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The present 
onferen
e was organized by Jan Rosinski (Knoxville), Gennady Samorod-

nitsky (Itha
a) and Werner Linde (Jena). The 23 talks that were delivered during the


onferen
e 
overed many aspe
ts of the theory of stable measures and pro
esses. Moreover,

several aspe
ts of appli
ations were presented. In the following we in
lude the abstra
ts of

the talks in alphabeti
al order.
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Abstra
ts

Some aspe
ts of selfde
omposability

Ole E. Barndorff-Nielsen (Aarhus)

After a brief re
all of various key 
hara
terisations of selfde
omposability (in the sense of

Paul L�evy), results from three re
ent investigations, where selfde
omposability has played

a seminal role, were reported:

� Multivariate subordination was introdu
ed in [BNPS℄ and, in parti
ular, it was shown

there that, subje
t to some mild regularity 
onditions, operator selfde
omposability of

the subordinator together with operator stability of the subordinand implies operator

selfde
omposability of the subordinated pro
ess.

� In the type of sto
hasti
 volatility models dis
ussed in a series of papers ([BNS1℄,

[BNS2℄ and [BNS3℄), selfde
omposability is a key 
on
ept. For these models, and

indeed for substantial generalisations thereof, a mixed normal limiting behaviour of

arbitrary powers of absolute returns has been established in [BNS4℄.

� The paper [BNT1℄ introdu
ed the 
on
ept of selfde
omposability in free probability

and 
ontributed to the study of the 
lose analogy between properties of in�nite divis-

ibility and L�evy pro
esses in 
lassi
al probability and in free probability. The paper

[BNT2℄ surveys and improves on these results and moreover presents a free analogue

of the L�evy-Ito representation.

Referen
es

[BNPS℄ Barndor�-Nielsen, O.E., Pedersen, J. and Sato, K. (2001): Multivariate subordination, selfde
om-

posability and stability. Adv. Appl. Prob. 33 (2001), 160-187.

[BNS1℄ Barndor�-Nielsen, O.E. and Shephard, N. (2001a): Modelling by L�evy pro
esses for �nan
ial

e
onometri
s. In O.E. Barndor�-Nielsen, T. Mikos
h and S. Resni
k (Eds.): L�evy Pro
esses -

Theory and Appli
ations. Boston: Birkh�auser. Pp. 283-318.

[BNS2℄ Barndor�-Nielsen, O.E. and Shephard, N. (2001b): Non-Gaussian Ornstein-Uhlenbe
k-based

models and some of their uses in �nan
ial e
onomi
s (with Dis
ussion). J. R. Statist. So
. B.

63, 167-241.

[BNS3℄ Barndor�-Nielsen, O.E. and Shephard, N. (2001
): E
onometri
 analysis of realised volatility and

its use in estimating sto
hasti
 volatility models. J. R. Statist. So
. B 64. (To appear.)

[BNS4℄ Barndor�-Nielsen, O.E. and Shephard, N. (2001d): Realised power variation and sto
hasti
 volatil-

ity models. (Submitted.)

[BNT1℄ Barndor�-Nielsen, O.E. and Thorbj�rnsen, S. (2001a): Selfde
omposability and L�evy pro
esses

in free probability. Bernoulli (To appear.)

[BNT2℄ Barndor�-Nielsen, O.E. and Thorbj�rnsen, S. (2001b): L�evy laws and pro
esses in free probability.

(Submitted.)

Entran
e laws of semi{stable Markov pro
esses, exponential fun
tionals of

L�evy pro
esses and some fa
torizations of the exponential laws

Jean Bertoin (Paris VI)

(joint work with Mar
 Yor and M. E. Caballero )

We 
onsider the asymptoti
 behavior of semi-stable Markov pro
esses valued in ℄0;1[

when the starting point tends to 0. The entran
e distribution is expressed in terms of

the exponential fun
tional of the underlying L�evy pro
ess whi
h appears in Lamperti's

representation of a semi-stable Markov pro
ess. In the 
ase when the underlying L�evy

2



pro
ess is a subordinator (i.e. has in
reasing sample paths, the moments of the exponential

fun
tional 
an be 
omputed expli
itly, and this yields a remarkable fa
torization of the

exponential variable.

Potential theory of S
hr�odinger operator based on fra
tional Lapla
ian

Tomasz By
zkowski (Wro
law)

In our talk we review some re
ent results 
on
erning potential theory of symmetri
 (ro-

tationally invariant) �-stable pro
esses and of Feynman-Ka
 semigroups based on them.

