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In spite of mathemati
's widespread disdain for appli
ations, it has found in them a 
on-

sistent sour
e of inspiration. This is parti
ularly true for geometry in its relation to visual

per
eption and visual imagination. That marriage having been 
onsumed a long time ago,

it may now be time for another love a�air between mathemati
s and vision. To get it going

was the intent and purpose of this meeting. The study of vision is now mainly a matter

of neuros
ien
e and numeri
al experimentation. The former, in the form of psy
hophysi
s,

neuroanatomy and neurophysiology, is presently in a period 
on
entrated on fa
t-�nding

with little emphasis on 
on
eptual development. The latter, in its embodiment as 
omputer

vision, has been dominated awhile by an overdose of 
on
eptualization, being prisoner to

the prejudi
e that dire
t modeling in terms of geometry and physi
s should help to in-

terpret images. This approa
h has been a protra
ted failure, expli
it analyti
al modeling

evidently being in
apable of living up to the enormous variability of natural visual s
enes.

How 
an mathemati
s 
ome to the res
ue? One important theme must be the mathe-

mati
al stru
ture that is ri
h enough to represent vision in all its aspe
ts. Others are a

probability metri
 on that stru
ture, me
hanisms to mat
h stored entities to visual input

and to ea
h other, and methods to build up stru
tures from input, that is, to learn. The

visual modality 
an be evaluated in terms of a number of sub-modalities (
olor, motion,

stereo, form, texture, to name the most important), none of whi
h 
an be made to de-

liver reliable information at all times, and a theme of great importan
e is integration of

sub-systems to exploit 
omplementarities between them. All of these issues are tightly

interwoven, and for a great while it will be highly re
ommendable to pay 
lose attention

to what neuros
ien
e has to tell us. All of these themes were represented in the talks and

dis
ussions of the meeting, if to a large part in somewhat immature form, re
e
ting the

state of development of the �eld. Thus, although some key invitees from the States didn't

turn up as a 
onsequen
e of the events of September 11, the meeting was ri
h, inspiring

and full of promise.
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Abstra
ts

Vanishing Point Dete
tion using Helmholtz Prin
iple

Andr

�

es Almansa

(joint work with Agn�es Desolneux, Lionel Moisan, and Jean-Mi
hel Morel)

We address the problem of dete
ting meaningful vanishing points in an image, without

any a priory information. For this purpose we apply a general methodology for dete
ting

geometri
 stru
tures, re
ently developed by Morel, Moisan and Desolneux, whi
h is based

on the Helmholtz prin
iple and Gestalt laws. [1℄

As a primitive for our dete
tor we use a set of line segments (edges) that have been in

turn dete
ted on the image using the same methodology and with a very limited number

of false alarms. However, an improvement was ne
essary with respe
t to the work in [2℄

in order to suppress multiple responses for the same segment, due to blurred edges. It

turns out that a \Minimum Des
ription Length"-based 
riterion is as e�e
tive as a Canny-

based 
riterion to 
hoose the best among many meaningful 
andidates for a single edge.

This allows us to signi�
antly 
onstrain our sear
h spa
e, leading to a 
omputationally

more eÆ
ient segment dete
tor, whi
h was obtained as a byprodu
t of multiple response

suppression.

Then, under the assumption that the dete
ted segments are uniformly distributed on the

image plane, we 
onsider a set of 
on
urrent lines to be an "-meaningful vanishing point,

if the expe
ted number of false alarms for this event is smaller than ". As in the 
ase of

alignments we have to address the following issues:

� How to 
orre
tly de�ne the event \at least n 
on
urrent lines" in su
h a way that it

takes into a

ount the variable angular pre
ision in the dete
ted segments, while still

alowing a simple 
omputation of the expe
ted number of false alarms.

� How to avoid spurious responses.

With respe
t to the the �rst point we 
hoose a �xed multi-pre
ision tiling of the image

plane to express all possible vanishing points. Then, the se
ond point is solved by only

keeping those vanishing points whi
h satisfy two optimization 
riteria:

� Lo
al minimum: We only keep a vanishing point if its expe
ted number of false

alarms is a lo
al minimum both in spa
e and pre
ision dimensions

� Minimum des
ription length: We re
ompute the expe
ted number of false alarms

after requiring ea
h segment to belong to only one vanishing point. Then we only

keep those vanishing points whi
h are still "-meaningful after this operation.

