

i

] de�nes a zonotope. If T : R

N

! R

n

is the

operator de�ned by T (e

i

) = a

i

, then B

k

= (T (kB

N

1

\ B

N

1

))

�

= T

��1

(conv(B

N

1

;

1

k

B

N

1

)),

where B

N

p

denotes the unit ball of `

N

p

.

We investigate the following topics:

1) Volume estimates for B

k

; B

�

k

and their l� dimensional sections, using new probabilistic

results, with sharp estimates when fa

i

g � S

n�1

, thus extending the classical estimates

k = 1 and k = N .

2) Various forms of Dvoretzky's theorem on existence of best isomorphic copies of ` dimen-

sional spherical sections for the balls B

k

; B

�

k

.

3) Volume ratios, type and cotype, projection constants.

4) All the above for fa

i

g � S

n�1

, and in the special cases when N = n and a

i

= e

i

; i =

1; :::; n.
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A�ne inequalities involving p-centroid bodies

Paolo Gronchi

Here a joint work with Stefano Campi is presented. If K is a convex body in IR

d

, then

�

p

K, the p-centroid body of K, is de�ned by

h

�

p

K

(u) =

0

@

1

c

d;p

V (K)

Z

K

jhu; zij

p

dz

1

A

1

p

for every real number p � 1. We call parallel chord movement of K along the direction v

a family of convex sets de�ned by

K

t

= fz + �(x)tv : z 2 K; x = z � hz; viv 2 v

?

g]; t 2 IR

where the "speed function" � is a continuous real function on v

?

.

Theorem: If K

t

is a parallel chord movement with speed function �, then the volume of

�

p

K is a strictly convex function of t unless � is linear.

This theorem implies the L

p

-Busemann-Petty centroid inequality, which characterizes

centered ellipsoids as the only minimizers of V (�

p

K)=V (K). Such a result was recently

proved also by Lutwak, Yang and Zhang in a di�erent way. An other consequence of the

theorem is that triangles are maximizers of the same functional.

Optimal distribution of points on Riemannian manifolds

Peter M. Gruber

We give the following extension of the theorem of Fejes T�oth on sums of moments in IE

2

to d-dimensional Riemannian manifolds:

Theorem: Let f : [0;+1) ! [0;+1) be an increasing function satisfying suitable

growth conditions. Then there exists a constant div

f;d

> 0 such that for any Jordan mea-

surable set J on a Riemannian d-manifold M (with metric %

M

and volume !

M

) we have

inf

S�M

#S=n

f

Z

J

min

p2S

ff(%

M

(p; x))gd!

M

(x) � div

f;d

!

M

(J)f(

!

M

(J)

1

d

n

1

d

) as n!1:

This result has applications to asymptotic best approximations of convex bodies, to the

isoperimetric problem in Minkowski spaces, to numerical integration, and to Gauss chan-

nels.

Isomorphic Dvoretzky's theorem for some classes of convex bodies

Olivier Gu

�

edon

Let K be a symmetric convex body in IR

n

, we de�ne the Banach Mazur distance between

K and the Euclidean ball B

n

2

as

d(K;B

n

2

) = inf

E symmetric ellipsoid

f� > 0; such that E � K � �Eg:

Does there exist a k�dimensional subspace F

k

, an ellipsoid E in F

k

such that

E � K \ F

k

� f(n; k) E ?

We need to �nd a good estimation (up to some numerical constant) of f(n; k) for all range

of k 2 f1; : : : ; ng and for all convex body in some particular geometrical classes.
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The original "almost isometric" Dvoretzky's question was to replace f(n; k) by 1 + "

and to study the largest possible k

0

= k("; n) so that we could answer positively to this

question.

