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The present onferene was

organized by

Martin N.Huxley, Cardi�

Matti Jutila, Turku

Yoihi Motohashi, Tokyo

Over forty mathematiians aepted the invitation of the Institute, but the great tragedy

in the U. S. on September 11 unfortunately prevented some of them from oming. The

total number of partiipants was 33 representing 17 ountries.

The main topis onsidered in the 29 letures given in the onferene and in the problem

session were

- approahes to the Riemann Hypothesis and other onjetures on zeta-- and L--fun-

tions

- appliations of the spetral theory of automorphi funtions and the representation

theory of Lie groups

- L--funtions onneted with algebrai number �elds

- related arithmetial problems.

The organizers and partiipants are grateful to the Land Baden-W�urttemberg, and to

the diretor Prof. Krek as well as to the sta� of the Institute, for providing us with suh

a nie opportunity to hold this speial workshop.
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Abstrats

A Summation Formula on SL

2

(Z) and the Fourth Power Moment of the

Riemann Zeta--Funtion

Johan Andersson, Stokholm

We disuss a new summation formula
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+ terms oming from Eisenstein series and holomorphi usp forms

for the full modular group, and how it relates to Motohashi's formula for the fourth power

moment. The main idea is to expand a sum over the big ell as
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and then using the double Poisson summation on f



. Kloosterman sums appear and the

Kuznetsov sum formula an be applied. The same trik an be used to get a simple proof

for the fourth power moment.

Some Determinants Conneted with RH

Mihel Balazard

(joint work with Luis B�aez-Duarte, Bernard Landreau and Eri Saias)

Let H be the Hilbert spae L

2

(0;+1; t

�2

dt) , let e

�

(t) = ft=�g and � = �

(1;1)

. Then e

�

and � are in H , and we are interested in the distane d

n

= distane

H

�

�; Vet(e

1

; : : : ; e

n

)

�

.

It is well--known that RH follows from d

n

= o(1) , but the onverse is unknown. This is

related to the Nyman--Beurling equivalent form for RH. Numerial experiments support

the onjeture:

d

2

n

�

2 +  � log 4�

logn

(n!1)

Burnol proved reently that

d

2

n

�

2 +  � log 4� + o(1)

logn

:

Let us try to ompute d

n

by the Gram formula

d

2

n

=

Gram(e

1

; : : : ; e

n

; �)

Gram(e

1

; : : : ; e

n

)

:

One is led to study the multipliative self--orrelation of the frational part funtion

A(�) =

Z

1

0

ftgf�tg t

�2

dt :

The loal behavior of A near eah rational an be aurately desribed. In partiular

A(p=q + t)� A(p=q) �

1

2p

jtj log jtj (t! 0);
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and A has a strit loal maximum at eah rational point. One an dedue from that, that

putting f

k

= (k + 1)e

k+1

� ke

k

is a �rst step in the orthogonalization of the e

k

, and one

gets some insight into the struture of the Gram matrix of the f

k

.

As a �rst result about the asymptoti behavior of G

n

:= Gram(e

1

; : : : ; e

n

) , we obtain

the following

Proposition. There exists an absolute positive onstant  suh that

exp

�



p

n (logn)

1=4

log logn

�

� n!

2

G

n

� exp

�

n log logn+O(n= logn)

�

:

We onjeture that

n!

2

G

n

= exp

�

n

1+o(1)

�

:

On the Class Number 1 Problem for Speial Real Quadrati Number Fields

Andr

�

as Biro, Budapest

For an odd positive integer p where p

2

+4 is squarefree, we onsider the quadrati �eld

K = Q (

p

p

2

+4 ) . H.Yokoi onjetured that h(K) > 1 if p > 17 . This is a real analogue

of the famous problem of determining expliitly the imaginary quadrati �elds with lass

number 1, sine for our K the fundamental unit is small. So Siegel's Theorem implies the

�niteness of suh �elds K with h(K) = 1 , but this result is ine�etive.

We give an e�etive upper bound for p if h(K) = 1 , hene we prove Yokoi's onjeture.

The proof applies ideas of a paper of J. Bek together with new ingredients. It is very likely

that the same method applies to the similar onjeture of Chowla.

A Variational Approah to Weil's Expliit Formula

Enrio Bombieri, Prineton

We owe to Andr�e Weil the formulation of the Riemann Hypothesis (RH) as a statement

about the positivity of a ertain quadrati or hermitian funtional, representing a far

reahing extension of Riemann's elebrated formula for the number of primes up to a

given bound. It is natural to study this problem as that of minimizing this funtional

in the unit sphere of a suitable Hilbert spae, naturally assoiated to the problem. In

this leture it is shown that a minimum is attained, and we obtain some properties of

the assoiated extremal. The assoiated kernel is highly singular and its regularization

leads to the study of high order iterated kernels. It is shown that the pointwise positivity

of iterates of suÆiently large order implies RH, together with some heuristi arguments

suggesting that this may be the ase. The leture onludes with a redution, based on

heuristi arguments, of the problem to the study of a ertain random walk on the real line,

although no de�nite onlusion has been reahed yet about the possible impliations of

these onsiderations for an attak to RH.

Primes Representable as Sums of k --th Powers

J

�

org Br

�

udern, Stuttgart

(joint work with K.Kawada and T.Wooley)

Let P (k) denote the smallest s suh that in�nitely many primes are the sum of s k --th

powers of natural numbers. We prove
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Theorem 1. Assume GRH. Then P (k) �

8

3

k .

