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The 
onferen
e was organized by Volker En� (Aa
hen) and Christian G�erard (Palaiseau),

the 44 parti
ipants 
ame from twelve 
ountries.

Both random and deterministi
 S
hr�odinger and Dira
 operators were studied in
luding

intera
tions with ele
tri
 and magneti
 �elds and with quantized �elds. Spe
ial topi
s

of the talks were the integrated density of states for random S
hr�odinger operators, the

photoele
tri
 e�e
t, Born-Oppenheimer approximation, quantum �eld theory and semi-


lassi
al analysis, high energy asymptoti
s and long range s
attering theory and resolvent

estimates.
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Abstra
ts

Ohmi
 behaviour in a Hamiltonian model

Stephan De Bi

�

eve

(joint work with L. Bruneau)

Many simple mi
ros
opi
 or ma
ros
opi
 systems obey a phenomenologi
al equation of the

type

�q(t) +rV (q(t)) + 
 _q(t) = 0; (
 > 0):

Examples in
lude the motion of ele
trons in a metal, or of a small parti
le in a vis
ous

medium. The energy loss (at a rate �
 _q

2

) implied by the above equation leads to several

well-known phenomena: for potentials bounded below, the parti
le will 
ome to a stop at

one of the 
riti
al points of the potential. If the 
riti
al point is a minimum, it will do so

exponentially fast. If, on the other hand, rV (q) = �F , the parti
le will rea
h a limiting

speed v(F ), proportional to the applied �eld. This is at the origin of Ohmi
 law.

The phenomenologi
al fri
tion term �
 _q summarizes the rea
tion of the environment of

the parti
le to the motion of the latter. The energy lost by the parti
le is transferred to

the medium in whi
h it moves and one expe
ts a Hamiltonian treatment of the 
ombined

system to be possible.

We have presented su
h a model, whi
h is of the Pauli-Fierz type and vaguely related

to the Caldeira-Leggett model as well. Its Hamiltonian is

H(q; p; �; �) =

p

2

2

+ V (q) +

ZZ

dx dy

�




2

(r

y

�)

2

(x; y) + �(x; y)

2

�

+

Z

dx dy�(x� q; y)�(x; y):

Here � is a \form fa
tor" (� 2 C

1

0

; � � 0) des
ribing the extension of the parti
le. The


orresponding equation of motion are

(�

2

t

� 


2

�

y

)�(x; y) = ��(x� q(t); y)

�q +rV (q) = �

Z

R

3

dx

Z

R

3

dy �(x� q; y)(r

x

�)(x; y):

Staring at there for a while, one realises that one 
an see the wave �eld �(x; y) as rep-

resenting for ea
h x an \obsta
le" in the form of a three-dimensional os
illating medium.

When the parti
le passes at x, it pumps energy into the �eld �(x; �).

For this model we have proven that, if 
 is large enough and if the initial 
ondition does

not have to mu
h energy, then, for all rV = �F not too large

jq(t)� (q

1

+ v(F )t)j ! 0

where v(F ) is an expli
itly 
omputable fun
tion with v

0

(0) 6= 0. We have also proven the

expe
ted results for 
on�ning potentials.

Singular Lagrangian manifolds and semi-
lassi
al analysis

Yves Colin de Verdi

�

ere

We want to des
ribe mi
rolo
al solutions of a family of S
hr�odinger equations

^

H

E;t

u =

O(h

1

), where

^

H

E;t

= �h

2

�

2

x

+ V

t

(x)� E

2



and t is a parameter in R

d

, x 2 R. The potential V

t

is smooth w.r. to (t; x), uniformly

w.r. to (t; x).

We look at generi
 (non removable) singularities of the family of 
urves �

2

+V

t

(x)�E = 0.