Among the most important topi
s we dis
uss the Boundary Harna
k Prin
iple and the

Conditional Gauge Theorem for Lips
hitz domains. Results we mention were proved by

K. Bogdan, in some joint papers by K. Bogdan and T. By
zkowski and also in the papers

of Z.-Q. Chen and R. Song.

Censored stable pro
esses

Zhen{Qing Chen (Seattle)

A 
ensored stable pro
ess Y in a Eu
lidean open set D is a symmetri
 stable pro
ess whi
h

is not allowed to make jumps outside D. In this talk, we dis
ussed some re
ent results

on the basi
 properties of 
ensored stable pro
esses. An almost sharp answer is given to

the question of when the pro
ess Y has �nite lifetime, and if it is �nite, whether the left

limit of Y

t

at its lifetime exists under Eu
lidean topology. We presented boundary Harna
k

inequality for harmoni
 fun
tions in bounded C

1;1

-smooth open set D, as well as the sharp

two-sided estimates of Green fun
tions of Y and the identi�
ation of Martin boundary of

Y in D. Pure jump Girsanov transform of Y and its appli
ation to 
ensored relativisti


stable pro
esses were des
ribed. Hardy inequality for 
ensored stable pro
esses is also

mentioned.

Limit theory for some non-linear time series models in
luding GARCH and

sto
hasti
 volatility models

Ri
hard A. Davis (Fort Collins)

In deriving limit theory for the sample auto
orrelation fun
tion (ACF) of a time series

with either an in�nite fourth moment or an in�nite se
ond moment, two 
onditions are

typi
ally imposed. The �rst is a regular variation 
ondition that requires the �nite di-

mensional distributions to be jointly regularly varying. The se
ond is a mixing 
ondition

spe
ifying the rate and nature at whi
h events be
ome asymptoti
ally independent. It 
an

be shown that a large 
lass of nonlinear time series models, in
luding those arising from

a sto
hasti
 re
urren
e equation su
h as GARCH, and sto
hasti
 volatility (SV) models

satisfy these 
onditions. The limit distribution for the sample ACF 
an be des
ribed as the

ratio of two stable distributed random variables. Interestingly, the behavior of the sample

ACF for GARCH and SV models are vastly di�erent. In the SV 
ase, the limit behavior

is 
omparable to that of the sample ACF of an iid sequen
e with heavy tails. In parti
u-

lar, the rate of 
onvergen
e to 0 in probability is faster the heavier the tail. For GARCH

pro
esses, the behavior is just the opposite. The sample ACF does not even 
onverge to a


onstant in probability for suÆ
iently heavy tails. The 
ontrasts in sampling behavior of

the ACF for GARCH and SV models will be illustrated via simulation.
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Domains of attra
tion of stable distributions in Eu
lidean spa
e

Laurens de Haan (Rotterdam)

Well-known ne
essary and suÆ
ient 
onditions are derived for the domains of attra
-

tion using 
hara
teristi
 fun
tions and regular variation rather than the theory of in�nite-

divisible distributions. The 
onditions in terms of the 
hara
teristi
 fun
tion are less

well-known. The higher-dimensional 
ase is un�nished as yet.

On one{dimensional sto
hasti
 equations driven by symmetri
 stable

pro
esses

Hans{J

�

urgen Engelbert (Jena)

We study sto
hasti
 equations

X

t

= x

0

+

Z

t

0

b(u;X

u�

) dZ

u

; t � 0;

driven by one-dimensional symmetri
 stable pro
esses Z of index � with 0 < � � 2.

Here b : [0;+1) � R ! R denotes a measurable di�usion 
oeÆ
ient and x

0

2 R is the

initial value. As spe
ial 
ases for the driving pro
ess Z, Brownian motion (� = 2) and

the Cau
hy pro
ess (� = 1) are in
luded. We are interested in general 
onditions for

existen
e and uniqueness of weak solutions. Our main results generalize re
ent results of

P.A. Zanzotto who dealt with homogeneous di�usion 
oeÆ
ients b. The basi
 tool is time


hange of symmetri
 stable pro
esses. Using the property that appropriate time 
hanges

of sto
hasti
 integrals with respe
t to symmetri
 stable pro
esses are again symmetri


stable pro
esses with the same index, we present a new approa
h whi
h 
ompletely uni�es

the treatment of two quite di�erent 
ases: the 
ontinuous 
ase (� = 2) and the purely

dis
ontinuous 
ase (0 < � < 2).