A

ording to our experiments, the proposed method is able to dete
t the most salient

vanishing points in a s
ene, with a very low number of false alarms. We found the MDL


riterion espe
ially useful for redu
ing this number, by avoiding vanishing points that result

from an a

idental mixture of two di�erent dire
tions in 3D.

In outdoor or indoor urban s
enes we typi
ally dete
t the three main orthogonal di-

re
tions and only these three, but unlike the work in [3℄ we don't need to introdu
e this

hypothesis a priori, whi
h requires knowledge of the 
amera's 
alibration parameters. On

the 
ontrary, the results obtain from our method toghether with this orthogonality hy-

pothesis 
an be used to �nd some of the 
alibration parameters of the 
amera.
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Optimality of Coarse-to-�ne sear
h for di�erent models of image

interpretation

Gilles Blan
hard

(joint work with Donald Geman)

\Coarse-to-�ne" analysis for image interpretation, introdu
ed by Fleuret and Geman

(2000) in the 
ontext of fa
e dete
tion, has proven to be an a

urate and 
omputationally

very eÆ
ient method to identify a target obje
t (e.g. a fa
e) in an image.

The Coarse-to-�ne \paradigm" 
onsists in two main building blo
ks. The �rst one

is a tree-stru
tured hierar
hi
al representation of the set of target obje
ts via a nested

de
omposition of the \spa
e of poses", whi
h is re
ursively divided into smaller subsets


alled 
ells. For ea
h 
ell, a test is built whi
h 
he
ks if one of the targets in the 
ell is

present in an image, under the 
onstraint that it has (ideally) a false negative rate of zero.

Generally, the �ner the 
ell, the smaller is the false positive rate of the asso
iated test, but

more 
omputation power is required.

The se
ond step is the design of a testing strategy whi
h should determine for a given

image whether a target obje
t is present. A dete
tion is 
on�rmed if and only if there exists

a 
omplete \bran
h" of 
ells (from the root of the hierar
hy to one of the �nest 
ells) whose

asso
iated tests have given a positive answer. We 
onsider sequential testing strategies, the

test at step k being 
hosen as a fun
tion of the answers to the tests performed up to step

k � 1. A testing strategy stops on
e a \bran
h of ones" is found or when the performed

tests rule out this possibility (\zero-blo
king"). Note that a strategy 
an therefore itself

be represented as a de
ision tree whose nodes are labeled by 
ells in the hierar

hy of the

pose de
omposition.

The 
oarse-to-�ne approa
h emphasizes the 
omputational power as the 
riterion for

optimality: among all possible strategies, one wants to 
hoose those for whi
h the expe
ted


omputation time is minimized. An intuitively natural family of strategies for that purpose

is the set of 
oarse-to-�ne strategies, whi
h have the property that if the test at a given

step yields a positive answer, the next test performed should be asso
iated with a �ner


ell.

The results of Fleuret and Geman show that these strategies behave well in pra
ti
al ap-

pli
ations. Moreover, they show that the \
omputational burden" is not spatially uniform

in an image: it is mu
h more intensive in regions where a target obje
t is present than in

the \ba
kground". This bears a striking similarity with what 
an be observed in biologi
al

vision and studies of visual attention. It 
an be argued that the 
oarse-to-�ne framework

o�ers a model for visual attention whi
h is both top-down (model-, or target-, based) and

bottom-up (\uninteresting" zones are rapidly ex
luded by the 
oarser, and simpler, tests).

We studied the optimality of CTF strategies in the following formal setting. We 
onsider

a dual representation of the target obje
ts: more pre
isely, we 
onsider a set of attributes
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A whi
h is a disjoint union of set of attributes at di�erent levels of resolution A

1

; : : : ;A

L

,

where A

1

represents the set of \
oarse" attributes and A

L

the set of \�ne" attributes. To

ea
h attribute is asso
iated a dedi
ated test whi
h 
he
ks for the presen
e of the attribute

in an image. In this representation, an \obje
t" 
an be regarded as an element of

Q

L

i=1

A

i

,

i.e. a list of attributes.

We have 
onsidered various possible settings:

Target to identify:

� The target is a �xed element of

Q

L

i=1

A

i

.

� The target is a �xed subset of

Q

L

i=1

A

i

and 
an be represented as the set of bran
hes

of a 
oarse-to-�ne tree stru
ture.

� Either of the above, ex
ept the target representation is not �xed but rather drawn at

random.

Model for the unknown image:

� The unknown image is a random element of

Q

L

i=1

A

i

. (\Guess who" game).

