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The present conference was organized by Jan Rosinski (Knoxville), Gennady Samorod-
nitsky (Ithaca) and Werner Linde (Jena). The 23 talks that were delivered during the
conference covered many aspects of the theory of stable measures and processes. Moreover,
several aspects of applications were presented. In the following we include the abstracts of
the talks in alphabetical order.



Abstracts

Some aspects of selfdecomposability
OLE E. BARNDORFF-NIELSEN (AARHUS)

After a brief recall of various key characterisations of selfdecomposability (in the sense of
Paul Lévy), results from three recent investigations, where selfdecomposability has played
a seminal role, were reported:

e Multivariate subordination was introduced in [BNPS] and, in particular, it was shown
there that, subject to some mild regularity conditions, operator selfdecomposability of
the subordinator together with operator stability of the subordinand implies operator
selfdecomposability of the subordinated process.

e In the type of stochastic volatility models discussed in a series of papers ([BNS1],
[BNS2] and [BNS3]), selfdecomposability is a key concept. For these models, and
indeed for substantial generalisations thereof, a mixed normal limiting behaviour of
arbitrary powers of absolute returns has been established in [BNS4].

e The paper [BNT1] introduced the concept of selfdecomposability in free probability
and contributed to the study of the close analogy between properties of infinite divis-
ibility and Lévy processes in classical probability and in free probability. The paper
[BNT2] surveys and improves on these results and moreover presents a free analogue
of the Lévy-Ito representation.
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Entrance laws of semi—stable Markov processes, exponential functionals of
Lévy processes and some factorizations of the exponential laws

JEAN BERTOIN (PARIS VI)
(joint work with Marc Yor and M. E. Caballero )

We consider the asymptotic behavior of semi-stable Markov processes valued in ]0, 00|
when the starting point tends to 0. The entrance distribution is expressed in terms of
the exponential functional of the underlying Lévy process which appears in Lamperti’s
representation of a semi-stable Markov process. In the case when the underlying Lévy



process is a subordinator (i.e. has increasing sample paths, the moments of the exponential
functional can be computed explicitly, and this yields a remarkable factorization of the
exponential variable.

Potential theory of Schrodinger operator based on fractional Laplacian
TomASszZ BYczkOwSKI (WROCLAW)

In our talk we review some recent results concerning potential theory of symmetric (ro-
tationally invariant) a-stable processes and of Feynman-Kac semigroups based on them.
Among the most important topics we discuss the Boundary Harnack Principle and the
Conditional Gauge Theorem for Lipschitz domains. Results we mention were proved by
K. Bogdan, in some joint papers by K. Bogdan and T. Byczkowski and also in the papers
of Z.-Q. Chen and R. Song.

Censored stable processes
ZHEN-QING CHEN (SEATTLE)

A censored stable process Y in a Euclidean open set D is a symmetric stable process which
is not allowed to make jumps outside D. In this talk, we discussed some recent results
on the basic properties of censored stable processes. An almost sharp answer is given to
the question of when the process Y has finite lifetime, and if it is finite, whether the left
limit of Y; at its lifetime exists under Euclidean topology. We presented boundary Harnack
inequality for harmonic functions in bounded C*!-smooth open set D, as well as the sharp
two-sided estimates of Green functions of Y and the identification of Martin boundary of
Y in D. Pure jump Girsanov transform of Y and its application to censored relativistic
stable processes were described. Hardy inequality for censored stable processes is also
mentioned.

Limit theory for some non-linear time series models including GARCH and
stochastic volatility models

RICHARD A. DAvis (FORT COLLINS)

In deriving limit theory for the sample autocorrelation function (ACF) of a time series
with either an infinite fourth moment or an infinite second moment, two conditions are
typically imposed. The first is a regular variation condition that requires the finite di-
mensional distributions to be jointly regularly varying. The second is a mixing condition
specifying the rate and nature at which events become asymptotically independent. It can
be shown that a large class of nonlinear time series models, including those arising from
a stochastic recurrence equation such as GARCH, and stochastic volatility (SV) models
satisfy these conditions. The limit distribution for the sample ACF can be described as the
ratio of two stable distributed random variables. Interestingly, the behavior of the sample
ACF for GARCH and SV models are vastly different. In the SV case, the limit behavior
is comparable to that of the sample ACF of an iid sequence with heavy tails. In particu-
lar, the rate of convergence to 0 in probability is faster the heavier the tail. For GARCH
processes, the behavior is just the opposite. The sample ACF does not even converge to a
constant in probability for sufficiently heavy tails. The contrasts in sampling behavior of
the ACF for GARCH and SV models will be illustrated via simulation.