Limit distributions of Studentized means

F. G

�

otze (Bielefeld)

(joint work with G. P. Chistyakov )

Let X; X

j

; j 2 N , be independent, identi
ally distributed random variables with a prob-

ability distribution F . It is shown that Student's statisti
 of the sample

�

X

j

	

n

j=1

has

a limit distribution G su
h that G(f�1; 1g) 6= 1, if and only if:

1) X is in the domain of attra
tion of a stable law with some exponent 0 < � � 2;

2) EX = 0 if 1 < � � 2;

3) if � = 1, then X is in the domain of attra
tion of Cau
hy's law and Feller's 
ondition

holds: lim

n!1

nE sin(X=a

n

) exists and is �nite, where a

n

is the in�mum of all x > 0 su
h

that

nx

�2

�

1 +

Z

[�x;x)

y

2

Ffdyg

�

� 1 :

If G(f�1; 1g) = 1, then Student's statisti
 of the sample

�

X

j

	

n

j=1

has a limit distribution

if and only if P(jXj > x); x > 0, is a slowly varying fun
tion.
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Semistability on ve
tor spa
es and on groups { An overview

W. Hazod (Dortmund)

Assume G to be a simply 
onne
ted nilpotent Lie group with Lie algebra G = V; a

�nite dimensional ve
tor spa
e. Let X

n;k

= a

n

(Y

k

) be an array of group-valued random

variables as before and let X

o

n;k

= a

o

n

(Y

o

k

) denote the 
orresponding array on the tangent

spa
e G de�ned by exp(Y

o

n

) = Y

n

, where a

o

n

denotes the di�erential of a

n

de�ned by

exp(a

o

n

(�)) = a

n

(exp(�)). We have a

n

2 Aut(G ) and a

o

n

2 Aut(G) , the group of Lie algebra

automorphisms � GL(V). ( Note that exp: G ! G is a C

1

-isomorphism, and Aut(G )

and Aut(G) are isomorphi
.)

Thus to the array X

n;k

= a

n

(Y

k

) and to S

n

=

Q

k(n)

j=1

a

n

(Y

j

) - the row produ
t pro
ess

on the group G - there 
orrespond the array X

o

n;k

= a

o

n

(Y

o

k

) and the row sum pro
ess

�

n

:=

P

k(n)

j=1

a

o

n

(Y

o

j

) on the ve
tor spa
e V, the obje
ts of investigation in the theory of

operator limit distributions on ve
tor spa
es.

During the last de
ade it 
ould be shown that limits in distribution of S

n

(on G ) 
orre-

spond in a 1-1-way to limits of �

n

(on V) and vi
e versa, and moreover there exist a list

of \translations" from the group 
ase to the ve
tor spa
e 
ase.

Large weighted o

upation measures for 
ertain stable pro
esses

Jim Kuelbs (Madison)

Let fX(t) : t � 0g be a symmetri
 stable pro
ess of index � 2 (0; 2℄ with stationary inde-

pendent in
rements and sample paths in D[0;1). We assume X(0) = 0 with probability

one, and for t � 0, s > 0, de�ne M(t) = sup

0�u�t

jX(u)j and

�

s

(t) =M(st)=(


�

s=LLs)

1=�

;

where the 
onstant 0 < 


�

<1 is given by




�

= � lim

�!0

+

�

�

logP (M(1) � �)

and LLs = max(1; log(log s)). We determine lim sup

t!1

	




(t) where

	




(t) = t

�1

Z

t

0

I

[0;
℄

(�

s

(1)�(s=t))ds;

for various weight fun
tions �; and 
 > 0. Proofs depend on weighted small ball probability

estimates of the sup-norm of these pro
esses, whi
h are then used to obtain a fun
tional

law of the iterated logarithm. The o

upation measure results are 
onsequen
es of the law

of the iterated logarithm.

Poisson analogues of Cameron-Martin formula and appli
ations to shifted

small balls

M. A. Lifshits (St. Petersburg and Lille)

(joint work with P. Deheuvels and E. Shmileva)

Let �(t) be a standard Poisson pro
ess. Consider U

�

(t) = �

�1=2

(�(�t)� �t). Re
all

that empiri
al pro
esses are better approximated by U

�

than by Wiener pro
ess. It is
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therefore interesting to study �ne properties of U

�

. Take a shift fun
tion f and estimate

probabilities of shifted small balls with respe
t to the uniform norm P fkU

�

� �fk � rg

for r ! 0, �!1, �!1.