The most simple estimation of f(n; k) is by John's theorem that f(n; k) �

p

k: But an

answer was given by Milman and Schechtman when K is a general convex body :

f(n; k) � c

�

1 +

s

k

log

�

1 +

n

k

�

�

:

In this talk, I have presented results of a joint paper with Y. Gordon, M. Meyer and

A. Pajor, Random Euclidean sections of some classical Banach spaces (Mathematica Scan-

dinavica). In this paper, we were interested in the above question for some special classes

of unit balls of an n�dimensional normed space E. We say that a family u

1

; : : : ; u

N

of

vectors of E, with N � n, satis�es a (C; s)-estimate for C > 0 and s > 0, if for all

(t

i

)

N

i=1

2 IR

N

and all m = 1; : : : ; N , one has

C

m

1=s

�

m

X

i=1

(t

?

i

)

2

�

1=2

� k

N

X

i=1

t

i

u

i

k �

�

N

X

i=1

t

2

i

�

1=2

;

where (t

?

i

)

N

i=1

denotes the decreasing rearrangement of the sequence (jt

i

j)

N

i=1

. By a result of

Bourgain and Szarek, there exists a constant C > 0 such that for any n, any n-dimensional

normed space contains a sequence u

1

; : : : ; u

N

, with N �

n

2

, satisfying a (C; 2)-estimate.

It is easy to see that for q � 2, the canonical basis of `

n

q

satis�es a (1; s)-estimate, with

1

s

=

1

2

�

1

q

. Under this geometric assumption, we obtain precise estimate of the function

f(n; k), which is optimal in the case of `

n

q

(and where q may depend on the dimension n).

The second part of the paper is devoted to the study of the Schatten classes and the

estimate of f(n; k) is again optimal up to a constant.

Trefoil knots with tritangent support planes

Erhard Heil

There are examples of trefoil knots without tritangent planes. But if a wire model of

familiar shape is placed on a plane, it will rest on 3 points. Precisely:

Let C be a trefoil knot which can be projected into a plane in such a way that the

following is true: The image is locally convex, has rotation number 2 and exactly 3 double

points. Apart from the double points the projection is injective. Then C has at least 2

tritangent support planes.

The proof starts with a polygon approximating C. Sperner's lemma is applied to its

upper and lower part, which gives triangles lying in planes supporting the polygon and, by

a limit process, 2 supporting tritangent planes of C.

This investigation was motivated by the search for the minimum number of vertices.

Measures, curvatures and currents in convex geometry

Daniel Hug

Support measures of convex bodies play an important role in convex and integral geometry.

Moreover, there are many applications in stochastic geometry. In the �rst part of this talk,

we focus on results related to the absolute continuity of curvature and surface area measures

(the image measures of support measures under projection maps), since such results provide

9



a common framework for a better understanding of various separate contributions. Starting

with characterizations of absolute continuity of curvature and surface area measures we

describe two transfer principles which allow one to translate properties connected with the

absolute continuity of the rth curvature measure of a convex body (containing the origin

in its interior) to dual properties related to the absolute continuity of the (d � 1 � r)th

surface area measure of the polar body, and conversely. Various new results are deduced as

applications of these transfer principles. The second part describes extensions to Minkowski

spaces of recent results on curvature measures in Euclidean spaces. Here characterization

and stability results and a splitting theorem are obtained. The �nal part outlines ideas

related to projection functions and mixed volumes. In particular, a common framework for

representing these functionals in terms of generalized curvatures and the normal bundles

of the bodies involved is suggested.

Weakly Monotonic Endomorphisms of The Space of Convex Bodies

Markus Kiderlen

Let K be the family of convex bodies (nonempty, compact, convex subsets) in d-dimensional

Euclidean space. A mapping A : K ! K is called an endomorphism of K, if it is Minkowski-

additive, continuous, and intertwines the action of the group of rigid rotations that �x the

origin. A classical result states that for d = 2 every endomorphism can be written as a

suitable de�ned mixing of 'prototypes', namely the rotations. This is not true for higher

dimensions. For d � 3 we de�ne prototypes of endomorphisms using the generalized spher-

ical Radon transform. We then show that any endomorphism of K can be written as a

mixing of these prototypes if the so-called 'mixing distribution' is used. The mixing distri-

butions associated to certain subclasses of endomorphisms can be characterized: Monotonic

(i.e. inclusion-preserving) endomorphisms correspond to positive mixing measures, weakly

monotonic endomorphisms (i.e. those that are inclusion-preserving for centered bodies)

correspond to essentially positive mixing measures. We conclude with two applications

concerning �xed points of endomorphisms and an injectivity result for the m-th mean

projection body.