We study the problem on the 
lassi
al level des
ribing normal forms and universal un-

foldings. Typi
al simple examples are the Morse 
ase (see YCdV and B. Parisse, CMP

205, 459{500) and the 
usp. We des
ribe the mi
rolo
al normal forms using Fourier In-

tegral operators. From this normal form, we get a mi
rolo
al s
attering matrix near

ea
h singular point. We 
an then study the global problem leading to the \singular

Bohr-Sommerfeld rules" for the eigenvalue problem. There is a preprint available on

http://www-fourier.ujf-grenoble.fr/~y
olver. The higher dimensional 
ase (inte-

grable 
ase) is studied in the PhD thesis of San V~u Ngo

.


 (CPAM 53, 143{217) and in the

preprint YCdV and SVN (pr�epubli
ations Institut Fourier no. 508).

Spe
tral methods in the study of the return to equilibrium

Jan Derezinski

The problem of the return to equilibrium for W*-dynami
al systems 
an be redu
ed to

the study of the spe
trum of 
ertain self-adjoint operators, 
alled Liouvilleans. I des
ribe

some methods due to V. Jak�si �
, C. A. Pillet and myself, with 
an be used to study Pauli-

Fierz Liouvilleans and to prove the return to equilibrium for Pauli-Fierz systems at various

temperatures.

Pauli operator and Aharonov Casher theorem for measure valued magneti


�elds

L

�

aszl

�

o Erd

}

os

(joint work with Vitali Vougalter)

We de�ne the two-dimensional Pauli operator and identify its 
ore for magneti
 �elds

that are regular Borel measures. The magneti
 �eld is generated by a s
alar potential

hen
e we bypass the usual A 2 L

2

lo



ondition on the ve
tor potential whi
h does not allow

to 
onsider su
h singular �elds. We extend the Aharonov-Casher theorem for magneti


�elds that are measures with �nite total variation and we present a 
ounterexample in 
ase

of in�nite total variation. One of the key te
hni
al tools is a weighted L

2

estimate on a

singular integral operator.

On the spe
tral theory of some quantum �eld hamiltonians

Vladimir Georges
u

Let H be an in�nite dimensional 
omplex Hilbert spa
e and C a unital C*-algebra on H

without non-zero �nite rank proje
tions. If N <1, let �

N

(H) be the trun
ated symmetri


Fo
k spa
e asso
iated to H, and a

N

(u) the trun
ated annihilation operators. Denote by

C

N

the C*-algebra on �

N

(H) generated by the operators a

N

(u) with u 2 H and �

N

(s)

with s 2 C.

The main result presented in this talk says that there is a unique morphism C

N

!

C 
 C

N�1

su
h that the image of a

N

(u) is 1 
 a

N�1

(u) and that of �

N

(s) is s 
 �

N�1

(s).

Moreover, the kernel of this morphism is the algebra of 
ompa
t operators on �

N

(H).
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This fa
t allows one to 
ompute the essential spe
trum and to prove the Mourre estimate

for boson �eld hamiltonians with a parti
le number 
ut-o� and one-boson kineti
 energy

aÆliated to C.

Rigorous Results on Mole
ular Propagation: Past, Present, and Hopes for the

Future

George Hagedorn

The time-dependent Born-Oppenheimer Approximation is the main sour
e of information

about mole
ular propagation. It leads to an asymptoti
 expansion in powers of � for

solutions to the mole
ular S
hr�odinger equation. Here �

4

is the ele
tron mass divided by

the mean nu
lear mass. By applying an optimal trun
ation te
hnique to this expansion,

we obtain an approximation whose errors are bounded by C

1

exp(�C

2

=�

2

) with C

2

> 0.

A basi
 assumption of Born-Oppenheimer Approximations is that the ele
tron energy

level of interest stays well separated from the rest of the ele
troni
 spe
trum. The simplest

violations of this assumption o

ur at 
rossings and avoided 
rossings. We des
ribe the

e�e
ts of these phenomena on the propagation of mole
ular wave pa
kets.

To do better than the exponential estimates des
ribed above, one must inje
t new physi
s

into the approximations. We des
ribe 
onje
tures about how one might des
ribe mole
ular

propagation when non-adiabati
 behavior of ele
trons is involved.