Unonditionally one only knows that P (k) � (1=2+o(1)) k log k although it is very likely

P (k) � 3 for all k . Similar results an be obtained unonditionally when the primes are

replaed by other related sequenes. For example, when s > 2k , there are in�nitely many

numbers with at most two prime fators in the numbers of the type x

k

1

+ : : :+x

k

s

. We also

have

Theorem 2. If s > (1=2 + log 2) k , then there are in�nitely many sums of two squares

that are the sum of s k --th powers.

Automorphi Forms and the Zeta--Funtion

Roelof W.Bruggeman, Utreht

The expliit formula of Y.Motohashi (see x4.7, Spetral Theory of the Riemann zeta--

funtion, Cambridge Univ. Press, 1997) gives an expliit expression for

Z

1

�1

�

�

�(

1

2

+ it)

�

�

4

g(t) dt

where g is a suitable test funtion in terms of automorphi forms for � = SL

2

(R) :

holomorphi usp forms, Maass usp forms, and Eisenstein series. In the proof of the

expliit formula, this relation between the Riemann zeta--funtion and modular forms arises

from the use of the sum formula of Kuznetsov (Mat. Sb. 111, 1980). In the leture various

points of view of this fomula were disussed. The original approah of Kuznetsov is based

on the spetral theory L

2

(�nH) , where H denotes the upper half plane. But Petersson's

formula for Fourier oeÆients of holomorphi Poinar�e series implies that a more natural

formulation of the sum formula should involve holomorphi usp forms as well. This leads

to the spetral deomposition in other even weights. A limit proedure gives the full

sum formula. But this formulation is also a onsequene of a representational approah,

indiated by J. Cogdell and I. Pyatetskii--Shapiro. The last point of view should lead to a

more diret relation between the zeta--funtion and automorphi forms, bypassing the sum

formula of Kuznetsov.

Modular Forms, Fratal Sets and Di�erentiability Properties

Fernando Chamizo, Madrid

Given an ellipti urve with Hasse--Weil L--funtion

P

a

n

n

�s

, we onsider the Fourier

series A

�

(x) =

P

a

n

n

��

os 2�nx and B

�

(x) =

P

a

n

n

��

sin 2�nx . We prove that

(a) For 3=2 < � < 2 the funtions A

�

and B

�

are di�erentiable at x = x

0

, if

and only if x

0

is rational.

(b) For 1 < � < 2 the graphs of A

�

and B

�

are fratal sets with Minkowski

dimensions 3� � .

In fat we state a more general theorem whih applies to frational integrals of modular

forms.
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A Conjeture for the 2k-th Moment of the Riemann Zeta--Funtion

Brian Conrey

(joint work with D.Farmer, J.Keating, M.Rubinstein and N. Snaith)

Let

I

k

(g) =

Z

1

0

g(t)

�

�

�(

1

2

+ it)

�

�

2k

dt

where g is a reasonable test funtion. We have in mind g(t) = �

[0; T ℄

(t) or g(t) = e

�t=T

.

It may be onjetured that

I

k

(g) �

Z

1

0

g(t)P

k

2

�

log

t

2�

�

dt

where P

k

2

is a polynomial of degree k

2

. Suh formulas are known for k = 1 and k = 2

(Hardy and Littlewood, Ingham, Atkinson, Heath--Brown, Motohashi). The leading term

of P

k

2

, if it exists, seems to have the form

g
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�
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and where g

1

= 1 and g

2

= 2 . It was onjetured by Conrey and Ghosh and by Con-

rey and Gonek that g

4

= 24024 . These onjetures were based on Dirihlet polynomial

onsiderations. Reently, Keating and Snaith used Random Matrix Theory to suggest that

g

k

= (k

2

)!

k�1

Y

j=0

j !

(j+k)!

:

It was unlear how a

k

and g

k

would mix in lower order terms. Combining number theoreti

and random matrix theoreti tehniques we are led to the following

Conjeture.
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�

1�

e(�)
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1

; : : : ; w

r
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Q

1�i<j�r

(w

i

� w

j

) is the Vandermode.

We give numerial evidene for the onjeture.
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Mean Value of Automorphi L--Funtions and the Selberg Kernel Funtion

Shigeki Egami, Toyama

Let A(z) be a holomorphi usp form of weight k (k � 12 an even integer) for the full

modular group, and let H

A

(s) be the automorphi Heke L--funtion assoiated to A

via Mellin transformation. In 1994 Y.Motohashi obtained the spetral resolution of the

weighted mean square of H

A

(1=2 + it) , i.e.

Z

1

�1

jH

A

(

1

2

+ it)j

2

g(t) dt ;

whih is an analogue of his famous �

4

--formula. In this talk I explain my attempt to

give an alternative proof by using the Selberg kernel funtion and the Parseval identity

for the Mellin transformation (see my paper in: Number Theory and its Appliations by

S.Kanemitsu and K.Gy�ory, 101{110). Our method of the proof is to alulate

Z

1

0

y

s�1

Z

�nH

K

�

(iy; w) jA(w)j

2

I

k�2

m

w dw dy

in two ways: �rst unfolding, seond spetral resolution. In this talk I also desribed my

reent attempt to generalize to the Hilbert modular ase. After the talk R.Bruggeman

suggested that there are in�nitely many suh identities if we apply the Maass operator

repeatedly to A(z) .