We use the Skorokhod formula for mutual density of the distributions of pro
esses with

independent in
rements instead of Cameron-Martin one's whi
h is suitable for Gaussian


ase. A reasonably 
hosen variation of intensity repla
es here the Gaussian admissible

shifts. We show (with P.Deheuvels) that Wiener-type small ball behavior for high-intensity

Poisson pro
ess o

urs in a larger zone than suggested by 
lassi
al KMT method. On the

other hand, there exists a zone of "intermediate intensities" where Poisson small ball

behavior is nontrivial but di�erent from its Wiener 
ounterpart.

Continuity of sto
hasti
 integrals with respe
t to in�nitely divisible random

measures

Mi
hael B. Mar
us (New York)

(joint work with Jan Rosinski )

Let S be a Æ-ring of Borel subsets of a Borel spa
e S with the property that there exists

an as
ending sequen
e fS

n

g � S su
h that

S

S

n

= S. Let m be a �-�nite Borel measure

on S that is �nite on sets in S. Let f�(�; s)g

s2S

be a measurable family of L�evy measures

on R su
h that

R

jxj>1

jxj �(dx; s) <1 for every s 2 S. Assume that

Z

S

n

Z

(x

2

^ jxj) �(dx; s)m(ds) <1

for ea
h n. Then there exists an independently s
attered random measure M = fM(A) :

A 2 Sg su
h that for every A 2 S

E exp iuM(A) = exp

Z

A

Z

1

�1

fe

iux

� 1� iuxg �(dx; s)m(ds):

Moreover, EjM(A)j <1 and EM(A) = 0 for every A 2 S.

SuÆ
ient 
onditions for 
ontinuity are are given for the mean{zero in�nitely divisible

pro
ess

X(t) =

Z

S

f(t; s)M(ds) t 2 T

where T is a 
ompa
t metri
 spa
e and f : T � S ! R (or C) is a deterministi
 fun
tion.

Stable laws, fra
tional derivatives, and anomalous di�usion

Mark M. Mers
haert (Reno)

The density p(x; t) of a stable L�evy motion fX

t

: t � 0g solves a fra
tional partial

di�erential equation where the order of the fra
tional derivative equals the stable index

�. This fra
tional PDE models anomalous di�usion, in whi
h a passive tra
er spreads

at a faster rate than the 
lassi
al di�usion equation predi
ts. The stable densities also

reprodu
e the skewness and power law tails 
ommonly observed in tra
er tests. Op-

erator L�evy motions are governed by more 
omplex fra
tional PDEs that model mul-

tis
aling anomalous di�usion, in whi
h the rate of spreading depends on the 
oordi-

nate. Note: The slides used to give this talk, in
luding referen
es, 
an be found at

http://unr.edu/homepage/m
ubed/MFOo
t01.pdf
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Is a random ve
tor regularly varying if all linear 
ombinations of its


omponents are regularly varying?

Thomas Mikos
h (Copenhagen)

In some joint work with Bojan Basrak (EURANDOM) and Ri
hard Davis (Colorado State,

Fort Collins) the following problem arose. We needed to show that the �nite-dimensional

distributions of a GARCH pro
ess (used for modeling �nan
ial returns) are multivariate

regularly varying whi
h in turn 
an be used to show that the sample auto
orrelation

fun
tion of su
h a pro
ess has an in�nite varian
e stable limit, provided 
ertain moment


onditions are satis�ed.

The theory of sto
hasti
 re
urren
e equations whi
h 
an be used for the squares of a

GARCH pro
ess gives one that the linear 
ombinations of a lagged ve
tor of the squares

are regularly varying (Kesten, 1973, A
t. Math.). Thus we were fa
ed with the problem to

show that the lagged ve
tor itself is regularly varying. This turns out to be a non-trivial

question.

For a ve
tor with arbitrary 
omponents and regularly varying linear 
ombinations we

solved the problem if the index of regular variation is not an integer. Then it follows that

the ve
tor itself is regularly varying. If the 
omponents of the ve
tor are non-negative

we 
an show the same result if the index of regular variation is not an even integer. The

remaining 
ases are open.

