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Schrodinger Operators

May 13th — May 19th, 2001

The conference was organized by Volker Enf} (Aachen) and Christian Gérard (Palaiseau),
the 44 participants came from twelve countries.

Both random and deterministic Schrodinger and Dirac operators were studied including
interactions with electric and magnetic fields and with quantized fields. Special topics
of the talks were the integrated density of states for random Schrédinger operators, the
photoelectric effect, Born-Oppenheimer approximation, quantum field theory and semi-
classical analysis, high energy asymptotics and long range scattering theory and resolvent
estimates.



Abstracts

Ohmic behaviour in a Hamiltonian model
STEPHAN DE BIEVE

(joint work with L. Bruneau)

Many simple microscopic or macroscopic systems obey a phenomenological equation of the
type

G(t) + VV(q(t)) +4(t) =0, (y>0).

Examples include the motion of electrons in a metal, or of a small particle in a viscous
medium. The energy loss (at a rate —y¢?) implied by the above equation leads to several
well-known phenomena: for potentials bounded below, the particle will come to a stop at
one of the critical points of the potential. If the critical point is a minimum, it will do so
exponentially fast. If, on the other hand, VV(q) = —F, the particle will reach a limiting
speed v(F'), proportional to the applied field. This is at the origin of Ohmic law.

The phenomenological friction term —v¢ summarizes the reaction of the environment of
the particle to the motion of the latter. The energy lost by the particle is transferred to
the medium in which it moves and one expects a Hamiltonian treatment of the combined
system to be possible.

We have presented such a model, which is of the Pauli-Fierz type and vaguely related
to the Caldeira—Leggett model as well. Its Hamiltonian is

Hiapo.m =L V(g //dxdy (V,@)2(z,y) + n(.9)%] + /dxdymx—q,y)@(w,y).

Here p is a “form factor” (p € C§°, p > 0) describing the extension of the particle. The
corresponding equation of motion are

(07 — Ay ®(x,y) = —p(z — q(t), y)
§+VVig Asdxégdypx—qy)(VQ)(xy)

Staring at there for a while, one realises that one can see the wave field ®(x,y) as rep-
resenting for each x an “obstacle” in the form of a three-dimensional oscillating medium.
When the particle passes at x, it pumps energy into the field ®(z, -).

For this model we have proven that, if ¢ is large enough and if the initial condition does
not have to much energy, then, for all VV = —F' not too large

|2(t) = (¢oo + v(F)t)[ = 0
where v(F') is an explicitly computable function with v'(0) # 0. We have also proven the
expected results for confining potentials.

Singular Lagrangian manifolds and semi-classical analysis

YvVEs COLIN DE VERDIERE

We want to describe microlocal solutions of a family of Schrédinger equations H Bl =
O(h™), where

Hgy = —h?0 +Vi(z) — E



and t is a parameter in RY, # € R. The potential V; is smooth w.r. to (¢, ), uniformly
w.r. to (t,x).

We look at generic (non removable) singularities of the family of curves €24V, (z)—F = 0.
We study the problem on the classical level describing normal forms and universal un-
foldings. Typical simple examples are the Morse case (see YCdV and B. Parisse, CMP
205, 459-500) and the cusp. We describe the microlocal normal forms using Fourier In-
tegral operators. From this normal form, we get a microlocal scattering matrix near
each singular point. We can then study the global problem leading to the “singular
Bohr-Sommerfeld rules” for the eigenvalue problem. There is a preprint available on
http://www-fourier.ujf-grenoble.fr/ ycolver. The higher dimensional case (inte-
grable case) is studied in the PhD thesis of San Vu Ngoc (CPAM 53, 143-217) and in the
preprint YCdV and SVN (prépublications Institut Fourier no. 508).

Spectral methods in the study of the return to equilibrium

JAN DEREZINSKI

The problem of the return to equilibrium for W*-dynamical systems can be reduced to
the study of the spectrum of certain self-adjoint operators, called Liouvilleans. I describe
some methods due to V. Jaksi ¢, C. A. Pillet and myself, with can be used to study Pauli-
Fierz Liouvilleans and to prove the return to equilibrium for Pauli-Fierz systems at various
temperatures.

Pauli operator and Aharonov Casher theorem for measure valued magnetic
fields

LAszLO ERDOS

(joint work with Vitali Vougalter)

We define the two-dimensional Pauli operator and identify its core for magnetic fields
that are regular Borel measures. The magnetic field is generated by a scalar potential
hence we bypass the usual A € L2 condition on the vector potential which does not allow
to consider such singular fields. We extend the Aharonov-Casher theorem for magnetic
fields that are measures with finite total variation and we present a counterexample in case
of infinite total variation. One of the key technical tools is a weighted L? estimate on a

singular integral operator.