Domains of attraction of stable distributions in Euclidean space
LAURENS DE HAAN (ROTTERDAM)

Well-known necessary and sufficient conditions are derived for the domains of attrac-
tion using characteristic functions and regular variation rather than the theory of infinite-
divisible distributions. The conditions in terms of the characteristic function are less
well-known. The higher-dimensional case is unfinished as yet.

On one—dimensional stochastic equations driven by symmetric stable
processes

HANS—JURGEN ENGELBERT (JENA)

We study stochastic equations
t
X, =xp +/ b(u, X, )dZ,, t=>0,
0

driven by one-dimensional symmetric stable processes Z of index a with 0 < a < 2.
Here b : [0,+00) X R — R denotes a measurable diffusion coefficient and =5 € R is the
initial value. As special cases for the driving process Z, Brownian motion (o = 2) and
the Cauchy process (o = 1) are included. We are interested in general conditions for
existence and uniqueness of weak solutions. Our main results generalize recent results of
P.A. Zanzotto who dealt with homogeneous diffusion coefficients b. The basic tool is time
change of symmetric stable processes. Using the property that appropriate time changes
of stochastic integrals with respect to symmetric stable processes are again symmetric
stable processes with the same index, we present a new approach which completely unifies
the treatment of two quite different cases: the continuous case (« = 2) and the purely
discontinuous case (0 < « < 2).

Limit distributions of Studentized means
F. GOTZE (BIELEFELD)
(joint work with G. P. Chistyakov )

Let X, X;, j € N, be independent, identically distributed random variables with a prob-
ability distribution F. It is shown that Student’s statistic of the sample {Xj}?zl has

a limit distribution G such that G({—1,1}) # 1, if and only if:

1) X is in the domain of attraction of a stable law with some exponent 0 < a < 2,
2)EX =0ifl <a <2

3) if @« = 1, then X is in the domain of attraction of Cauchy’s law and Feller’s condition
holds: lim,,_,, nEsin(X/a,) exists and is finite, where a,, is the infimum of all x > 0 such
that

nz~?(1 +/ y? F{dy}) <1.
[71’1)

If G({—1,1}) = 1, then Student’s statistic of the sample {Xj};l:l has a limit distribution
if and only if P(|X| > z), = > 0, is a slowly varying function.



Semistability on vector spaces and on groups — An overview
W. Hazop (DORTMUND)

Assume G to be a simply connected nilpotent Lie group with Lie algebra & = V,a
finite dimensional vector space. Let X, ; = a,(Y%) be an array of group-valued random

variables as before and let XZ,k = aZ(Y,:) denote the corresponding array on the tangent
space @ defined by exp(Y: ) = Y,, where az denotes the differential of a,, defined by
exp(ai(-)) = ap(exp(+)). We have a, € Aut(G) and az € Aut(®) , the group of Lie algebra
automorphisms C GL(V). ( Note that exp: & — G is a C*™ -isomorphism, and Aut(G)
and Aut(®) are isomorphic.)

Thus to the array X, = a,(Y)) and to S, = Hf(:"l) an(Y;) - the row product process
on the group G - there correspond the array X:’k = aZ(Y,:) and the row sum process

Y, = 25(2"1) aZ(YjO) on the vector space V, the objects of investigation in the theory of
operator limit distributions on vector spaces.

During the last decade it could be shown that limits in distribution of S, (on G) corre-
spond in a 1-1-way to limits of 3,, (on V) and vice versa, and moreover there exist a list
of “translations” from the group case to the vector space case.

Large weighted occupation measures for certain stable processes
Jim KUELBS (MADISON)

Let {X(t) : t > 0} be a symmetric stable process of index « € (0, 2] with stationary inde-
pendent increments and sample paths in D[0, 00). We assume X (0) = 0 with probability
one, and for ¢t > 0, s > 0, define M(¢t) = sup |X(u)| and

0<u<t

ns(t) = M(st)/(cqs/LLs)",
where the constant 0 < ¢, < o0 is given by
Co = — lim e*log P(M(1) < ¢)

e—0T

and LLs = max(1,log(logs)). We determine lim sup,_, . ¥.(t) where

W) = [ Toa(n(09(s/0)ds

for various weight functions 8, and ¢ > 0. Proofs depend on weighted small ball probability
estimates of the sup-norm of these processes, which are then used to obtain a functional
law of the iterated logarithm. The occupation measure results are consequences of the law
of the iterated logarithm.