On the derivatives of X-ray functions

Alexander Koldobsky

Let K be an origin-symmetric star body in R

n

: For every � 2 S

n�1

, we de�ne the X-ray

function z ! A

K;�

(z); z 2 R by

A

�

(z) = vol

n�1

�

K \ (�

?

+ z�)

�

;

where �

?

= fx 2 R

n

: (x; �) = 0g is the central hyperplane orthogonal to �:

Denote by

AV

m

(K) =

Z

Gr(n;m)

vol

m

(K \H) dH;

where Gr(n;m) is the Grassmanian of m-dimensional subspaces of R

n

equipped with the

probability Haar measure. Then AV

m

(K) is the average volume of m-dimensional central

sections of K: We prove the following result of the Busemann-Petty type:
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Theorem: Let n � 4; K and L be (n � 4)-smooth origin symmetric convex bodies in

R

n

: Suppose that n is an even number and that, for every � 2 S

n�1

;

(�1)

(n�4)=2

A

(n�4)

K;�

(0) � (�1)

(n�4)=2

A

(n�4)

L;�

(0);

(for odd n; replace the derivatives in (3) by the corresponding expressions from (2)). Then,

for every integer 3 � m � n, we have AV

m

(K) � AV

m

(L).

As a consequence we get that for even n; 3 � m � n and any (n � 4)-smooth origin-

symmetric convex body K in R

n

max

�2S

n�1

(�1)

(n�4)=2

A

(n�4)

K;�

(0) �

2

n�2

3

�

�(m=2 + 1)

�

3=m

�

n=2�3

�(

n� 3

2

)(AV

m

(K))

3=m

with equality for the Euclidean ball.

The proof of Theorem 1 is based on a connection between the derivatives of X-ray

functions and the Fourier transform and on a fact that if f is a function on R

n

that is a

positive de�nite distribution on all hyperplanes passing through the origin then kxk

�1

2

f(x)

is a positive de�nite distribution on R

n

:

A problem in convex tomography

David G. Larman

The following conjectures are considered and partial results given:-

Conjecture: Suppose K and L are convex bodies in IR

n

with L � intK. Suppose, for

every hyperplane H supporting L, the n � l{volume f

K;L

(H) of H

n

K is known. Then K

is uniquely determined by f

K;L

and L.

Conjecture: Suppose that K, L are convex bodies in IR

n

, n = 3 and L � intK. Suppose

further that whenever H is a hyperplane supporting L the section H

n

K of K is centrally

symmetric. Then K is an ellipsoid.

Partial results for conjecture 1 include, for example, if L is a ball and f

K;L

(H) is constant

then K is also a ball.

A�ne surface area

Monika Ludwig

For a convex body K, i.e. a compact convex set, in d-dimensional Euclidean space, the

a�ne surface area is de�ned as


(K) =

Z

bdK

�(x)

1

d+1

d�(x);

where bdK is the boundary of K, �(x) is the (generalized) Gaussian curvature of bdK at

x, and � is the (d� 1)-dimensional Hausdor� measure. We give a geometric interpretation

of a�ne area and describe the de�nitions of a�ne surface area for general convex bodies as

proposed by Leichtwei�, Lutwak, and Sch�utt and Werner. Using these de�nitions, it was

shown that a�ne surface area is an upper semicontinuous, translation and SL(d)-invariant

functional de�ned for all convex bodies. We discuss applications, especially in problems

of asymptotic approximation of convex bodies, and a way of characterizing a�ne surface

area (joint work with Matthias Reitzner).
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Face-numbers of simple polytopes