On the spectral theory of some quantum field hamiltonians

VLADIMIR GEORGESCU

Let H be an infinite dimensional complex Hilbert space and C a unital C*-algebra on H
without non-zero finite rank projections. If N < oo, let I'y(H) be the truncated symmetric
Fock space associated to H, and ay(u) the truncated annihilation operators. Denote by
Cn the C*-algebra on I'y(H) generated by the operators ay(u) with u € H and [ y(s)
with s € C.

The main result presented in this talk says that there is a unique morphism Cy —
C ® Cy_1 such that the image of ay(u) is 1 ® ay_1(u) and that of T'y(s) is s @ T'y_1(s).
Moreover, the kernel of this morphism is the algebra of compact operators on T'y(H).



This fact allows one to compute the essential spectrum and to prove the Mourre estimate

for boson field hamiltonians with a particle number cut-off and one-boson kinetic energy
affiliated to C.

Rigorous Results on Molecular Propagation: Past, Present, and Hopes for the
Future

GEORGE HAGEDORN

The time-dependent Born-Oppenheimer Approximation is the main source of information
about molecular propagation. It leads to an asymptotic expansion in powers of € for
solutions to the molecular Schrodinger equation. Here €* is the electron mass divided by
the mean nuclear mass. By applying an optimal truncation technique to this expansion,
we obtain an approximation whose errors are bounded by C; exp(—Cy/€*) with Cy > 0.

A basic assumption of Born-Oppenheimer Approximations is that the electron energy
level of interest stays well separated from the rest of the electronic spectrum. The simplest
violations of this assumption occur at crossings and avoided crossings. We describe the
effects of these phenomena on the propagation of molecular wave packets.

To do better than the exponential estimates described above, one must inject new physics
into the approximations. We describe conjectures about how one might describe molecular
propagation when non-adiabatic behavior of electrons is involved.

Wegner estimate and integrated density of states for random operators with
nonsign definite potentials

PETER DAvID HisLoP

We study the IDS of random Schrodinger and wave operators with Anderson type poten-
tials. The new result is that we can treat single-site potentials with no sign conditions. We
prove a Wegner estimate at energies below inf o(Hy) and, provided the disorder is small,
at internal band edges. These results apply to a family of Schrédinger operators with
random magnetic fields. The proof is based on the vector field method of Klopp and the
L? estimate on the spectral shift function of Combes, Hislop, Nakamura.

QFT for scalar particles in external forces on Riemannian manifolds

HirosHI ISOZAKI

We introduce a class of noncompact Riemannian manifolds on which we can discuss QFT
in external forces. This class contains physically important examples such as Euclidean
space, hyperbolic space and, by passing to conformal change, the Schwarzschild metric.
The S-matrix for massive Klein-Gordon equation is unitarily implemented on the Fock
space.

We can also do the same thing for the massless case provided the space is asymptotically
flat or it is hyperbolic.



Sharp spectral asymptotics for operators with irregular coefficients. Pushing
the limits.

VICTOR IVRII

For operators with first derivatives of coefficients continuous with continuity modulus

O((loglz —y[) ") resp. o((loglz —y|) )
we prove spectral asymptotics with the remainder estimate O(h'~%) (resp. o(h'~?) under

billiard condition). The advance is based on the logarithmic uncertainty principle. One
can use microlocal analysis as soon as

p? > Cyhlloghl

where p, 7y are scales with respect to &, x respectively.

Semiclassical resolvent estimates for Schrodinger matrix operators

THIERRY JECKO

For the semiclassical Schrodinger operator —h?A, I, + M(z) in L*(R*, C?) with smooth
long range potential, we investigate the semiclassical Mourre method to get the resolvent
estimates R(\ 4+ i0) = O(h™") as bounded operator from L?(R",C?) in L? (R",C?) for
s > % If the eigenvalues of M do not cross, it suffices to require a non-trapping condition
on the eigenvalues of the symbol at energy A, but if the eigenvalues of M cross in a
codimension 2 submanifold, then an obstruction can occur at the crossing (that might
generates resonances close to the real axis). However, if this obstruction do not occur and
a non-trapping condition holds, one can perform the semiclassical Mourre method under
a further, quite restrictive assumption on the Hamiltonian flows of the eigenvalues of the
symbol.