� \Ba
kground image model": every attribute in A

i

has probability p

i

to be present in

the image and all attributes are independent. This model is supposed to represent

what happens under the \null hypothesis" that no target is present in the image,

whi
h is what happens most of the time.

Computational 
ost:

� Unit 
osts (all tests have the same 
ost).

� Dis
rimination-based 
ost: the 
ost of testing for attribute x 2 A

i

is given by 
(x) =

�(1� p

i

), where � is a positive, in
reasing and 
onvex fun
tion.

� Usage-based 
ost: the allo
ation of the 
osts for attributes x 2 A are free under the

\resour
e 
onstraint"

P

x2A

exp�
(x) � 1 (This model is perhaps most relevant for

multi-threaded 
omputing).

Jung (2001) proved the optimality of depth-�rst CTF strategy for dis
rimination-based


ost and the ba
kground image model.

We were able to prove that the CTF strategy is optimal in various other 
ombinations

of the above 
ases, if it is required that the testing strategy �nds all the \path of ones" in

the 
ase of a hierar
hi
al representation of the targets.

Referen
es

Coarse-to-�ne visual sele
tion , F. Fleuret and D. Geman, International Journal of

Computer Vision, january 2001, volume 41, number 1/2, pages 85-107.

Algorithmes de 
lassi�
ation et de fo
alisation automatiques pour l'analyse d'images,

Frank Jung, PhD. thesis.

Robust Segmentation for Computer Vision

Joa
him M. Buhmann

Image segmentation is often de�ned as a partition of the pixels or image blo
ks into

homogeneous groups. These groups are 
hara
terized by a prototypi
al ve
tor in feature

spa
e, e.g., the spa
e of Gabor �lter responses, by a prototypi
al histograms of features or

by pairwise dissimilarities between image blo
ks. For all three data formats 
ost fun
tions

have been proposed to measure distortion and, thereby, to en
ode the quality of a partition.

Robust algorithms for image pro
essing are designed a

ording to the following three

steps: First, an appropriate de�nition of stru
ture in images has to be de�ned. For seg-

mentation these stru
tures are formalized as pixel or pixel blo
k partitions. Se
ond, an
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eÆ
ient optimization pro
edure to �nd good stru
tures has to be determined. I advo
ate

sto
hasti
 optimization methods like simulated annealing or deterministi
 variants of it

whi
h maximize the entropy while maintaining the approximation a

ura
y of the stru
-

ture measure. Other optimization algorithms like interior point methods or 
ontinuation

methods are equally suitable. Third, a validation pro
edure has to test the noise sensi-

tivity of the dis
overed image stru
tures. Statisti
al learning theory allows us (at least in

prin
iple) to 
al
ulate how mu
h the quality of an image interpretation deviates from an

interpretation of a se
ond image with the same image 
ontent. Furthermore, statisti
al

learning theory provides means to 
ouple the image resolution s
ale to the approximation

quality of the segmentation solution and the 
omplexity s
ale of the model order sele
tion

problem, e.g., how many segments should be sele
ted.

Obje
t Re
ognition in Man and Ma
hines

Heinri
h H. B

�

ulthoff

Theories of visual obje
t re
ognition must solve the problem of re
ognizing 3D obje
ts

given that per
eivers only re
eive 2D patterns of light on their retinae. Re
ent �ndings from

human psy
hophysi
s, neurophysiology and ma
hine vision provide 
onverging eviden
e for

image-based models in whi
h obje
ts are represented as 
olle
tions of viewpoint spe
i�


lo
al features. This approa
h is 
ontrasted with stru
tural-des
ription models in whi
h

obje
ts are represented as 
on�gurations of 3D volumes or parts.

I will report on re
ognition experiments whi
h show strong viewpoint e�e
ts and speak

in favor of an image-based representation of obje
ts in whi
h the physi
al similarity 
an

a

ount for re
ognition with small viewpoint 
hanges. Re
ently, together with Guy Wallis

we started to look at the importan
e of temporal similarity on the representation and

re
ognition of obje
ts. Temporal similarity 
an link many views of one obje
t to one

obje
t identify, be
ause di�erent views of obje
ts are usually seen in 
lose su

ession. To

test this hypothesis observers were presented sequen
es of unfamiliar fa
es in whi
h the

identity of the fa
e 
hanged as the head rotated. The observers showed a tenden
y to treat

the views as if they were of the same person. Our results 
ounter the proposal that obje
t

views are re
ognized simply on the basis of obje
tive, stru
tural 
omponents. Instead, they

suggest that we are 
ontinuously asso
iating views of obje
ts to support later re
ognition,

and that we do so not only on the basis of their physi
al similarity, but also their 
orrelated

appearan
e in time.