Low--lying Zeros of Class Group L-Funtions

Etienne Fouvry, Orsay

(joint work with H. Iwanie)

We assume the Generalized Riemann Hypothesis. Let D be a squarefree integer, D > 3 ,

D � 3 (mod 4) , K = Q (

p

�D ) ,  a harater on the lass group of ideals of O

K

, and

let L(s;  ) be the attahed L--funtion.

We investigate the distribution of the zeros 

 

of L(s;  ) near the point 1=2 and prove

the following theorems.

Theorem 1. Let � : R ! R even, smooth, suh that supp

b

� � (�1; 1) . Then for

D!1 we have

1

h(�D)

X

 2

\

C`(K)

X



 

�

�



 

2�

logD

�

=

Z

1

�1

�(x)W (Sp)(x) dx + O

�

log logD

logD

�

where W (Sp)(x) is the sympleti measure W (Sp)(x) = 1� sin 2�x=(2�x) .

The question is to prove Theorem 1 for funtions � with larger ompat support of

b

�

(Density Conjeture). This is ahieved, on average only, for supp

b

� � (�4=3; 4=3) . More

preisely, we prove

Theorem 2. Suppose � : R ! R even, smooth, suh that supp

b

� � (��; �) with

0 < � < 4=3 . Let � � 3 and D be any set of squarefree numbers D � 3 (mod 4) , with

� < D � 2� , of ardinality jDj � �

��1=3

. Then for D!1 , we have

1

jDj

X

D2D

�

�

�

�

�

�

1

h(�D)

X

 2

\

C`(K)

X



 

�

�



 

2�

logD

�

�

Z

1

�1

�(x)W (Sp)(x) dx

�

�

�

�

�

�

= O

�;�

�

log log�

log�

�

:
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The proof of Theorem 2 requires a study (on average over D ) of primes p of the form

m

2

+Dn

2

= 4p , so alled Euler primes, satisfying p < �

�

.

The Subonvexity Problem for Artin L--Funtions

John B.Friedlander

(joint work with W.Duke and H. Iwanie)

Let k � 0 be an integer, � a primitive harater modulo D satisfying �(�1) = (�1)

k

,

u

j

(z) a Heke--Maass usp form of weight k for the ongruene group �

0

(D) with neben-

typus � , and Laplae eigenvalue 1=4 + t

2

j

. The attahed L--funtion satis�es a fun-

tional equation whih leads to the onvexity bound L

j

(s) � jD j

1=4+"

on the ritial line

<s = 1=2 , where the implied onstant depends on k; t

j

and s: We sueeded to prove a

subonvexity bound in the D --aspet

L

j

(s)�

�

jt

j

j+ j%j

�

10

D

1=4��

where now the implied onstant depends only on k (whih ould also have been done in

the previous bound) and � = 1=23042 . In partiular we dedue the bound

L(s; %)� jsj

10

D

1=4��

for <s = 1=2 for those degree 2 Artin L--funtions over Q whih we know to be entire (i.e.

all those not of iosahedral type) where D is the modulus of the primitive determinantal

harater. These in turn inlude the L--funtions assoiated to the lass--group of the real

or imaginary quadrati �eld Q (

p

d ) where D = jdj .

From the latter we obtain as orollary the existene of ideals having small norm in every

oset of quotients of suÆiently small index of the lass group. In the speial ase of

the genus group only Dirihlet haraters are required and A.Baker and A. Shinzel had

derived suh a result (quantitatively stronger) using the Burgess bound. Another orollary

gives the existene of a generator of small norm in every yli subgroup of the lass group.

Tehnial Improvements in the Bombieri--Iwanie Method for Exponential

Sums

Martin N.Huxley, Cardiff

The method uses the short interval struture of the sums

X

m

e (f(m))(1)

X

h

X

m

e (hf

0

(m))(2)

X

h

X

m

e (f(m + h)� f(m� h))(3)

whih depends on rational approximation to f

00

(x) . Means of short interval sums using

the large sieve require estimates of the number of oinident pairs in eah of two sets of

four--dimensional vetors, the two spaing problems.

Watt has seen that the �rst spaing problem in (3) an be regarded as a perturbation

of the orresponding problems for both (1) and (2) in di�erent ranges. This work will

lead to better bounds.
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The seond spaing problem is the same for all three sums given in (1) , (2) and (3) .

A oinident pair orresponds to an integer--preserving aÆne map taking one region of the

graph of y = f

0

(x) to another. AÆne maps with the same matrix part orrespond rather

preisely to integer points lose to a \resonane urve" in a two--dimensional spae dual to

the spae of (x; f(x)) . The inlusion map in our spae ats funtorially as an aÆne map

of resonane urves in the dual spae. Swinnerton--Dyer's approah to integer points lose

to urves leads to slightly better estimates for the sums given above.

Table of exponents in the lassial problems

�

Old New Limit of method Target

(1) Size of �(1=2 + it) 89=570 32=205 3=20 0

(2) Divisor problem 23=73 131=416 5=16 1=4

(2) Cirle problem 46=73 131=208 5=8 1=2

�

(up to " )

On Some Conjetures and Results for the Riemann Zeta--Funtion

and Heke Series

Aleksandar Ivi

�

, Belgrade

The leture overed three related topis:

1. Mean values of j�(

1

2

+ it)j .