Wegner estimate and integrated density of states for random operators with

nonsign de�nite potentials

Peter David Hislop

We study the IDS of random S
hr�odinger and wave operators with Anderson type poten-

tials. The new result is that we 
an treat single-site potentials with no sign 
onditions. We

prove a Wegner estimate at energies below inf �(H

0

) and, provided the disorder is small,

at internal band edges. These results apply to a family of S
hr�odinger operators with

random magneti
 �elds. The proof is based on the ve
tor �eld method of Klopp and the

L

p

estimate on the spe
tral shift fun
tion of Combes, Hislop, Nakamura.

QFT for s
alar parti
les in external for
es on Riemannian manifolds

Hiroshi Isozaki

We introdu
e a 
lass of non
ompa
t Riemannian manifolds on whi
h we 
an dis
uss QFT

in external for
es. This 
lass 
ontains physi
ally important examples su
h as Eu
lidean

spa
e, hyperboli
 spa
e and, by passing to 
onformal 
hange, the S
hwarzs
hild metri
.

The S-matrix for massive Klein-Gordon equation is unitarily implemented on the Fo
k

spa
e.

We 
an also do the same thing for the massless 
ase provided the spa
e is asymptoti
ally


at or it is hyperboli
.
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Sharp spe
tral asymptoti
s for operators with irregular 
oeÆ
ients. Pushing

the limits.

Vi
tor Ivrii

For operators with �rst derivatives of 
oeÆ
ients 
ontinuous with 
ontinuity modulus

O((log jx� yj)

�1

) resp. o((log jx� yj)

�1

)

we prove spe
tral asymptoti
s with the remainder estimate O(h

1�d

) (resp. o(h

1�d

) under

billiard 
ondition). The advan
e is based on the logarithmi
 un
ertainty prin
iple. One


an use mi
rolo
al analysis as soon as

�




� C

�

hj loghj

where �; 
 are s
ales with respe
t to �; x respe
tively.

Semi
lassi
al resolvent estimates for S
hr�odinger matrix operators

Thierry Je
ko

For the semi
lassi
al S
hr�odinger operator �h

2

�

x

I

2

+M(x) in L

2

(R

n

; C

2

) with smooth

long range potential, we investigate the semi
lassi
al Mourre method to get the resolvent

estimates R(� � i0) = O(h

�1

) as bounded operator from L

2

s

(R

n

; C

2

) in L

2

�s

(R

n

; C

2

) for

s >

1

2

. If the eigenvalues of M do not 
ross, it suÆ
es to require a non-trapping 
ondition

on the eigenvalues of the symbol at energy �, but if the eigenvalues of M 
ross in a


odimension 2 submanifold, then an obstru
tion 
an o

ur at the 
rossing (that might

generates resonan
es 
lose to the real axis). However, if this obstru
tion do not o

ur and

a non-trapping 
ondition holds, one 
an perform the semi
lassi
al Mourre method under

a further, quite restri
tive assumption on the Hamiltonian 
ows of the eigenvalues of the

symbol.

The High-Energy Asymptoti
s of One-Dimensional Dira
 S
attering

Wolf Jung

Denote the transmission amplitude in one-dimensional quantum s
attering by � = e

�iÆ

.

Now Æ has an asymptoti
 expansion in inverse powers of the momentum q or of the energy

E. Standard te
hniques for obtaining these expansions are related to Krein's spe
tral shift

fun
tion �(E) or to the WKB method. I proposed a di�erent te
hnique, whi
h is simpler

and has a dire
t physi
al interpretation:

1. 
onstru
t a 
onvergent series (Born or Jost)

2. the terms 
onsist of os
illatory integrals, whi
h yield an asymptoti
 expansion by

partial integration

3. knowing that an asymptoti
 expansion exists, obtain the 
oeÆ
ients from an ansatz

and re
ursion relations.