The High-Energy Asymptotics of One-Dimensional Dirac Scattering
WoLF JuNG
Denote the transmission amplitude in one-dimensional quantum scattering by 7 = e,
Now ¢ has an asymptotic expansion in inverse powers of the momentum ¢ or of the energy
E. Standard techniques for obtaining these expansions are related to Krein’s spectral shift
function £(E) or to the WKB method. T proposed a different technique, which is simpler
and has a direct physical interpretation:

1. construct a convergent series (Born or Jost)

2. the terms consist of oscillatory integrals, which yield an asymptotic expansion by
partial integration

3. knowing that an asymptotic expansion exists, obtain the coefficients from an ansatz
and recursion relations.

The method included transforming both the Schrodinger- and the Dirac equation to a
massless Dirac-type equation with energy-dependent potential matrix. I have learned from
the audience that the results and the techniques of the above are well-known in the theory
of solitons, at least for energy-independent potentials. New aspects are the parallel treat-
ment of Schrédinger- and Dirac equations, a modified Born series taking into account the
largest term in the energy-dependent potential, the physical interpretation in terms of su-
perposition and interference of Feynman amplitudes, and a conjecture about interchanging



the limits ¢ — oo and & — 0. A preprint on these topics will be available from mp_arc in
autumn.

The photoelectric effect for an atom coupled to a second quantized
electromagnetic field

FRrREDERIC KLOPP
(joint work with V. Bach, H. Zenk)

We consider an atom with a single bound state (that is the ground state) coupled to a
quantized electromagnetic field. We consider the ionization of the atom by an incident
photon cloud consisting of N involved photons. We prove that the total ionized charged
is additive in the NN involved photons. Furthermore, Einstein’s prediction for the photo-
electric effect is quantitatively and qualitatively correct to leading order in the coupling
parameter; that is ionization only happen if the single photons have momentum large
enough to cross the energy gap, and the kinetic energy of the ejected electron is then
given by the difference of the photon energy of each single photon (in the cloud) and the
ionization energy.

Regularity of the surface density of states for random Schrodinger operators
VADIM KOSTYKIN
(joint work with Robert Schrader)

We consider random Schrodinger operators with the interaction localized at a hypersurface
R" in R, v; < v. An important quantity related to such a kind of operators is the
surface density of states, which measures a density of states per unit surface. So far it
was known that this quantity is a distribution of order at most 3. Using the concept of
the spectral shift density and applying the theory of the spectral shift function we prove
that the surface density of states belongs to L . for any 1 < p < co. In the case of Jacobi
matrices (discrete Schrodinger operators) the result is sharper: the surface density of states

is uniformly bounded by one.

Spectral shift function and semi-classical asymptotics for trapping
perturbations

VESSELIN PETKOV

(joint work with V. Bruneau)

We examine the representation of the derivative £’(\, h) of the spectral shift function related
to two self-adjoint operators L;j(h), j = 1,2 for A € [a,b], 0 < a < b, 0 < h < hy. The
operators

Li(h) =) aj.(x, h)(hD)"
V<2

are long-range perturbations of —h?A and the distribution £(\;h) € D'(R) is defined by
the trace

Cy*(R) 3 o = tr(p(Li(h)) = @(La(h)) = (€'(A, 1), 0(A)pp.



Our main result says that £'(), h) admits a representation
2

M eon=] ¥ ot Y 0w ),

T|IA — w|? j=1
w€EResL; N, Imw#0 w€ResL;NJ

where Q@ CC C is a compact domain, J = Q NR", ResL; denotes the set of resonances
of L; in {Imw < 0} and |[r(\,h)] < C(w)h™ for W cC Q, A € I = W NR", while
la;]5—; = as — a;. Applying the representation (1), we obtain a local trace formula and a
Breit-Wigner approximation of (), h).

Finite gap potentials and WKB asymptotics for 1D Schrodinger operators
CHRISTIAN REMLING

(joint work with Thomas Kriecherbauer)

Consider a one-dimensional Schrédinger operator H = —dd—; + V(x) with power decaying
potential V(z) = O(z~). We construct examples which show that a previously obtained
dimensional bound on exceptional sets is optimal in its whole range of validity. This
construction uses finite gap potentials and relies on pointwise bounds on these potentials.
The main part of the argument consists of an analysis of the so-called Jacobi inversion
problem.

Relativistic Hamiltonian for Electron in Heavy Atoms
HEINZ SIEDENTOP

(joint work with Raymond Brummelhuis and Edgardo Stockmeyer)

Jansen and Hefl — correcting an earlier paper of Douglas and Kroll — have derived
a (pseudo-)relativistic energy expression successfully describing heavy atoms. It is an
approximate no-pair Hamiltonian in the Furry picture. We present a recent result on
the boundedness of the energy jointly obtained with Brummelhuis and Stockmeyer: the
corresponding (one-particle) quadratic form is bounded from below if and only if 0 <
aZ < 1.006. This allows to define a distinguished self-adjoint operator for the same range
of coupling constants.