Peter McMullen

The g-theorem describes the possible f -vectors (numbers of faces of each dimension) of

simple polytopes; it was conjectured by McMullen in 1970. The su�ciency of its conditions

was established by Billera & Lee in 1979. In the same year, Stanley found the �rst proof of

their necessity, appealing to a deep result in algebraic geometry (the hard Lefschetz theorem

in the cohomology ring of the toric variety associated with a rational simple polytope). In

1992, McMullen discovered an alternative proof; this used the polytope algebra, and so

worked within convexity. In 1994, McMullen further simpli�ed this proof, employing the

weight algebra instead. This talk presented a yet shorter proof, found very recently by

McMullen's research student, Harry Paterson. This proof also uses the weight algebra, but

avoids the need of the previous approach to prove the quadratic Hodge-Riemann-Minkowski

inequalities for mixed volumes as well.

A geometric proof of some inequalities involving mixed volumes

Mathieu Meyer and Shlomo Reisner

A new, \spherical harmonics free" proof of mixed-volume inequalities due to Schneider and

to Goodey and Groemer, is presented.

The Alexandrov-Fenchel inequality implies that if K

1

and K

2

are two convex bodies in

IR

n

, and if for i; j = 1; 2, V

ij

= V (K

i

; K

j

; B; : : : ; B) is the mixed volume of K

i

, K

j

with

n� 2 copies of the Euclidean unit ball B, then V

2

12

� V

11

V

22

. Moreover, it was proved by

Schneider and by Goodey and Groemer that one can control the di�erence V

2

12

� V

11

V

22

in

the following way :

(1) If K

2

= B, V

12

= V

1

= V (K

1

; B; : : : ; B), B

1

is the Steiner ball of K

1

(see the de�nitions

below) and v

n

is the volume of B then

V

2

1

� v

n

V

11

�

n+ 1

n(n� 1)

v

n

Z

S

n�1

�

h

K

1

� h

B

1

�

2

d�;

where � denotes the surface measure on the sphere S

n�1

, and for a convex body K, h

K

denotes its support function.

(2) If the Steiner balls of K

1

; K

2

are the same, then

V

2

12

� V

11

V

22

�

n + 1

n(n� 1)

v

n

Z

S

n�1

�

h

K

1

� h

K

2

�

2

d� :

The results (1) and (2) may be interpreted as stability results in speci�c cases of the

Alexandrov - Fenchel inequality. Using them one can derive further inequalities between

intrinsic volumes of di�erent orders of a given convex body. The proofs of Schneider and

of Goodey and Groemer make use of spherical harmonics and of a representation of mixed

volumes which involves the action of di�erential operators on support functions of convex

bodies. We present here a new proof which is \spherical harmonics free" and which has a

more geometric 
avor. This proof is based on a variational argument involving Santal�o's

inequality. We believe that this variational method may prove useful for the treatment

of other problems as well. In fact we prove the following more general result (which also

admits a proof using spherical harmonics):
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(3) Let K

1

; : : : ; K

p

be convex bodies in IR

n

and for 1 � i � p, let V

i

= V (K

i

; B; : : : ; B),

h

i

= h

K

i

and let B

i

be the Steiner ball of K

i

. Then the quadratic form q : IR

p

7! IR de�ned

by q(s

1

; : : : ; s

p

) =

P

p

i;j=1

a

ij

s

i

s

j

, where

a

ij

= V

i

V

j

� v

n

V

ij

�

n+ 1

n(n� 1)

v

n

Z

S

n�1

(h

i

� h

B

i

)(h

j

� h

B

j

)d� ;

is non-negative. (Beitr. z. Alg. u. Geom. 41 (2000), 335-344.)