2. The Mellin transform zeta--funtion

Z

k

(s) :=

Z

1

1

j�(

1

2

+ ix)j

2k

x

�s

dx ;

where k 2 N , <s > (k) > 1 .

3. Some onjetures on Z

k

(s) and the Heke series H

j

(s) .

The asymptoti formula

Z

T

0

j�(

1

2

+ it)j

2k

dt = T P

k

2

(logT ) + E

k

(T ) ;(1)

k 2 N , was extensively disussed with the aent on known results and onjetures for

E

k

(T ) . The funtion Z

k

(s) , whih is a natural tool for investigating the integral in (1) ,

was studied. Reent results by M. Jutila, Y. Motohashi and the author were presented as

well as some onjetures of the author on Z

k

(s) and H

j

(s) . For example if the onjetured

bound, the analogue of the Lindel�of Hypothesis for Z

2

(s) ,

Z

2

(� + it) �

"

jtj

"

holds for all " > 0 and � > 1=2 �xed, then

Z

T

0

j�(

1

2

+ it)j

8

dt �

"

T

1+ "

; E

2

(T ) �

"

T

1=2+ "

;

whih is (up to " ) best possible.
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The Class Number Problem and Spaing of Zeros of Heke L-Funtions

Henryk Iwanie, New Brunswik

(joint work with Brian Conrey)

Let K = Q(

p

�q ) be the imaginary quadrati �eld of disriminant �q with q > 4 . Let

 2

b

C`(K) be a lass group harater and

L(s;  ) =

X

a

 (a) (Na)

�s

;

where a runs over the non--zero integral ideals, the orresponding L--funtion. We proved

that if the gap between onseutive zeros of L(s;  ) on the ritial line is somewhat smaller

than the average for suÆiently many pairs, note that no Riemann Hypothesis is required,

then the lass number of K satis�es h�

p

q (log q)

�A

, where A is an absolute onstant

and the implied onstant is e�etively omputable. In partiular for the trivial harater

 = 1 we have L(s;  ) = �

K

(s) = �(s)L(s; �

q

) , and restriting our hoie to the zeros of

�(s) we obtain the following theorem.

Theorem. Let % = 1=2+ i be the zeros of �(s) on the ritial line and %

0

= 1=2+ i

0

be the nearest zero to % on the ritial line, %

0

= % if % is a multiple zero. Suppose

#

n

% : 0 <  � T; j � 

0

j �

�

log 

�

1�

1

p

log 

�o

� T

�

logT

�

4=5

for any T � 2001 . Then we have

L(1; �

q

) �

�

log q

�

�90

where the implied onstant is e�etively omputable.

Remarks. The ondition of the theorem requires gaps between onseutive zeros of �(s)

to be only slightly smaller than the half of the average gaps. This ondition follows from

the Pair Correlation Conjeture.

Spetral Averages and Estimates for L--Funtions Attahed to Maass Wave

Forms

Matti Jutila, Turku

(joint work with Y.Motohashi)

Let

H

j

(s) =

1

X

n=1

t

j

(n)n

�s

(� > 1)

be the L--funtion attahed to the Maass wave form orresponding to the eigenvalue �

j

=

1=4+�

2

j

of the hyperboli Laplaian. The funtional equation of H

j

(s) and the onvexity

priniple imply the bound

H

j

(1=2 + it)� (t+ �

j

)

1=2+ "

for t � 1 :

The estimates

H

j

(1=2 + it)� t

1=3+ "

for �xed �

j

and t � 1

by T.Meurman 1987 and

H

j

(1=2)� �

1=3+ "

j

by A. Ivi� 1999, suggest the following
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Conjeture.

H

j

(1=2 + it)� (jtj+ �

j

)

1=3+ "

:

In reent joint work with Y.Motohashi, this was veri�ed for jtj � �

2=3� "

j

as an imme-

diate orollary of the following

Theorem. Let �

j

= j%

j

(1)j

2

= osh(��

j

) with %

j

(n) the Fourier oeÆients of the j --th

Maass wave form. Then for jtj � K

2=3� "

we have uniformly

X

j�

j

�Kj�K

1=3

�

j

�

�

H

j

(1=2+ it)

�

�

4

� K

4=3+ "

:

The main ingredients of the proof are:

- An approximate funtional equation for H

2

j

(1=2 + it)

- Kuznetsov's trae formula

- Vorono��'s sum formula with additive haraters

- Motohashi's identity for the additive divisor problem

- The saddle point method

- The spetral large sieve

On the Struture of the Selberg Class

Jerzy Kazorowski, Poznan

(joint work with A.Perelli)

We prove the following theorem.

Theorem. Let S

#

d

denote the set of all L--funtions of the extended Selberg lass of

degree d: Then S

#

d

= ; if 1 < d < 5=3 .

The proof depends on the theory of the hypergeometri Fox funtions. To deal with

bilinear forms of the form

X

m

X

n

a(m)a(n) e(f(m;n; t))

where a(n) are the oeÆients of F 2 S

#

d

, we apply the saddle point method and estimates

of sums

X

K�n�K+H

ja(n)j

2

over short intervals

�

H � K

2�1=(d�1)

�

. To this end we develop an analyti theory of the

Rankin--Selberg onvolution.

Quantum Ergodiity for Arithmeti 3--Manifolds

Shin--ya Koyama, Yokohama

Three topis were presented in the generalization of the quantum haos theory developed

by Sarnak, Luo and other people.
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(1) The quantum ergodiity of Eisenstein series is valid for Bianhii manifolds.