Long-range three-body scattering

ERIK SKIBSTED

We consider the problem of asymptotic completeness (AC) for a system of three quantum
mechanical particles with pair interactions

07V (%) = O(la* 7 17).

With the assumption of spherical symmetry and a negative upper bound at infinity, AC
holds in the regime p € (%, v/3 — 1]. In one dimension and under further concavity condi-
tions, AC holds in (0, 3] as well.

Another new result is AC for a class of potentials with a certain positive lower bound

at infinity, again in the regime p € (0, 3].



Adiabatic decoupling and the time-dependent Born-Oppenheimer theory
STEFAN TEUFEL
(joint work with Herbert Spohn)

We consider a molecular Hamiltonian of the form
2 2

@ H= (=¥t @) o (<iV, - Aw() V)

on H = L*(R") ®L2(R§e). Here n is the number of nuclei, e is the number of electrons, M
is the mass of the nuclei and m the mass of the electrons. Since the ratio £2 := S 107*is
typically small, it can be used as an expansion parameter. Going to atomic units h = m =1
and rescaling the potentials turns (2) into

2

(3) o= (= iV A (@) + Ha(a)
with
H.(z) := %( — iV, — Aext(y)>2 + V(zx,y).

We show that on subspaces belonging to isolated energy bands E(z), i.e. He(2)Yg(z,y) =
E(z)Yg(x,y) and E(x) separated from the rest of spec(H,(z)) by a gap uniformly for
x € R?, the full time evolution is well approximated by an effective one generated by

52

2
fo= 5 (= ia + Auwt(2) + Ago(®)) + B ()
for the nuclei only. Ageo(z) = —i(¢p(x), V,1¥r(2)) is known as the Berry connection and
the replacement H® — Hy as Peierl’s substitution.
For the precise statement let U : H — L*(R*"), ¢ — (Yg(x), () 12(r2e). We show that
there is a constant ¢ < co such that

rret ; t
H (eszEg o u* e*'LHEO; u) P*
B

< T+t
o See D

with P, := f® dx (Yp(x), - Ye(x). We also prove a version of the above statement which
holds “locally” in the configuration space of the nuclei.

The Wegner estimate and the common density of the Anderson coupling
constants

IvAN VESELIC

Wegner’s estimate (Z.Phys B44, 1981) plays a crucial role in the analysis of random
Schodinger operators from solid state physics. On the one hand, it is part of the exis-
tence proof of pure point spectrum in certain energy regions. On the other, it supplies
information about the regularity properties of the integrated density of states.

The talk presents a new proof of Wegner’s estimate, which is valid also for certain
indefinite Anderson models. A new aspect is the use of the common density of the Anderson
coupling constants instead of the often used conditional density.



Resolvent estimates on infinite volume Riemannian manifolds with cusps

GEORGI VODEV

The limiting absorption principle is proved for the Laplace-Beltrami operator on infinite
volume Riemannian manifolds which may have cusps. Moreover, an exponential bound
(with respect to the spectral parameter) of the norm of the limiting operator (on the real
axis) is proved. This extends a previous result by Burq to more general manifolds. As a
consequence, a free of resonances region of the form

TmA| < e @ X >y, C1,Cy >0,
is obtained for two dimensional Riemann surfaces of the form
M=ZuX,U---UX;uYiu---uY;, I1>0,J2>1,
where 7 is a compact Riemannian manifold and
X; = [a;,00), x (R\ h;Z);, a;, h; >0, with metric dr? + e 2"dt?
Y; = [b;, 00), x (R\ &iZ);, b;,€; >0, with metric dr? + cosh? rdt?,

and the resonances are defined as being the poles of the meromorphic continuation of the
resolvent

comp loc

1\ -1
R()) = (AM N2 Z> L L2, (M, dvol,) —» L2 (M, dvol,)

from ImA < 0 to the whole complex plane C.

Lifshits Tails in Magnetic Fields
SIMONE WARZEL

(joint work with Thomas Hupfer and Hajo Leschke)

We investigate the leading low-energy fall-off of the integrated density of states of a charged
quantum particle subject to a constant magnetic field and repulsive impurities randomly
located according to Poisson’s distribution.