Some applications of topology to convex geometry

Luis Montejano-Peimbert

The purpose of the talk is to speak about k-polars of Convex Bodies. This simple concept

will allow us to put several classic results in the same setting and from that to develop new

results, generalizations and conjectures. Let � be a k-plane of n- projective space, P

n

, and

let � be a (n� k � 1)-plane of P

n

that does not intersect �. 0 � k � n� 1. We say that

� is a polar k-plane of a strictly convex body K if for every line L that meets �, � and

intK, we have that [A;B;P;Q] = �1, where L \ @K = A;B, L \ � = P and L \� = Q.

If � is a polar k-plane of a convex body K with dual polar the (n � k � 1)-plane � and

� \K = ;, then � \ @K is shadow boundary of K with respect �.

Theorem: Let K � E

n+1

be a strictly convex body and let H � P

n+1

be a non-supporting

hyperplane. Let 0 � k � n� 1. If every k-plane � � H �K is a polar k-plane of K, then

K is an ellipsoid.

If k = 0 and H \ K = ;, then our theorem restates the classic characterization of

ellipsoids due to Blaschke and Brunn, regarding the middle points of parallel chords. If

k = 1 and H \K = ;, then our theorem restates the classic characterization of ellipsoids

regarding the planarity of shadow boundaries. The next theorem is also interesting.

Shaked Rogers Theorem: Let K

1

and K

2

be two convex bodies. If we can choose

continuously, for every direction a section of K

1

which is a translation of a section of K

2

,

then K

1

is a translation of K

2

.

On Minkowski decompositions of polytopes

Gajane Panina

Virtual polytope group was introduced originally by Khovanskii, Pukhlikov (see also Mc-

Mullen and Morelli ). Virtual polytopes in the real space R

n

form a group P

�

with respect

to the Minkowski summation.

A virtual polytopeK 2 P

�

is called a k -cylinder ( k = 1; : : : ; n+1 ), if it is representable

as the Minkowski sum of n�k+1 -dimensional polytopes: K = 


i

K

i

; dimK

i

� n�k+1.

Consider the following problem: Given a polytope K, to �nd whether K belongs to Cyl

k

,

i.e., whether K is decomposable into the Minkowski sum of k -dimensional polytopes. Its

solution is the following: We construct (explicitly) a collection of mutually orthogonal

projectors, group homomorphisms �

k

: P

�

! Cyl

k

; whose sum is the identity operator.

Theorem: A polytope K belongs to Cyl

k

i� �

i

K = E for all i = 1; :::; k � 1, where E

is the unite element of P

�

.

These projectors induce the following direct sum decompositions. P

�

= �

1

P

�

� �

2

P

�

�

� � � � �

n

P

�

and Cyl

k

= �

k

P

�

� � � � � �

n

P

�

.
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'Central' points of �nite sets

Pier Luigi Papini

Let X be a normed space of �nite or in�nite dimension. Given a �nite set A, or the

convex hull of such a set, the research of some particular points is interesting, also with

respect to applications: for example, the (Chebyshev) center; the Fermat-Weber point; the

minimizing point of some convex function of the points.

Apart from the case of two-dimensional Minkowski spaces and from Hilbert spaces,

also for rather "nice" norms (when dim(X)3) we can have the following "pathological"

situations: the solution(s) of the above problems do(es) not belong to the convex hull of

A, and/or give points far from each other.

Uniqueness theorems for convex bodies in non-Euclidean spaces

Carla Peri

(joint work with Paolo Dulio)

We present a uni�ed approach to X-rays of order i (i 2 R) of measurable sets in spaces

of constant curvature and generalize uniqueness results for convex bodies obtained by

Falconer, Gardner and Vol�ci�c in the Euclidean space.

As a consequence we characterize centrally symmetric convex bodies by means of their

section functions, by extending to arbitrary dimension a result obtained by G. Fejes T�oth

and Kemnitz in the plane.