Poisson analogues of Cameron-Martin formula and applications to shifted
small balls

M. A. LirsHITS (ST. PETERSBURG AND LILLE)
(joint work with P. Deheuvels and E. Shmileva)

Let TI(t) be a standard Poisson process. Consider U,(t) = p~/2 (I(pt) — pt). Recall
that empirical processes are better approximated by U, than by Wiener process. It is



therefore interesting to study fine properties of U, . Take a shift function f and estimate
probabilities of shifted small balls with respect to the uniform norm P {|[U, — M|| <r}
forr — 0, p — 00, A — o0.

We use the Skorokhod formula for mutual density of the distributions of processes with
independent increments instead of Cameron-Martin one’s which is suitable for Gaussian
case. A reasonably chosen variation of intensity replaces here the Gaussian admissible
shifts. We show (with P.Deheuvels) that Wiener-type small ball behavior for high-intensity
Poisson process occurs in a larger zone than suggested by classical KMT method. On the
other hand, there exists a zone of ”intermediate intensities” where Poisson small ball
behavior is nontrivial but different from its Wiener counterpart.

Continuity of stochastic integrals with respect to infinitely divisible random
measures

MICHAEL B. MARcUS (NEW YORK)
(joint work with Jan Rosinski )

Let S be a d-ring of Borel subsets of a Borel space S with the property that there exists
an ascending sequence {S,} C S such that | JS, = S. Let m be a o-finite Borel measure
on S that is finite on sets in S. Let {6(-, s)}scs be a measurable family of Lévy measures
on R such that f|x|>1 |z| O(dzx, s) < oo for every s € S. Assume that

/n/(ﬂfQ A lz)) 0(dz, s)m(ds) < oo

for each n. Then there exists an independently scattered random measure M = {M(A) :
A € 8} such that for every A € S

EexpiuM(A) = exp/ / {e™® — 1 — jux} 0(dz, s)m(ds).
AJ—o0

Moreover, E|M(A)| < oo and EM(A) =0 for every A € S.
Sufficient conditions for continuity are are given for the mean-zero infinitely divisible
process

X(t):/sf(t,s)M(ds) teT

where T is a compact metric space and f : T x S — R (or C) is a deterministic function.

Stable laws, fractional derivatives, and anomalous diffusion
MARK M. MERSCHAERT (RENO)

The density p(z,t) of a stable Lévy motion {X; : ¢ > 0} solves a fractional partial
differential equation where the order of the fractional derivative equals the stable index
«. This fractional PDE models anomalous diffusion, in which a passive tracer spreads
at a faster rate than the classical diffusion equation predicts. The stable densities also
reproduce the skewness and power law tails commonly observed in tracer tests. Op-
erator Lévy motions are governed by more complex fractional PDEs that model mul-
tiscaling anomalous diffusion, in which the rate of spreading depends on the coordi-
nate. Note: The slides used to give this talk, including references, can be found at
http://unr.edu/homepage/mcubed/MFOoct01.pdf



Is a random vector regularly varying if all linear combinations of its
components are regularly varying?

THOMAS MIKOSCH (COPENHAGEN)

In some joint work with Bojan Basrak (EURANDOM) and Richard Davis (Colorado State,
Fort Collins) the following problem arose. We needed to show that the finite-dimensional
distributions of a GARCH process (used for modeling financial returns) are multivariate
regularly varying which in turn can be used to show that the sample autocorrelation
function of such a process has an infinite variance stable limit, provided certain moment
conditions are satisfied.

The theory of stochastic recurrence equations which can be used for the squares of a
GARCH process gives one that the linear combinations of a lagged vector of the squares
are regularly varying (Kesten, 1973, Act. Math.). Thus we were faced with the problem to
show that the lagged vector itself is regularly varying. This turns out to be a non-trivial
question.

For a vector with arbitrary components and regularly varying linear combinations we
solved the problem if the index of regular variation is not an integer. Then it follows that
the vector itself is regularly varying. If the components of the vector are non-negative
we can show the same result if the index of regular variation is not an even integer. The
remaining cases are open.

On some new results for multivariate stable laws
VYGANTAS PAULAUSKAS (VILNIUS)