Namely,

lim

t!1

�

t

(A)

�

t

(B)

=

vol(A)

vol(B)

for any ompat Jordan measurable subsets A , B of the Bianhii manifold,

where �

t

= jE(v; 1 + it)j

2

dV with E(v; s) being the Eisenstein series, and

dV is the volume element.

(2) An improvement of the prime geodesi theorem is possible, if we assume

the mean Lindel�of Hypothesis in the �--aspet for automorphi L--funtions.

Preisely,

�

�

(x) = li(x

2

) +O(x

11=7+ "

)

with � being the Piard group.

(3) A new estimate of the �rst eigenvalue will be obtained by using the reent

results of Kim--Sarnak and the theorem of Kim.

A Limit Theorem for the Riemann Zeta--Funtion in the Spae of Continuous

Funtions

Antanas Laurin

�

ikas

We onsider the value distribution of the Riemann zeta--funtion in the sense of the weak

onvergene of probability measures. Denote by B(S) the lass of Borel sets of the spae

S . Let  be the unit irle on the omplex plane and 
 =

Q

p



p

, where  = 

p

for

eah prime p: On

�


;B(
)

�

there exists the probability Haar measure m

H

, and we

have a probability spae

�


;B(
); m

H

�

. Let !(p) be the projetion of ! 2 
 to 

p

,

and !(m) =

Q

p

�

km

!

�

(p) . Moreover, let C(R) denote the spae of ontinuous funtions

on R with the topology of uniform onvergene on ompat sets. Let d

a

(m) be the

oeÆients of the Dirihlet series for �

a

(s) in the half plane � > 1 (s = � + it) , and let

�

T

= 1=2 + � log log

3=2

T= logT , � >

p

2=2 �xed, �

T

= (1=2 log logT )

� 1=2

. Then

X

m�T

d

�

T

!(m)

m

�

T

+it

onverges uniformly in t on ompat subsets of R for almost all ! 2 
 to some funtion

�(t; !) as T tends to in�nity. Therefore, �(t; !) is a C(R)--valued random element de�ned

on

�


;B(
); m

H

�

. Denote by P

�

the distribution of �(t; !) , and let measA denote the

Lebesgue measure of the set A:

Theorem. Under RH the probability measure

1

T

meas

�

� 2 [0; T ℄ : �

�

T

(�

T

+ it + i�) 2 A

	

where A 2 B

�

C(R)

�

onverges weakly to P

�

for T !1 .

The latter theorem ontinues the work of Bohr, Jessen, Wintner, Selberg, Joyner, Mat-

sumoto, Montgomery, the author and others.
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The Additive Divisor Problem

Tom Meurman, Turku

Let d(n) denote the divisor funtion, and let

D(N ; f) =

X

n�N

d(n) d(n+ f) :

We announe a new estimate for the mean square of the error term in the asymptoti

formula of D(N ; f) .

The Subonvexity Problem for Rankin--Selberg L--Funtions

Philippe Mihel, Paris

We onsider the subonvexity problem for the rank 4 Rankin--Selberg L--funtions L(s; f


g) , where g is a �xed holomorphi or Maass usp form, and f is a usp form with level

q ! 1 and nebentypus �

f

(q) . Two years ago, Kowalski, the speaker and Vanderkam

proved

L(s; f 
 g) �

"

q

1=2� 1=80+ "

for <s = 1=2

for holomorphi usp forms f of weight larger than 1 and suh that the ondutor q

�

of

�

f

satis�es q

�

< q

�

for some � < 1=2 .

In this talk we explain how to remove these two assumptions on f and how to prove

the bound

L(s; f 
 g) � q

1=2� 1=300

under the only hypothesis that �

�

f

6= �

�

g

where �

�

is the underlying primitive harater

of � . Note that this hypothesis an be removed as well with more omputations and that

our method applies also when g is an Eisenstein series.

The key point is to estimate non--trivially shifted onvolution sums

X

h 6=0

G

�

f

(h; )

X

`m�n=h

�

g

(m)�

g

(n)W (m;n)

when m;n;  � q , and in partiular to inorporate the osillations of the Gauss sums

G

�

f

(h; ) as h varies. We treat the shifted sums, where `m � n = h , using a method

of Sarnak based on spetral methods whih allows us to redue the problem to the sub-

onvexity problem for twisted L--funtions L(s; �

j


�) in the q aspet, where �

j

ranges

over a basis of Maass forms for �

0

(`) , a problem whih was solved by Duke, Friedlander

and Iwanie more than a year ago.

We desribe appliations of our bound to the equidistribution problem of Heegner points

on Shimura urves.

Upper bounds near s = 1 for an Axiomati Class of L--Funtions

Giuseppe Molteni

Estimates of the form L

(j)

(s; A) �

";j

R

"

A

in the range js�1j � 1= logR

A

for general

L--funtions, where R

A

is a parameter related to the funtional equation of L(s; A) ,

an be quite easily obtained if the Ramanujan Hypothesis is assumed. We prove the

same estimates when the L--funtions have an Euler produt of polynomial type and the

Ramanujan Hypothesis is replaed by a muh weaker assumption about the growth of

ertain elementary symmetrial funtions. As a onsequene, we obtain an upper bound

of this type for every L(s; �) , where � is an automorphi usp form on GL(n; A

K

) . We

12



employ these results to obtain Siegel--type lower bounds for twists by Dirihlet haraters

of the third symmetri power of a Maass form.