On some new results for multivariate stable laws

Vygantas Paulauskas (Vilnius)

Let G

�

; 0 < � < 2; be a stable distribution on R

d

with spe
tral measure �. In the

talk we present two new results, whi
h give the �nal answer to some problems, known

for several de
ades. The results are 
ontained in joint papers with V. Bentkus and A.

Juozulynas [1℄, [2℄. The boundary of a set A � R

d

we denote by �A, and

�

�A

�

"

is the

"-neighborhood of �A. Let A




be 
lass of 
onvex subsets of R

d

. For any law G we denote

�

�

A




; G

�

= sup

">0

f sup

A2A




G

��

�A

�

"

�

="g:

Theorem: For any stable non-degenerate G

�

we have the estimate

�

�

A




; G

�

�

� C(�; d)K(�; �)

and there are expli
it dependen
e of 
onstants C and K on parameters d; �, and �.

The se
ond result 
on
erns the so-
alled L�evy{LePage representation of stable ve
tors.

It is known that multidimensional stable law G

�

admits the following representation of

the type G

�

= L

�

P

1

j=1

�

�1=�

j

X

j

�

; 0 < � < 2; where �

n

= �

1

+ � � �+ �

n

, and �

1

; �

2

; : : : are

i.i.d. random variables with standard exponential distribution. We assume that random

ve
tors X

1

; X

2

; : : : are i.i.d. with distribution F , EjX

1

j

�

< 1, EX

1

= 0 if � > 1 and

independent of �

1

;�

2

; : : :: Denote by F

n

the distribution of the sum S

n

=

P

n

j=1

�

�1=�

j

X

j

:

In [2℄ we got optimal estimates of the quantity Æ

n

�

B

�

= sup

A2B

�

�

F

n

�

A

�

� G

�

�

A

�

�

�

; where B

stands for the 
lass of Borel subsets of R

d

:

Referen
es

[1℄ V. Bentkus, A. Juozulynas, and V. Paulauskas, Bounds for stable measures of 
onvex shells and stable

approximations, Ann. Probab., 28, 3, (2000), p.1280-1300.

[2℄ V. Bentkus, A. Juozulynas, and V. Paulauskas, L�evy-LePage series representation of stable ve
tors:


onvergen
e in variation, J. of Theoreti
al Probab. 14, 4, (2001), p.949-978.
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Multivariate type G and marginal in�nite divisibility

Vi
tor P

�

erez-Abreu (Guanajuato)

A one dimensional random variable x is said to be of type G if in law x is of the

form z

p

s where z and s > 0 are independent random variables with s being in�nitely

divisible and z having the standard normal distribution. In this talk we present two

possible multivariate extensions: The �rst one is to random ve
tors x of the form zS

1=2

where z is an m-dimensional standard normal ve
tor independent of the in�nitely divisible

nonnegative random m�m matrix S with L�evy measure V with support on the spa
e of

positive de�nite matri
es M

+

m

: We show that x has an in�nitely divisible law with L�evy

density u(x) =

R

M

+

m

'

m

(x; �)V (d�); where '

m

(x; �) denotes the density fun
tion of them-

dimensional normal distribution with mean 0 and varian
e matrix �. As examples of su
h

laws we have the multivariate Normal Inverse Gaussian and we show that any multivariate

symmetri
 stable law has the representation zS

1=2

.

The se
ond 
lass 
onsists of those random ve
tors whose one dimensional marginals are

of type G. We �rst introdu
e a general 
on
ept of marginal in�nite divisibility of random

matri
es whi
h allow us to 
onstru
t interesting examples.

De
omposition of self-similar stable mixed moving averages

Vladas Pipiras (Boston)

It has been known for some time now that stable non-Gaussian pro
esses with an in-

varian
e property are related to non-singular 
ows. This 
onne
tion has been established

and explored, for example, for stationary stable pro
esses by Rosi�nski and for self-similar

stable pro
esses by Burne
ki, Rosi�nski and Weron. In this talk, we will fo
us on stable

pro
esses whi
h are both self-similar and have stationary in
rements. These pro
esses are

of interest be
ause, in pra
ti
e, one often wants a model to have these two 
hara
teristi
s.