Some of these results extend locally to Riemannian 2-manifolds.

Stochastical approximation of smooth convex bodies

Matthias Reitzner

Choose n points from the interior of a given convex bodyK in IR

d

, randomly, independently,

and according to the uniform distribution. The convex hull of these random points is a

random polytope. We are interested in the expected values IE

n

(V

i

) of the intrinsic volumes

of the random polytope.

We give an asymptotic series expansion for IE

n

(V

i

) as n ! 1 if the convex body K

is su�ciently smooth, i.e., with boundary of di�erentiability class C

k

and with positive

Gaussian curvature for all boundary points.

IE

n

(V

i

) = V

i

(K) + c

(i;d)

2

(K)n

�

2

d+1

+ c

(i;d)

3

(K)n

�

3

d+1

+ � � �+O(n

�

k�2

d+1

)

as n!1. The coe�cient c

(i;d)

2

(K) can be given explicitly.

The approximation of a convex body by random polytopes is improved if the vertices of

the random polytope are on the boundary of the convex body. Thus we are also interested

in random polytopes with vertices chosen according to a given density function on the

boundary of the convex body. The expected values of the i{th intrinsic volumes of the

random polytope are investigated, and we give an asymptotic series expansion for IE

n

(V

i

)

as n!1 if the convex body is su�ciently smooth.
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One some recent results from geometric topology related to convex geometry

Du

�

san Repov

�

s

The Banach{Mazur (-Minkowski) compactum Q(n) is usually de�ned as the space of all

isometry classes of n{dimensional Banach spaces, equipped with the metric log �, where

�(X; Y ) = inffkTk � kT

�1

k : T : X ! Y an isomorphismg is the classical Banach{Mazur

distance. Equivalently, one can de�ne Q(n) as the orbit space C(n)=GL(n) of the GL(n){

action on the space C(n) of all compact convex, centrally symmetric bodies in R

n

, equipped

with the Hausdor� metric �

H

, the homeomorphism between C(n)=GL(n) and Q(n) being

induced by the Minkowski functional p

V

(x) = inff

1

t

j tx 2 V g: Furthermore, by associating

to every convex body V 2 C(n) its minimal (L�owner) ellipsoid E

V

, one gets a continuous

correspondence L : C(n) ! E to the space of all ellipsoids, which preserves the GL(n){

action. Clearly, Q(n) is homeomorphic to L

�1

(B

n

)=O(n). Geometric topologists have for

a long time been seeking a simple characterization of Q(n). The �rst success came when

few years ago Ageev{Bogatyi{Fabel and independently Antonyan, showed that Q(n) is an

AR. Hopes were raised that perhaps even more is true { that Q(n) might be homeomorphic

to the Hilbert cube I

1

. Then Ageev{Bogatyi surprisingly proved that at least for n = 2

this is not the case. Recently, the following result has been obtained by Ageev-Repov�s (On

Banach-Mazur compacta, J. Austral. Math. Soc. A 69 (2000), 316{335).

Theorem: Q(2)nfEucl:g is a Hilbert cube manifold, where Eucl. is the Euclidean point,

i.e. [L

�1

(B

n

)].

In our attempts to generalize this theorem for all n, we have encountered a di�culty,

summarized as follows:

Conjecture: Let D

i

be an H

i

{orbit, where H

i

is proper subgroup of O(n) and let

P

m

i=1

�

i

= 1; �

i

� 0. Then the body Conv(

P

m

i=1

�

i

D

i

) "essentially" di�ers from the ball,

in the sense that its boundary does not contain any open subset of the sphere.

For explanation and details please, see pp. 332{333 of our paper (op. cit.). If Conjecture

1 is con�rmed, then our proof of the theorem above will immediately yield the following:

Conjecture: For every n � 3, Q(n) n fEucl:g is a Hilbert cube manifold.

This would then be the ultimate of what one could expect since the following is believed

to be true:

Conjecture: Q(n) is not homeomorphic to the Hilbert cube for any n � 3.