Beyond Pair Correlation

Hugh L.Montgomery, Ann Arbor

(joint work with S.Gonek and U.Vorhauer; K. Soundararajan)

Let

F (�; T ) =

�

T

2�

logT

�

�1

X

0<�T

0<

0

�T

T

i�(�

0

)

w( � 

0

)

where w(u) = 4=(4 + u

2

) . If r(t) =

R

R

br(�)e(t�) d� then

X

0<�T

0<

0

�T

r

�

( � 

0

)

logT

2�

�

w( � 

0

) =

T

2�

logT

Z

R

F (�; T )br(�) d� :

Assuming RH, the asymptoti size of F was determined in 1972 for �1 � � � 1 . Thus

the left hand side above an be estimated when supp br � [�1; 1℄ . In joint work with

S.Gonek and U.Vorhauer, wider lasses of kernels are allowed in whih the sign of br(�)

is spei�ed when j�j � 1 . Sine F (�; T ) � 0 for all � , this yields useful inequalities.

In joint work with K. Soundararajan, the prime k--tuple Conjeture is used to generate

a heuristi argument that suggests that

1

X

Z

X

0

�

 (x+ h)�  (x)� h

�

k

dx =

�



k

+ o(1)

��

h logX=h

�

k=2

when X

"

� h � X

1�"

. Here the ase k = 2 is equivalent assuming RH to the Pair

Correlation Conjeture. The numbers 

k

are the moments of the normalized normal

distribution, so we are led to expet that  (x + h) �  (x) is approximately normally

distributed with mean h and variane � h logX=h .

Trying to embed �(s) into L

2

(� nG)

Yoihi Motohashi, Tokyo

It is disussed how to diretly prove the spetral deomposition of the fourth moment of

�(s) . Here diretly means that it is wished to dispense with Kloostermania. To ahieve

this aim, it is suggested to use two main tools, whih are well-known in the theory of

the representation of Lie groups: A) the Kirillov model and B) the Bessel funtion of a

representation.

Here we investigate the ase L

2

(�nG) with � = PSL

2

(Z) and G = PSL

2

(R) . The use

of A), espeially its unitariity, is given, e.g. in the book by J.W.Cogdell, I. I. Pyatetskii--

Shapiro: The Arithmeti and Spetral Analysis of Poinar�e Series, Perspetives in Math-

ematis, 13, Aademi Press, San Diego, California, 1990. We prove, however, the most

essential point in their work with an alternative and elementary argument pertaining to

an orthogonality among the relevant family of Whittaker funtions.

B) is a onept due to Gel'fand and Formin. But we use it in the formulation due to

Vilenkin--Klimyk (1991), whih we prove, alternatively, as the Mellin inversion of the loal

13



funtional equation attahed to an irreduible representation, in the sense of Jaquet and

Langlands. The funtional equation itself is proved in an elementary and quik way.

An extension to the omplex ase e.g. the fourth moment of the Dedekind zeta--funtion

of the Gaussian number �eld is also given. Here � = PSL

2

(Z[i℄) and G = PSL

2

(C ) . The

tools A) and B) are extended to this setting of L

2

(� nG) too. This part is a joint work

with R.W.Bruggeman.

Further, a suggestion was made about the uni�ed treatment of mean values of zeta, L--

and Heke L--funtions. This is related to a joint projet with M. Jutila.

Distribution Property of Residual Orders

Leo Murata, Tokyo

(joint work with K.Chinen)

Let a be a positive integer whih is not a perfet k--th power with k � 2 , and Q

a

(x; 4; `)

be the set of primes p � x suh that the residual order of a(mod p) in Z=pZ

�

is ongruent

to ` modulo 4: When ` = 0; 2 , it is known that alulations of #Q

a

(x; 4; `) are simple,

and we an get these natural densities unonditionally. On the ontrary, when ` = 1; 3 , the

distribution properties of Q

a

(x; 4; `) are rather ompliated. Here, under the assumption of

the Generalized Riemann Hypothesis (GRH) we determine ompletely the natural densities

of #Q

a

(x; 4; `) for ` = 0; 1; 2; 3 . For example we proved the following result.

Theorem. Let a

1

be the squarefree part of a: If a

1

� 1 or 3 (mod 4) then

the natural density of #Q

a

(x; 4; `) =

�

1=3 if ` = 0 or 2 (unonditionally)

1=6 if ` = 1 or 3 (under GRH)

If a

1

= 2 then

the natural density of

8

>

>

>

<

>

>

>

:

#Q

a

(x; 4; 0) = 5=12

#Q

a

(x; 4; 1) = 7=48� C=8

#Q

a

(x; 4; 2) = 7=24

#Q

a

(x; 4; 3) = 7=48 + C=8

where

C =

Y

p� 3 (mod 4)

p prime

�

1�

2p

(p

2

+ 1)(p� 1)

�

� 0:64365 :

Experiments in Analyti Number Theory

Samuel J. Patterson, G

�

ottingen

One problem that often arises is the following: Let a

n

be an arithmeti funtion for whih

one knows or suspets that an asymptoti law of the type

P

n�X

a

n

� X



holds. We

shall suppose that  is known but one wishes to determine  . It is often neessary to do

this as aurately as possible for reasons of numerology. One ase of partiular interest is

a

n

= S(f(x); n) where f 2 Z[x℄ is a polynomial, for simpliity of degree 3. Here

S(f(x); n) =

X

j (mod n)

exp

�

2�i

f(j)

n

�

:
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In this ase one suspets, and in some ases one an prove, that  = 4=3 . By omparison

with lassial examples, and also from statistial onsiderations it appears that in general

one an �nd no deent estimate for  substantially better than X

�

P

n�X

a

n

for the

largest value of X available. It is, in general, unrealisti to expet more than a rough

estimate for  by this method.