We will show that if X

�

is a symmetri
 �-stable pro
ess with stationary in
rements given

by the mixed moving average

X

�

(t) =

Z

X

Z

R

(G(x; t + u)�G(x; u))M

�

(dx; du); t 2 R;

where G : X � R 7! R is a deterministi
 fun
tion and M

�

is a symmetri
 �-stable random

measure on X � R with the 
ontrol measure m

�

(dx; du) = �(dx)du, and if X

�

is also

self-similar, then it is determined by a non-singular 
ow, a related 
o
y
le and a semi-

additive fun
tional. By using the Hopf de
omposition of the 
ow into its dissipative and


onservative 
omponents, we will establish a unique de
omposition in distribution of X

�

into two independent pro
esses

X

�

d

= X

D

�

+X

C

�

;

where the pro
ess X

D

�

is determined by a nonsingular dissipative 
ow and the pro
ess X

C

�

is determined by a nonsingular 
onservative 
ow.
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Small and large time s
ale analysis of a network traÆ
 model

Sidney Resni
k (Itha
a)

(joint work with Krishanu Maulik)

Empiri
al studies of the internet and WAN traÆ
 have observed multifra
tal behavior at

time s
ales below a few hundred millise
onds. There have been some attempts to model

this phenomenon, but there is no model to 
onne
t the small time s
ale behavior with

behavior observed at large time s
ales of bigger than a few hundred millise
onds. There

have been separate analyses of models for high speed data transmissions, whi
h show that

appropriate approximations to large time s
ale behavior of 
umulative traÆ
 are either

fra
tional Brownian motion or stable L�evy motion, depending on the input rates assumed.

We bridge this gap and develop and analyze a model o�ering an explanation of both the

small and large time s
ale behavior of a network traÆ
 model based on the in�nite sour
e

Poisson model. Previous studies of this model have usually assumed that transmission

rates are 
onstant and deterministi
. We 
onsider a non-
onstant, multifra
tal, random

transmission rate at the user level whi
h results in 
umulative traÆ
 exhibiting multifra
tal

behavior on small time s
ales and self-similar behavior on large time s
ales.

Transien
e levels for L�evy pro
esses with appli
ation to stable L�evy pro
esses

Ken-iti Sato (Nagoya)

(joint work with Toshiro Watanabe )

Let fX

t

: t � 0g be a transient L�evy pro
ess on the d-dimensional Eu
lidean spa
e. Let

L(B

a

) be the last exit time of the pro
ess from the open ball B

a


entered at 0 of radius

a. Existen
e of E[L(B

a

)

�

℄, the �-order moment of L(B

a

), is dis
ussed. The set T of � � 0

su
h that E[L(B

a

)

�

℄ is �nite is 
alled the transien
e level of fX

t

g. 1. It is shown that T

does not depend on a. 2. Under the assumption of strong non-latti
e, the 
riterion for

� 2 T is given in terms of the logarithmi
 
hara
teristi
 fun
tion  (z) of X

1

. 3. It is shown

that, if d � 3 and fX

t

g is nondegenerate, then T in
ludes [0; d=2� 1). 4. Let d = 1 and

let X

1

have �nite (1 + Æ)-order moment for some Æ > 0. Des
ription of T by properties

of the L�evy measure � of fX

t

g is given. 5. Complete des
ription of T for transient stable

L�evy pro
esses for d = 1 and partial des
ription of that for d � 2 is given.

Drift transforms and Green fun
tion estimates of dis
ontinuous pro
esses

with appli
ations to stable pro
esses

Renming Song (Urbana)

(joint work with Zhen-Qing Chen )

Let E be a Lusin spa
e and let m be a �-�nite Borel measure on E with supp[m℄ = E.

Let X = (X

t

; P

x

; x 2 E) be a transient irredu
ible Borel right pro
ess on E. Suppose we

have another transient Borel right pro
ess

b

X = (

b

X

t

;

b

P

x

; x 2 E) on E whi
h is a strong

dual of X with respe
t to the measure m. Under this strong duality assumption, X has a

Green fun
tion whi
h we denote by G(x; y). Let (N;H) be a L�evy system for X and F a

9



bounded fun
tion on E � E vanishing on the diagonal with inf

x;y2E

F (x; y) > �1. Under

some natural assumptions,

t 7!

X

0<s�t

F (X

s�

; X

s

)�

Z

t

0

Z

E

F (X

s

; y)N(X

s

; dy)dH

s

is a lo
al martingale. Its Doleans-Dade exponential is

M

t

= exp

 

X

s�t

ln(1 + F (X

s�

; X

s

))�

Z

t

0

Z

E

F (X

s

; y)N(X

s

; dy)dH

s

!