The method in
luded transforming both the S
hr�odinger- and the Dira
 equation to a

massless Dira
-type equation with energy-dependent potential matrix. I have learned from

the audien
e that the results and the te
hniques of the above are well-known in the theory

of solitons, at least for energy-independent potentials. New aspe
ts are the parallel treat-

ment of S
hr�odinger- and Dira
 equations, a modi�ed Born series taking into a

ount the

largest term in the energy-dependent potential, the physi
al interpretation in terms of su-

perposition and interferen
e of Feynman amplitudes, and a 
onje
ture about inter
hanging
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the limits q !1 and ~! 0. A preprint on these topi
s will be available from mp ar
 in

autumn.

The photoele
tri
 e�e
t for an atom 
oupled to a se
ond quantized

ele
tromagneti
 �eld

Fr

�

ederi
 Klopp

(joint work with V. Ba
h, H. Zenk)

We 
onsider an atom with a single bound state (that is the ground state) 
oupled to a

quantized ele
tromagneti
 �eld. We 
onsider the ionization of the atom by an in
ident

photon 
loud 
onsisting of N involved photons. We prove that the total ionized 
harged

is additive in the N involved photons. Furthermore, Einstein's predi
tion for the photo-

ele
tri
 e�e
t is quantitatively and qualitatively 
orre
t to leading order in the 
oupling

parameter; that is ionization only happen if the single photons have momentum large

enough to 
ross the energy gap, and the kineti
 energy of the eje
ted ele
tron is then

given by the di�eren
e of the photon energy of ea
h single photon (in the 
loud) and the

ionization energy.

Regularity of the surfa
e density of states for random S
hr�odinger operators

Vadim Kostykin

(joint work with Robert S
hrader)

We 
onsider random S
hr�odinger operators with the intera
tion lo
alized at a hypersurfa
e

R

�

1

in R

�

, �

1

� �. An important quantity related to su
h a kind of operators is the

surfa
e density of states, whi
h measures a density of states per unit surfa
e. So far it

was known that this quantity is a distribution of order at most 3. Using the 
on
ept of

the spe
tral shift density and applying the theory of the spe
tral shift fun
tion we prove

that the surfa
e density of states belongs to L

p

lo


for any 1 � p <1. In the 
ase of Ja
obi

matri
es (dis
rete S
hr�odinger operators) the result is sharper: the surfa
e density of states

is uniformly bounded by one.

Spe
tral shift fun
tion and semi-
lassi
al asymptoti
s for trapping

perturbations

Vesselin Petkov

(joint work with V. Bruneau)

We examine the representation of the derivative �

0

(�; h) of the spe
tral shift fun
tion related

to two self-adjoint operators L

j

(h), j = 1; 2 for � 2 [a; b℄, 0 < a < b, 0 < h � h

0

. The

operators

L

j

(h) =

X

j�j�2

a

j;�

(x; h)(hD)

�

are long-range perturbations of �h

2

� and the distribution �(�; h) 2 D

0

(R) is de�ned by

the tra
e

C

1

0

(R) 3 ' 7! tr('(L

1

(h))� '(L

2

(h)) = h�

0

(�; h); '(�)i

D

0

;D

:
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Our main result says that �

0

(�; h) admits a representation

�

0

(�; h) =

h

X

w2ResL

j

\
;Imw 6=0

�

Im

�j�� wj

2

+

X

w2ResL

j

\J

Æ(�� w)

i

2

j=1

+

1

�

r(x; h);(1)

where 
 �� C is a 
ompa
t domain, J = 
 \ R

+

, ResL

j

denotes the set of resonan
es

of L

j

in fImw � 0g and jr(�; h)j � C(w)h

�n

for W �� 
, � 2 I = W \ R

+

, while

[a

j

℄

2

j=1

= a

2

� a

1

. Applying the representation (1), we obtain a lo
al tra
e formula and a

Breit-Wigner approximation of E

0

(�; h).

Finite gap potentials and WKB asymptoti
s for 1D S
hr�odinger operators

Christian Remling

(joint work with Thomas Krie
herbauer)

Consider a one-dimensional S
hr�odinger operator H = �

d

2

dx

2

+ V (x) with power de
aying

potential V (x) = O(x

��

). We 
onstru
t examples whi
h show that a previously obtained

dimensional bound on ex
eptional sets is optimal in its whole range of validity. This


onstru
tion uses �nite gap potentials and relies on pointwise bounds on these potentials.