Perhaps all that is missing is an input from convex geometry and this quest might be

over.

Distances between non-symmetric convex bodies.

Mark Rudelson

We discuss the estimate of the maximal Banach{Mazur distance between two convex bodies

in R

n

. In the symmetric case John's theorem implies that the distance between the two

bodies is bounded by n. Gluskin proved that this estimate is essentially sharp. Without the

symmetry assumption, the bound following from John's theorem is n

2

, while no examples

of bodies, where the distance would be more than cn are known. Using random rotations

we reduce the distance estimate to the MM

�

-problem of Milman: let K be a convex body

in R

n

. What is the upper bound for

minw(TK)w((TK)

�

);

where the minimum is taken over all a�ne images of K. Here w(K) is the mean width.
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We show that the MM

�

-estimate can be further reduced to evaluating the volume of a

section of the di�erence body K �K by a subspace E via the maximal volume of sections

of K parallel to E. Using such estimate, previously obtained by the author, we show

that the distance between two n-dimensional convex bodies does not exceed n

4=3

up to a

logarithmic factor.

Research was supported in part by NSF grant DMS-9706835.

The Solution of Polyhedra

Idjad Kh. Sabitov

Let P be a polyhedron in IR

3

with triangle faces and let F

i

; F

j

be two faces with a common

edge. The diagonal of P joining the vertices of F

i

and F

j

which are not incident to their

common edge is called small diagonal.

Theorem: Every small diagonal d of any polyhedron P is a root of a polynomial

equation of view

A

0

(l; V )d

2M

+ A

1

(l; V )d

2M�2

+ � � �+ A

M

(l; V ) = 0;

where coe�cients A

i

(l; V ) are, in their turn, polynomials in the set l of squares of lengths

of P

0

s edges and V = vol(P ), with some rational numerical coe�cients depending, as well

as the degree 2M , on the combinatorial structure of P and the choice of faces de�ning the

searched small diagonal.

By preceding results of author the volume of P also can be found as a root of some

polynomial equation, so in general we have a �nite number of possible values of any small

diagonal and this permits to propose an algorithmical solution to the problem of isometrical

realisation in IR

3

of a given metrical simplicial complex.

Crofton formulas and zonoids

Rolf Schneider

In the course of his investigations on \Geometries in which the planes minimize area",

Busemann suggested to study the question whether a given k-dimensional area, vol

k

, in

a�ne space A

n

satis�es a Crofton formula, that is, whether there exists a (positive) measure

�

n�k

on the space A(n; n� k) of (n� k)-
ats in A

n

so that

vol

k

(M) =

Z

A(n;n�k)

===(F \M) d�

n�k

(F )

holds for every smooth k-dimensional submanifold M . Such formulas and more general

ones have been established for the Holmes-Thompson area in hypermetric Minkowski spaces

(Adv. Math. 129 (1997), 222 - 260). More recently, I investigated Minkowski spaces in

which the Busemann area does not satisfy a Crofton formula (Beitr. Algebra Geom. 42

(2001), 263 { 273). I also extended the Crofton formula for the Holmes-Thompson area

to hypermetric (not necessarily smooth) Finsler spaces (Arch. Math. 77 (2001), 85 {

97). Through the local norms, such investigations depend on the study of (generalized)

projection bodies and intersection bodies.
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Geometric probabilities for convex bodies of revolution in the Euclidean

space E

3

Marius I. Stoka

(joint work with Andrei Duma)