On an Asymptoti Formula of Srinivas Ramanujan

Ayyadurai Sankaranarayanan, Mumbai

(joint work with K.Ramahandra)

Let d(n) denote the Dirihlet divisor funtion and let

E(x) =

X

n�x

d

2

(n) � xP

3

(log x)

where P

3

is a polynomial of degree three. We disussed upper bounds and 
 --results for

E(x) unonditionally and proposed a onjeture.

Mean Square of the Central Values of Automorphi L--Funtions

Kai--Man Tsang, Hong Kong

(joint work with Yuk--KamLau)

Let � be a real primitive harater of ondutor D: Any modular form

f(z) =

1

X

n=1

�

f

(n)n

(k�1)=2

e(nz) ;

�

f

(1) = 1, an be twisted by �:

f

�

(z) =

1

X

n=1

�

f

(n)�(n)n

(k�1)=2

e(nz) :

The assoiated L--funtion is

L(s; f 
 �) =

1

X

n=1

�

f

(n)�(n)n

�s

(<s > 1) :

We investigate the mean square

X

f2F

k

!

f

L

2

(1=2; f 
 �)

where F

k

is the Heke basis in the spae of holomorphi usp forms of weight k with

respet to SL

2

(Z) and !

f

= � (k�1)(4�)

1�k

kfk

�2

where kfk is the Petersson norm. We

prove that

X

f2F

k

!

f

L

2

(1=2; f 
 �) = 2(1 + �(�1) i

k

)

�

log

Dk

4�

+  +

X

pjD

log p

p� 1

�

+O

�

D

3

�

+O

�

D

15=2

k

�1=4+"

�

;

as k tends to in�nity, k even.
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Corollary. We have

#

�

f 2 F

k

: L(1=2; f 
 �) > 0

	

�

k

(log k)

2

:

Greedy Sums of Distint Squares

Ulrike M.A.Vorhauer, Kent

(joint work with Hugh L.Montgomery)

When a positive integer is expressed as a sum of squares, with eah suessive summand

as large as possible, the summands derease rapidly in size until the very end, where one

may �nd two 4's, or several 1's. We �nd that the set of integers for whih the summands

are distint, we all them greedy sums of distint squares, does not have a natural density,

but that the ounting funtion osillates in a preditable way. Let A(v) be the number of

greedy sums of distint squares less than v , then

lim

k!1

k2Z

A

�

4 exp (2

k+x

)

�

4 exp (2

k+x

)

= f(x)

where f is a ontinuous, non--onstant funtion with period 1.

Expliit Formulas for the n --th Prime

Dieter Wolke, Freiburg

The lassial Riemann--von Mangoldt formula

 (x) =

X

p

k

�x

log p = x�

X

%

x

%

%

+O

�

x log

2

x

T

�

where % = � + i� runs through all non--trivial zeros of �(s) with j� j � T , 2 � T � x ,

allows one, roughly speaking, to alulate  (x) up to an error of order x=T by using zeros

j%j � T . We disussed the question whether a formula of the type

p

n

= Li

�1

(n) +

X

%; j� j�T

f(n; %) + Error(1)

for the n --th prime an be derived where Li x =

R

x

2

dt= log t . The result is a bit disap-

pointing and seems not to be appropriate for numerial or theoretial use. First, T has to

be restrited by 2 � T � n

5=12� "

. Seondly, p

n

an be written in the form (1) by means

of an iterative proess for whih � (")

�

log logn

�

2

steps are suÆient.