The main part of the argument 
onsists of an analysis of the so-
alled Ja
obi inversion

problem.

Relativisti
 Hamiltonian for Ele
tron in Heavy Atoms

Heinz Siedentop

(joint work with Raymond Brummelhuis and Edgardo Sto
kmeyer)

Jansen and He� | 
orre
ting an earlier paper of Douglas and Kroll | have derived

a (pseudo-)relativisti
 energy expression su

essfully des
ribing heavy atoms. It is an

approximate no-pair Hamiltonian in the Furry pi
ture. We present a re
ent result on

the boundedness of the energy jointly obtained with Brummelhuis and Sto
kmeyer: the


orresponding (one-parti
le) quadrati
 form is bounded from below if and only if 0 �

�Z � 1:006. This allows to de�ne a distinguished self-adjoint operator for the same range

of 
oupling 
onstants.

Long-range three-body s
attering

Erik Skibsted

We 
onsider the problem of asymptoti
 
ompleteness (AC) for a system of three quantum

me
hani
al parti
les with pair intera
tions

�

�

V

�

(x

�

) = O(jx

�

j

���k�j

):

With the assumption of spheri
al symmetry and a negative upper bound at in�nity, AC

holds in the regime � 2 (

1

2

;

p

3� 1℄. In one dimension and under further 
on
avity 
ondi-

tions, AC holds in (0;

1

2

℄ as well.

Another new result is AC for a 
lass of potentials with a 
ertain positive lower bound

at in�nity, again in the regime � 2 (0;

1

2

℄.
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Adiabati
 de
oupling and the time-dependent Born-Oppenheimer theory

Stefan Teufel

(joint work with Herbert Spohn)

We 
onsider a mole
ular Hamiltonian of the form

H =

~

2

2M

�

� ir

x

+ A

ext

(x)

�

2

+

~

2

2m

�

� ir

y

� A

ext

(y)

�

2

+ V (x; y)(2)

on H = L

2

(R

3n

x

)
L

2

(R

3e

y

). Here n is the number of nu
lei, e is the number of ele
trons, M

is the mass of the nu
lei and m the mass of the ele
trons. Sin
e the ratio "

2

:=

m

M

� 10

�4

is

typi
ally small, it 
an be used as an expansion parameter. Going to atomi
 units ~ = m = 1

and res
aling the potentials turns (2) into

H

"

=

"

2

2

�

� ir

x

+ A

ext

(x)

�

2

+H

e

(x)(3)

with

H

e

(x) :=

1

2

�

� ir

y

� A

ext

(y)

�

2

+ V (x; y) :

We show that on subspa
es belonging to isolated energy bands E(x), i.e. H

e

(x) 

E

(x; y) =

E(x) 

E

(x; y) and E(x) separated from the rest of spe
(H

e

(x)) by a gap uniformly for

x 2 R

3n

, the full time evolution is well approximated by an e�e
tive one generated by

H

"

BO

=

"

2

2

�

� ir

x

+ A

ext

(x) + A

geo

(x)

�

2

+ E(x)

for the nu
lei only. A

geo

(x) := �ih 

E

(x);r

x

 

E

(x)i is known as the Berry 
onne
tion and

the repla
ement H

"

! H

"

BO

as Peierl's substitution.

For the pre
ise statement let U : H ! L

2

(R

3n

),  7! h 

E

(x);  (x)i

L

2

(R

3e

)

. We show that

there is a 
onstant 
 <1 su
h that










�

e

�iH

"

t

"

� U

�

e

�iH

"

BO

t

"

U

�

P

�










B(H)

� 
 " (1 + jtj)

with P

�

:=

R

�

dx h 

E

(x); �i 

E

(x). We also prove a version of the above statement whi
h

holds \lo
ally" in the 
on�guration spa
e of the nu
lei.