Let Go, 0 < a < 2, be a stable distribution on R? with spectral measure p. In the
talk we present two new results, which give the final answer to some problems, known
for several decades. The results are contained in joint papers with V. Bentkus and A.
Juozulynas [1], [2]. The boundary of a set A C R? we denote by 04, and (0A4)° is the

e-neighborhood of OA. Let A, be class of convex subsets of R?. For any law G we denote
n(Ae, G) = sup{sup G((04)")/e}.
e>0 AecA.
Theorem: For any stable non-degenerate G, we have the estimate
(A, Go) < Cla,d)K(a, p)

and there are explicit dependence of constants C' and K on parameters d, «, and p.
The second result concerns the so-called Lévy—LePage representation of stable vectors.
It is known that multidimensional stable law G, admits the following representation of

the type G, = E(Z;il F;l/an), 0<a<?2,wherel', =X +---4+ \,, and A, \g, ... are

i.i.d. random variables with standard exponential distribution. We assume that random
vectors Xy, Xy, ... are i.i.d. with distribution F, E|X;|* < oo, EX; = 0 if @ > 1 and

independent of I'1,I'y, .. .. Denote by F,, the distribution of the sum S, = 2?21 F;UO‘X]-.
In [2] we got optimal estimates of the quantity d, (B) = sup ‘Fn (A) — G, (A)‘, where B
AcB

stands for the class of Borel subsets of RY.
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Multivariate type G and marginal infinite divisibility
VICTOR PEREZ-ABREU (GUANAJUATO)

A one dimensional random variable z is said to be of type G if in law x is of the
form zy/s where z and s > 0 are independent random variables with s being infinitely
divisible and z having the standard normal distribution. In this talk we present two
possible multivariate extensions. The first one is to random vectors x of the form z5'/2
where z is an m-dimensional standard normal vector independent of the infinitely divisible
nonnegative random m X m matrix S with Lévy measure V with support on the space of
positive definite matrices M. We show that z has an infinitely divisible law with Lévy
density u(zr) = ert O (z; 2)V(dX), where ¢, (z; X) denotes the density function of the m-
dimensional normal distribution with mean 0 and variance matrix . As examples of such
laws we have the multivariate Normal Inverse Gaussian and we show that any multivariate
symmetric stable law has the representation 25'/2.

The second class consists of those random vectors whose one dimensional marginals are
of type GG. We first introduce a general concept of marginal infinite divisibility of random
matrices which allow us to construct interesting examples.

Decomposition of self-similar stable mixed moving averages
VLADAS PIPIRAS (BOSTON)

It has been known for some time now that stable non-Gaussian processes with an in-
variance property are related to non-singular flows. This connection has been established
and explored, for example, for stationary stable processes by Rosinski and for self-similar
stable processes by Burnecki, Rosinski and Weron. In this talk, we will focus on stable
processes which are both self-similar and have stationary increments. These processes are
of interest because, in practice, one often wants a model to have these two characteristics.
We will show that if X, is a symmetric a-stable process with stationary increments given
by the mixed moving average

XJﬂ:/;é@@j+u%%%LMM@MmetEK

where G : X X R — R is a deterministic function and M, is a symmetric a-stable random
measure on X X R with the control measure mg(dx,du) = p(dr)du, and if X, is also
self-similar, then it is determined by a non-singular flow, a related cocycle and a semi-
additive functional. By using the Hopf decomposition of the flow into its dissipative and
conservative components, we will establish a unique decomposition in distribution of X,
into two independent processes

X, £ X2+ XE,

where the process X is determined by a nonsingular dissipative flow and the process X¢
is determined by a nonsingular conservative flow.



Small and large time scale analysis of a network traffic model
SIDNEY RESNICK (ITHACA)
(joint work with Krishanu Maulik)

Empirical studies of the internet and WAN traffic have observed multifractal behavior at
time scales below a few hundred milliseconds. There have been some attempts to model
this phenomenon, but there is no model to connect the small time scale behavior with
behavior observed at large time scales of bigger than a few hundred milliseconds. There
have been separate analyses of models for high speed data transmissions, which show that
appropriate approximations to large time scale behavior of cumulative traffic are either
fractional Brownian motion or stable Lévy motion, depending on the input rates assumed.
We bridge this gap and develop and analyze a model offering an explanation of both the
small and large time scale behavior of a network traffic model based on the infinite source
Poisson model. Previous studies of this model have usually assumed that transmission
rates are constant and deterministic. We consider a non-constant, multifractal, random
transmission rate at the user level which results in cumulative traffic exhibiting multifractal
behavior on small time scales and self-similar behavior on large time scales.

Transience levels for Lévy processes with application to stable Lévy processes
KEN-ITI SATO (NAGOYA)
(joint work with Toshiro Watanabe )

Let {X;: ¢t > 0} be a transient Lévy process on the d-dimensional Euclidean space. Let
L(B,) be the last exit time of the process from the open ball B, centered at 0 of radius
a. Existence of E[L(B,)"], the n-order moment of L(B,), is discussed. The set T of n > 0
such that E[L(B,)"] is finite is called the transience level of {X;}. 1. It is shown that T
does not depend on a. 2. Under the assumption of strong non-lattice, the criterion for
n € T is given in terms of the logarithmic characteristic function ¢ (z) of X;. 3. It is shown
that, if d > 3 and {X,} is nondegenerate, then 7 includes [0,d/2 — 1). 4. Let d = 1 and
let X have finite (1 4+ J)-order moment for some 6§ > 0. Description of 7 by properties
of the Lévy measure v of {X,} is given. 5. Complete description of 7 for transient stable
Lévy processes for d = 1 and partial description of that for d > 2 is given.