Edited by Ulrike M.A.Vorhauer

16



Partiipants

Johan Andersson

johana�matematik.su.se

Dept. of Mathematis

University of Stokholm

Box 6701

S-10691 Stokholm

Prof. Dr. Mihel Balazard

balazard�math.u-bordeaux.fr

Mathematiques et Informatique

Universite de Bordeaux I

351, ours de la Liberation

F-33405 Talene Cedex

Dr. Andras Biro

biroand�renyi.hu

Alfred Renyi Mathematial Institute

of the Hungarian Aademy of Siene

Realtanoda u. 13-15

P.O.Box 127

H-1053 Budapest

Prof. Dr. Enrio Bombieri

eb�math.ias.edu

Shool of Mathematis

Institute for Advaned Study

1 Einstein Drive

Prineton, NJ 08540

USA

Prof. Dr. J�org Br�udern

bruedern�mathematik.uni-stuttgart.de

Mathematishes Institut A

Universit�at Stuttgart

Pfa�enwaldring 57

70569 Stuttgart

Dr. Roelof W. Bruggeman

bruggeman�math.uu.nl

Mathematish Instituut

Universiteit Utreht

P. O. Box 80.010

NL-3508 TA Utreht

Prof. Dr. Fernando Chamizo

fernando.hamizo�uam.es

Departamento de Matematias

Universidad Autonoma de Madrid

Ciudad Universitaria de Cantoblano

E-28049 Madrid

Prof. Dr. Brian Conrey

onrey�best.om

onrey�aimath.org

Amerian Institute of Mathematis

360 Portage Ave.

Palo Alto, CA 94306

USA

Prof. Dr. Jean-Mar Deshouillers

j-m.deshouillers�math.u-bordeaux.fr

Mathematiques Stohastiques

Universite Bordeaux 2

F-33076 Bordeaux Cedex

Prof. Dr. Shigeki Egami

megami�eng.toyama-u.a.jp

Department of Mathematis

Faulty of Engineering

Toyama University

Gofuku 3190

Toyama City 930-8555

JAPAN

Prof. Dr. Etienne Fouvry

fouvry�math.u-psud.fr

Mathematiques

Universite Paris Sud (Paris XI)

Centre d'Orsay, Batiment 425

F-91405 Orsay Cedex

17



Prof. Dr. John B. Friedlander

frdlndr�math.toronto.edu

Dept. of Mathematis

Sarborough College

University of Toronto

Sarborough, Ontario M1C 1A4

CANADA

Prof. Dr. Martin N. Huxley

huxley�f.a.uk

Shool of Mathematis

Cardi� University

23, Senghenydd Road

GB-Cardi� CF24 4YH

Georg Illies

Mathematishes Institut

Universit�at M�unster

Einsteinstr. 62

48149 M�unster

Prof. Dr. Aleksandar Ivi

aleks�ivi.matf.bg.a.yu

eivia�ubbg.etf.bg.a.yu

aivi�rgf.bg.a.yu

Katedra Matematike RGF-a

Universiteta u Beogradu

Djusina 7

11000 Beograd

SERBIA

Prof. Dr. Henryk Iwanie

iwanie�math.rutgers.edu

Dept. of Mathematis

Rutgers University

Bush Campus, Hill Center

New Brunswik, NJ 08903

USA

Prof. Dr. Matti Jutila

jutila�utu.fi

Institute of Mathematial Sienes

University of Turku

FIN-20014 Turku

Prof. Dr. Jerzy Kazorowski

kjerzy�math.amu.edu.pl

Institute of Mathematis

A. Mikiewiz University

ul. J.Matejki 48/49

60-769 Poznan

POLAND

Prof. Dr. Shin-ya Koyama

koyama�math.keio.a.jp

Dept. of Mathematis

Keio University

Hiyoshi 3-14-1, Kohokuku

Yokohama 223-8522

JAPAN

Prof. Dr. Antanas Laurinikas

antanas.laurinikas�maf.vu.lt

Dept. of Mathematis & Informatis

Vilnius University

Naugarduko 24

2006 Vilnius

LITHUANIA

Prof. Dr. Tom Meurman

tommeu�utu.fi

Department of Mathematis

University of Turku

FIN-20014 Turun yliopisto

Dr. Philippe Mihel

mihel�math.u-psud.fr

Departement de Mathematiques

Universite de Montpellier II

Plae Eugene Bataillon

F-34095 Montpellier

Dr. Giuseppe Molteni

giuseppe.molteni�mat.unimi.it

Dipartimento di Matematia

Universita di Milano

Via C. Saldini, 50

I-20133 Milano

18



Prof. Dr. Hugh L. Montgomery

Hugh.Montgomery�math.lsa.umih.edu

hlm�math.lsa.umih.edu

Dept. of Matheamtis

The University of Mihigan

4066 East Hall

Ann Arbor MI 48109-1109

USA

Prof. Dr. Yoihi Motohashi

ymoto�math.st.nihon-u.a.jp

am8y-mths�asahi-net.or.jp

Dept. of Mathematis

College of Siene and Tehnology

Nihon University

Surugadai

Tokyo 101

JAPAN

Prof. Dr. Leo Murata

leo�eo.meijigakuin.a.jp

Dept. of Mathematis

Meiji-gakuin University

Shirokane-dai 1-2-37

Minato-ku

Tokyo 108-8636

JAPAN

Prof. Samuel James Patterson

spatter�gwdvms.gwdg.de

sjp�uni-math.gwdg.de

Mathematishes Institut

Universit�at G�ottingen

Bunsenstr. 3-5

37073 G�ottingen

Prof. Dr. Alberto Perelli

perelli�dima.unige.it

Dipartimento di Matematia

Universita di Genova

Via Dodeaneso 35

I-16146 Genova

Prof. Dr. A. Sankaranarayanan

sank�math.tifr.res.in

Tata Institute of Fundamental

Researh

Shool of Mathematis

Homi Bhabha Road, Colaba

400 005 Mumbai

INDIA

Prof. Dr. Kai Man Tsang

kmtsang�maths.hku.hk

Department of Mathematis

Hong Kong University

Hong Kong

CHINA

Prof. Dr. Ulrike Vorhauer

vorhauer�mathematik.uni-ulm.de

Dept. of Mathematis & Comp.Siene

Kent State University

Kent, OH 44242-0001

USA

Mihael Welter

mwelter�mi.uni-koeln.de

Mathematishes Institut

Universit�at zu K�oln

Weyertal 86-90

50931 K�oln

Prof. Dr. Dieter Wolke

wolke�mathematik.uni-freiburg.de

Mathematishes Institut

Universit�at Freiburg

Ekerstr.1

79104 Freiburg

19