The Wegner estimate and the 
ommon density of the Anderson 
oupling


onstants

Ivan Veseli

�




Wegner's estimate (Z.Phys B44, 1981) plays a 
ru
ial role in the analysis of random

S
h�odinger operators from solid state physi
s. On the one hand, it is part of the exis-

ten
e proof of pure point spe
trum in 
ertain energy regions. On the other, it supplies

information about the regularity properties of the integrated density of states.

The talk presents a new proof of Wegner's estimate, whi
h is valid also for 
ertain

inde�nite Anderson models. A new aspe
t is the use of the 
ommon density of the Anderson


oupling 
onstants instead of the often used 
onditional density.
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Resolvent estimates on in�nite volume Riemannian manifolds with 
usps

Georgi Vodev

The limiting absorption prin
iple is proved for the Lapla
e-Beltrami operator on in�nite

volume Riemannian manifolds whi
h may have 
usps. Moreover, an exponential bound

(with respe
t to the spe
tral parameter) of the norm of the limiting operator (on the real

axis) is proved. This extends a previous result by Burq to more general manifolds. As a


onsequen
e, a free of resonan
es region of the form

jIm�j � e

�C

1

j�j

; j�j � C

2

; C

1

; C

2

> 0;

is obtained for two dimensional Riemann surfa
es of the form

M = Z [X

1

[ � � � [X

I

[ Y

1

[ � � � [ Y

J

; I � 0; J � 1;

where Z is a 
ompa
t Riemannian manifold and

X

i

= [a

i

;1)

r

� (R n h

i

Z)

t

; a

i

; h

i

> 0; with metri
 dr

2

+ e

�2r

dt

2

Y

i

= [b

i

;1)

r

� (R n `

i

Z)

t

; b

i

; `

i

> 0; with metri
 dr

2

+ 
osh

2

rdt

2

;

and the resonan
es are de�ned as being the poles of the meromorphi
 
ontinuation of the

resolvent

R(�) :=

�

�

M

� �

2

�

1

4

�

�1

: L

2


omp

(M; dvol

g

) �! L

2

lo


(M; dvol

g

)

from Im� < 0 to the whole 
omplex plane C .

Lifshits Tails in Magneti
 Fields

Simone Warzel

(joint work with Thomas Hupfer and Hajo Les
hke)

We investigate the leading low-energy fall-o� of the integrated density of states of a 
harged

quantum parti
le subje
t to a 
onstant magneti
 �eld and repulsive impurities randomly

lo
ated a

ording to Poisson's distribution.

This so-
alled magneti
 Lifshits tail is determined for the 
ase of two spa
e dimen-

sions with a perpendi
ular magneti
 �eld and for all single-impurity potentials with either

super-Gaussian, Gaussian or regular sub-Gaussian de
ay at in�nity. While the result for

regular sub-Gaussian de
ay 
oin
ides with the 
orresponding 
lassi
al one, the Lifshits

tail 
aused by super-Gaussian de
ay exhibits a universal quantum behaviour. As a 
onse-

quen
e, Gaussian de
ay is proven to dis
riminate between quantum and 
lassi
al tailing.

In the 
ase of three spa
e dimensions, the magneti
 Lifshits tail is investigated for all

impurity potentials with super-Gaussian or Gaussian de
ay. Its pre
ise form is determined

for all impurity potentials with stret
hed (sub-) Gaussian de
ay. In this 
ase it turns

out that the tail is independent of the magneti
 �eld and 
oin
ides, up to a logarithmi


a

eleration, with that for one dimension and not too slowly de
aying impurity potentials.

High energy asymptoti
s of the s
attering amplitude

Dimitrij Yafaev

We �nd an expli
it expression for the kernel of the s
attering matrix 
ontaining at high

energies all terms of power order. It turns out that the same expression gives a 
omplete

9



des
ription at the diagonal singularities of the kernel in the angular variables. Both short-

and long-range ele
tri
 as well as magneti
 potentials are 
onsidered.