This so-called magnetic Lifshits tail is determined for the case of two space dimen-
sions with a perpendicular magnetic field and for all single-impurity potentials with either
super-Gaussian, Gaussian or regular sub-Gaussian decay at infinity. While the result for
regular sub-Gaussian decay coincides with the corresponding classical one, the Lifshits
tail caused by super-Gaussian decay exhibits a universal quantum behaviour. As a conse-
quence, Gaussian decay is proven to discriminate between quantum and classical tailing.

In the case of three space dimensions, the magnetic Lifshits tail is investigated for all
impurity potentials with super-Gaussian or Gaussian decay. Its precise form is determined
for all impurity potentials with stretched (sub-) Gaussian decay. In this case it turns
out that the tail is independent of the magnetic field and coincides, up to a logarithmic
acceleration, with that for one dimension and not too slowly decaying impurity potentials.

High energy asymptotics of the scattering amplitude
DIMITRIJ YAFAEV

We find an explicit expression for the kernel of the scattering matrix containing at high
energies all terms of power order. It turns out that the same expression gives a complete



description at the diagonal singularities of the kernel in the angular variables. Both short-
and long-range electric as well as magnetic potentials are considered.

Behavior at infinity of fundamental solution of time dependent Schrodinger
equations

KENJI YAJIMA

Let E(t,s,z,y) be the distribution kernel of the propagator for the time dependent
Schrodinger equation in R™,

(4) zg—? = —%Au + V(t,z)u, u(s,z) = ¢(x).

We prove that the asymptotic behavior at infinity of F is stable under the subquadratic
perturbations. 92V (¢,x) is the Hessian of V wrt. x and

Ir={(ts):0<|t—s|<T, [t—s—mn|>¢e, Ym e Z\ {0}}
Theorem 1. (a) Let V satisfy the condition
(SQ)  lim sup |02V (t,z)| =0, [0°V(t,x)] < C,, |a]>3

|| =00 1Rl

Then, for any 0 < £(t —s) < T, E is C*® wrt. (x,y) and may be written in the form
6:|:in7r/4

(27|t — s|)/?

where S is real smooth and, as x* + y?> — oo, uniformly wrt. 0 < |t —s| < T,

(5) " (S(t,s,x,y) . %

(6) 970, (alt, s, w,y) —=1) =0, [a+ 8] >0,
(b) Let V(t,z) = 2%+ W (t, ) and W satisfies (SQ). Then, for any (t,s) € L. r, E is C*

wrt. (x,y) and may be written in the form, for 0 <t —s—mm <m, m € Z,

E(t, S, T, y) = eiS(t’s’I’y)a(ta S, T, y)7

>—>0, la+ 5| > 2,

y—m

i ™e

(27| sin(t — s)|)n/2

where S is real smooth and, as x* + y* — oo, uniformly wrt. (t,s) € L.z

(22 + y?) cos(t — s) — 2xy
2sin(t — s)

—inm /4

E(t,s,z,y) = eis(t’s’m’y)a(t, S,2,Y),

(7) 32‘65 (S(t, S, T, Y) — ) =0, |a+pg|>2,

(8) 070, (a(t, s,2,5) =1) = 0, |a+ 8] >0.

Spectral Asymptotics of Weyl type for Schrodinger operators with discrete
spectrum

LECH ZIELINSKI

Let A be a self-adjoint operator in L?(R?) formally given by

> Dj(aji(x)Dy) + v()

1<j,k<d

10



where D; = —i-2-, aj, = ay; € L®°(R?) such that

ox;’
ag(z,€) = Y ap(@)§& > cléf,  (¢>0)

1<j,k<d
(14 |z]) <wv(z) <CA+|z])¢ (C,ec>0)
Let p,r €]0, 1] be fixed and assume that

lz—y| <ev(x)® = CS@SC

p—yl <1 = |o(@) = o) < Co(@) |z —ylr
=yl <1 = ap(r) —a(y)] < Colz) Plz —ylr

for some C,c > 0. Let p’ > 0, ' > 0 be arbitrary fixed numbers satisfying
p<p and r'<r

and h(x,§) = v(xl’”’(l + |z|)™™". Then there exists C > 0 large enough to ensure the
estimate (for A > ()

d _
W(A,A)—/ dx—gd‘g(]/ dz A€
a(z)<r  (27) a(1=Ch)<A<a(1+Ch)

where N (A, )\) is the counting function of A and a(z,€) = ag(x,£) + v(z). In the case
(14 |z|)™ <wv(z) < C(1+ |z|)™ the above result gives

d¢ .
NA,)\:/ d 1+ 0=, L < prt < 1),
(A, N) e x(%)d( ( ), (f <pr'<r)

Edited by Olaf Post
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