Let K be an arbitrary convex body of revolution with centroid S and oriented axis of

rotation d. Clearly, the axis d is determined by the angle # between d and the z-axis

and by the angle ' between the projection of d on the xy-plane and the x-axis and we

express this by writing d = d(#; '). If for a given d = d(#; '), the body K is tangent to

the xy-plane in such a way that the centroid S lies in the upper halfspace, we dentoe by

p(#; ') the distance from S to the xy-plane. Then the length of the projection of K on the

z-axis is given by L(#; ') = p(#; ') + p(� � #; '). Note that p(#; ') does actually depend

only on the angle # and moreover, since K is a body of revolution about the axis d the

value p(#; ') is invariant to any rotation about this axis, say by any �. Now let F be a

fundamental cell of the lattice R and assume that the two 3-dimensional random variables

de�ned by the coordinates of S and by the triple (#; '; �) are uniformly distributed in the

cell F and in [0; �]� [0; 2�]� [0; 2�] respectively. We investigate the probability p

K;R

that

the body K intersects the lattice R.

Intrinsic Volumes and Gaussian Processes

Richard A. Vitale

As renormalized versions of the classic quermassintegrals, intrinsic volumes play an im-

portant role in the theory of convex bodies, notably in the Steiner volume formula and in

the celebrated characterization theorem of Hadwiger. More recently, they have been seen

to have a remarkable connection with Gaussian processes through the work of Sudakov,

Chevet, and Tsirelson, among others. This has led to novel insights in both areas. The

talk sketched some recent results in this vein, including (i) extension of intrinsic volumes

to in�nite dimensional convex bodies, (ii) bounds and estimates for Gaussian processes,

(iii) Ito-Nisio oscillation and Gaussian black holes, (iv) the Wills functional, and (v) the

Brownian motion body.

Determination of convex bodies and reconstruction of polyoptes by certain

section functions

Aljo

�

sa Vol

�

ci

�

c

(joint work with Alexander M. Lindner)

For any convex body K in R

d

containing the unit sphere S

d�1

in its interior, and for

1 � i � d� 1, the spherical i-section function l

i

(K) is de�ned as the function associating

to any i-dimensional a�ne subspace H tangent to S

d�1

the i-dimensional volume of H\K.

In a recent paper Barker and Larman asked if whether l

i

(K) determines K uniquely,

among all convex bodies, giving a substantial positive answer:

Theorem: Under the conditions described above, K is uniquely determined if 1 � i �

d� 2.

The following question remains open, apart from a partial result in the planar case:

Problem: Is this true for i = d� 1?
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We have shown that the class of plane convex bodies which are uniquely determined by

the function l

1

is of second Baire category and that it contains the triangles. It contains

the circles, too, by a result of Barker and Larman. This does not mean however that most

convex bodies are uniquely determined by l

1

.

Our main result is that for any d � 2, l

d�1

determines any convex polytope among

convex polytopes.

The proof for d � 3 is di�erent from the proof for the case d = 2 (and surprisingly more

straightforward). Both proofs are, in principle, reconstructive.

The Cramer{Rao inequality for star bodies

Deane Yang and Gaoyong Zhang

(joint work with Erwin Lutwak)

Associated with each body K in Euclidean n-space IR

n

is an ellipsoid �

2

K called the

Legendre ellipsoid of K. It can be de�ned as the unique ellipsoid centered at the body's

center of mass such that the ellipsoid's moment of inertia about any axis passing through

the center of mass is the same as that of the body. In an earlier paper the authors showed

that associated with each convex body K � IR

n

is a new ellipsoid �

�2

K that is in some

sense dual to the Legendre ellipsoid. The Legendre ellipsoid is an object of the dual

Brunn{Minkowski theory, while the new ellipsoid �

�2

K is the corresponding object of the

Brunn{Minkowski theory. The present paper has two aims. The �rst is to show that

the domain of �

�2

can be extended to star-shaped sets. The second is to prove that the

following relationship exists between the two ellipsoids: If K is a star shaped set, then

�

�2

K � �

2

K;

with equality if and only if K is an ellipsoid centered at the origin. This inclusion is the

geometric analogue of one of the basic inequalities of information theory { the Cramer-Rao

inequality.

Edited by Paul Goodey, Peter M. Gruber & Matthias Reitzner
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