Behavior at in�nity of fundamental solution of time dependent S
hr�odinger

equations

Kenji Yajima

Let E(t; s; x; y) be the distribution kernel of the propagator for the time dependent

S
hr�odinger equation in R

n

,

i

�u

�t

= �

1

2

4u+ V (t; x)u; u(s; x) = �(x):(4)

We prove that the asymptoti
 behavior at in�nity of E is stable under the subquadrati


perturbations. �

2

x

V (t; x) is the Hessian of V wrt. x and

I

";T

= f(t; s) : 0 < jt� sj < T; jt� s�m�j > "; 8m 2 Z n f0gg

Theorem 1. (a) Let V satisfy the 
ondition

(SQ) lim

jxj!1

sup

t2R

1

j�

2

x

V (t; x)j = 0; j�

�

x

V (t; x)j � C

�

; j�j � 3

Then, for any 0 < �(t� s) < T , E is C

1

wrt. (x; y) and may be written in the form

E(t; s; x; y) =

e

�in�=4

(2�jt� sj)

n=2

e

iS(t;s;x;y)

a(t; s; x; y);

where S is real smooth and, as x

2

+ y

2

!1, uniformly wrt. 0 < jt� sj < T ,

�

�

x

�

�

y

�

S(t; s; x; y)�

(x� y)

2

2(t� s)

�

! 0; j�+ �j � 2;(5)

�

�

x

�

�

y

(a(t; s; x; y)� 1)! 0; j�+ �j � 0:(6)

(b) Let V (t; x) =

1

2

x

2

+W (t; x) and W satis�es (SQ). Then, for any (t; s) 2 I

";T

, E is C

1

wrt. (x; y) and may be written in the form, for 0 < t� s�m� < �, m 2 Z,

E(t; s; x; y) =

i

�m

e

�in�=4

(2�j sin(t� s)j)

n=2

e

iS(t;s;x;y)

a(t; s; x; y);

where S is real smooth and, as x

2

+ y

2

!1, uniformly wrt. (t; s) 2 I

";T

�

�

x

�

�

y

�

S(t; s; x; y)�

(x

2

+ y

2

) 
os(t� s)� 2xy

2 sin(t� s)

�

! 0; j� + �j � 2;(7)

�

�

x

�

�

y

(a(t; s; x; y)� 1)! 0; j�+ �j � 0:(8)

Spe
tral Asymptoti
s of Weyl type for S
hr�odinger operators with dis
rete

spe
trum

Le
h Zielinski

Let A be a self-adjoint operator in L

2

(R

d

) formally given by

X

1�j;k�d

D

j

(a

jk

(x)D

k

) + v(x)

10



where D

j

= �i

�

�x

j

, a

jk

= a

kj

2 L

1

(R

d

) su
h that

a

0

(x; �) =

X

1�j;k�d

a

jk

(x)�

j

�

k

� 
j�j

2

; (
 > 0)

(1 + jxj)




� v(x) � C(1 + jxj)




: (C; 
 > 0)

Let �; r 2℄0; 1℄ be �xed and assume that

jx� yj � 
v(x)

3

) 
 �

v(x)

v(y)

� C

jx� yj � 1 ) jv(x)� v(y)j � Cv(x)

1��

jx� yjr

jx� yj � 1 ) ja

jk

(x)� a

jk

(y)j � Cv(x)

��

jx� yjr

for some C; 
 > 0. Let �

0

> 0, r

0

> 0 be arbitrary �xed numbers satisfying

�

0

< � and r

0

< r

and h(x; �) = v(x)

��

0

(1 + jxj)

�r

0

. Then there exists C > 0 large enough to ensure the

estimate (for � � C)

�

�

N (A; �)�

Z

a(x;�)<�

dx

d�

(2�)

d

�

�

� C

Z

a(1�Ch)<�<a(1+Ch)

dx d�

where N (A; �) is the 
ounting fun
tion of A and a(x; �) = a

0

(x; �) + v(x). In the 
ase

(1 + jxj)

m

� v(x) � C(1 + jxj)

m

the above result gives

N (A; �) =

Z

a(x;�)<�

dx

d�

(2�)

d

�

1 +O(�

�

0

�r

0

=2

)

�

; (�

0

< �; r

0

< r):

Edited by Olaf Post
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