:

M

t

is a nonnegative lo
al martingale. M

t

is 
alled a pure jump Girsanov transform of X.

M

t

is obviously a nonnegative supermartingale multipli
ative fun
tional of X. Let Y be

the strong Markov pro
ess obtained from X via the Girsanov transform M . One of the

main results of this paper is that the Green fun
tion of Y is 
omparable to that of X. We

also have a generalization of this result for the mixture of pure jump Girsanov transform

and Feynman-Ka
 transform.

For � 2 (0; 2), a relativisti
 �-stable pro
ess Y = (Y

t

; Q

x

) in R

n

is a L�evy pro
ess whose


hara
teristi
 fun
tion is given by

e

�t

(

j�j

2

+m

2=�

)

�=2

�m

)

; � 2 R

n

;

where m > 0 is a 
onstant. By regarding the relativisti
 �-stable pro
ess Y as a per-

turbation of the symmetri
 �-stable pro
ess X and applying our general results, we get

the Green fun
tion of the killed relativisti
 stable pro
ess on a bounded C

1;1

domain is


omparable to that of the killed symmetri
 stable pro
ess on the same domain.

Integration with respe
t to fra
tional motions

Jerzy Szulga (Auburn)

Using the spe
tral analysis, we extend the rudimentary integral, de�ned �rst for simple

fun
tions with respe
t to a pro
ess with stationary in
rementsW

t

=

R

1

0

(expfitwg�1)dZ

w

,

to a maximal domain. Integrands form a Hilbert spa
e of 
ertain tempered distributions

but they still 
ould be seen as fun
tions under mild 
onditions imposed on the spe
tral

measure.

In parti
ular, we des
ribe 
ompletely the integrands related to the fra
tional Brownian

motion. The integration is equivalent to the 
lassi
al integration with respe
t to Brownian

motion via a 
ertain isomorphism playing the role of the 
hain rule. The obtained integral

is not Riemannian, for an integrable fun
tion may be not integrable on a sub-interval.

Extension to double or multiple integrals follows.

Almost verbatim pro
edure applies to a fra
tional L�evy stable motion (the spe
tral

random measure dZ

w

is a L�evy stable motion with a power weight).

Linearly additive random �elds with independent in
rements on time-like


urves

Shigeo Takenaka (Okayama)

Let V be a 
onvex 
one in R

n

. A 
urve f`(t); t 2 R

+

g in R

n

is 
alled a time-like


urve if it holds f`(t); t � sg � `(s) + V; 8s. A random �elds fX(t); t 2 V g is 
alled a

multiparameter additive pro
ess if the restri
tion Xj

`

(t) = X(`(t)) is an additive pro
ess

for any time like 
urve `.

10



Consider an S�S linearly additive pro
ess fX(t); t 2 R

n

g that is the restri
tion Xj

L

on

any strait line L is an S�S motion.

The result is: If there exists a 
onvex 
one V su
h that the parameter restri
tion

fX(t); t 2 V g be
omes a multiparameter additive pro
ess, then there uniquely exists

a measure � on the dual 
one V

�

= fu; u � v � 0; 8v 2 V g with whi
h the pro
ess fXg

has representation

X(t) = Y (S

t

);

where Y = fY (B);B � R

n

g is the S�S-random measure 
ontrolled by � and S

t

=

fx; x � t � �1g. The 
onverse is also true.

The stru
ture of self-similar stable mixed moving averages

Murad S. Taqqu (Boston)

Let X be a symmetri
 �{stable pro
ess with stationary in
rements given by a mixed

moving average representation and assume in addition, that X is self-similar. We obtain a

de
omposition of the pro
essX, unique in distribution, into three independent 
omponents,

whi
h we 
hara
terize and asso
iate with 
ows. The �rst 
omponent is asso
iated with

a dissipative 
ow. Examples in
lude the limit of renewal reward pro
esses, the so-
alled

\random wavelet expansion" and Takenaka pro
esses. The se
ond 
omponent is asso
iated

with a 
onservative identity 
ow. Parti
ular 
ases in
lude linear fra
tional stable motions,

log-fra
tional stable motion and the stable Levy motion. We provide an example of the

third 
omponent, one whi
h is asso
iated with a 
onservative 
y
li
 
ow.

Edited by Werner Linde
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