Drift transforms and Green function estimates of discontinuous processes
with applications to stable processes
RENMING SONG (URBANA)

(joint work with Zhen-Qing Chen )

Let E be a Lusin space and let m be a o-finite Borel measure on E with supp[m] = E.
Let X = (Xy, P,, € E) be a transient irreducible Borel right process on E. Suppose we
have another transient Borel right process X = ()A(t, ]IA”I, r € E) on E which is a strong
dual of X with respect to the measure m. Under this strong duality assumption, X has a
Green function which we denote by G(z,y). Let (N, H) be a Lévy system for X and F a



bounded function on E x E vanishing on the diagonal with inf, ycp F'(z,y) > —1. Under
some natural assumptions,

te Y F(X,,X,) // (X4, y)N(X,, dy)dH,

0<s<t

is a local martingale. Its Doleans-Dade exponential is

M, = exp (Zln1+F X, X)) // Xs,dy)dH>

s<t

M, is a nonnegative local martingale. M, is called a pure jump Girsanov transform of X.
M, is obviously a nonnegative supermartingale multiplicative functional of X. Let Y be
the strong Markov process obtained from X via the Girsanov transform M. One of the
main results of this paper is that the Green function of Y is comparable to that of X. We
also have a generalization of this result for the mixture of pure jump Girsanov transform
and Feynman-Kac transform.

For o € (0,2), a relativistic a-stable process Y = (Y3, Q) in R" is a Lévy process whose
characteristic function is given by

R R

Y

where m > 0 is a constant. By regarding the relativistic a-stable process Y as a per-
turbation of the symmetric a-stable process X and applying our general results, we get
the Green function of the killed relativistic stable process on a bounded C!' domain is
comparable to that of the killed symmetric stable process on the same domain.

Integration with respect to fractional motions
JERZY SZULGA (AUBURN)

Using the spectral analysis, we extend the rudimentary integral, defined first for simple
functions with respect to a process with stationary increments W, = [ (exp{itw} —1)dZ,,
to a maximal domain. Integrands form a Hilbert space of certain tempered distributions
but they still could be seen as functions under mild conditions imposed on the spectral
measure.

In particular, we describe completely the integrands related to the fractional Brownian
motion. The integration is equivalent to the classical integration with respect to Brownian
motion via a certain isomorphism playing the role of the chain rule. The obtained integral
is not Riemannian, for an integrable function may be not integrable on a sub-interval.
Extension to double or multiple integrals follows.

Almost verbatim procedure applies to a fractional Lévy stable motion (the spectral
random measure dZ, is a Lévy stable motion with a power weight).

Linearly additive random fields with independent increments on time-like
curves

SHIGEO TAKENAKA (OKAYAMA)

Let V' be a convex cone in R". A curve {{(t);t € R,} in R™ is called a time-like
curve if it holds {{(t);t > s} C £(s) + V, Vs. A random fields {X(t);t € V'} is called a
multiparameter additive process if the restriction X |p(¢) = X (£(¢)) is an additive process
for any time like curve /.

10



Consider an SasS linearly additive process { X (t);t € R"} that is the restriction X|;, on
any strait line L is an SaS motion.

The result is: If there exists a convex cone V such that the parameter restriction
{X(t);t € V} becomes a multiparameter additive process, then there uniquely exists
a measure ¢ on the dual cone V* = {u;u-v < 0, Yo € V} with which the process {X}
has representation

X (t) =Y(Sy),
where Y = {Y(B); B C R"} is the SaS-random measure controlled by p and Sy =
{z;2 -t < —1}. The converse is also true.

The structure of self-similar stable mixed moving averages
MURAD S. TAQQU (BOSTON)

Let X be a symmetric a—stable process with stationary increments given by a mixed
moving average representation and assume in addition, that X is self-similar. We obtain a
decomposition of the process X, unique in distribution, into three independent components,
which we characterize and associate with flows. The first component is associated with
a dissipative flow. Examples include the limit of renewal reward processes, the so-called
“random wavelet expansion” and Takenaka processes. The second component is associated
with a conservative identity flow. Particular cases include linear fractional stable motions,
log-fractional stable motion and the stable Levy motion. We provide an example of the
third component, one which is associated with a conservative cyclic flow.

Edited by Werner Linde
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