Morse Des
ription and Morphologi
al En
oding of Continuous Data

Vi
ent Caselles and A. Sol

�

e

The use of a topographi
 des
ription of images, surfa
es or 3D data has been intro-

du
ed and motivated in di�erent areas of resear
h: image pro
essing, 
omputer graphi
s

and geographi
 information systems. The motivation for su
h a des
ription is di�erent

depending on the �eld of appli
ation but in all 
ases it aims to a des
ription of the basi


shapes in the given data and their topologi
al 
hange when varying a parameter relevant

in ea
h 
ase (height in data elevation models, intensity in images,et
.). Su
h a des
ription


an be viewed as a pra
ti
al implementetion of Morse theory. Morse theory des
ribes the

topologi
al 
hange of the iso
ontours of an s
alar data or height fun
tion as the height

varies, and relates these topologi
al 
hanges to the 
riti
alities of the fun
tion. Given the

s
alar data u de�ned in a domain 
 of IR

N

, the 
ontour map has been de�ned as the family
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of iso
ontours [u = �℄ = fx 2 
 : u(x) = �g, � 2 IR, or in terms of the boundaries of

upper (or lower) level sets [u � �℄ = fx 2 
 : u(x) � �g ([u � �℄). The �rst des
ription is

more adapted to the 
ase of smooth data while the se
ond des
ription 
an be adapted to

more general 
ontinuous data where there are plateaus of 
onstant elevation data, or even

dis
ontinuous data. Some re
ent approa
hes using this se
ond des
ription are [1, 2℄.

The aim of this work is to deeply analyze Morse theory for the 
ase of 
ontinuous

fun
tions in terms of its upper (lower) sets. As a result of this analysis a new simple

algorithm for 
omputing the Morse stru
ture of an image has been developed. Essentially

this algorithm is based on 
omputing the maximal monotone se
tions of the upper (lower)

topographi
 map. The de�nition for a monotone se
tion is the following:

Let u : D ! IR be a fun
tion. For ea
h �; � 2 IR, � � � we de�ne

U

�;�

= fx 2 D : � � u(x) � �g

De�nition 1. Let u : D ! IR be a 
ontinuous fun
tion. A monotone se
tion of the

topographi
 map of u is a set of the form

X

�;�

= 

(U

�;�

);(1)

for some �; � 2 IR with � � �, su
h that for any �

0

; �

0

2 [�; �℄, �

0

� �

0

the set

fx 2 X

�;�

: �

0

� u(x) � �

0

g

is a 
onne
ted 
omponent of U

�

0

;�

0

.

One 
an proof that under some assumptions the number of maximal monotone se
tions

is �nite. In addition, it is also proven that monotone se
tions 
an only 
ontain a zonal

maximum or minimum and that topologi
al 
hanges hold only at levels where a maximal

monotone se
tion begins or ends.

We have studied the spe
ial 
ase of 
ompressing data elevation models (DEM) as a

possible appli
ation. In this terrain models it is also very important the 
reasenes stru
ture

(drainage patterns). There exists many algorithms to 
ompute this 
reasenes stru
ture but

we have developed a simple morphologi
al approa
h whi
h provides us the information that

one 
annot re
over from the Morse stru
ture only. This morphologi
al approa
h does not


orrespond exa
tly to the drainage patterns, in fa
t it 
an be viewed as a morphologi
al

sampling whi
h re
overs in some sense a set of non di�erentiable points. It has been proven

that this sets of points are organized as 
urves and in fa
t this 
urves des
ribe mainly the


reases and valleys presents on the terrain.

Merging the information provided by the Morse stru
ture and the morphologi
al sam-

pling one obtain a set of 
urves and points whi
h suÆ
es to interpolate the rest a

urately

using an adequate interpolator as the AMLE (Absolut Minimal Lips
hitz Extension) model

for example whi
h is an ex
ellent 
one interpolator. As said, this stru
tural sampling of the

image is 
omposed mainly of 
urves and a few isolated points (lo
al maxima and minima

mainly). Finally, these 
urves (and points) 
an be organized in trees using 
hain 
ode based

te
hniques and �nally these trees 
an be 
oded by means of an eÆ
ient entropy 
oder su
h

as an arithmeti
 
oder. The L

1

norm of the error between the original image and the


oded one 
an be 
ontrolled by 
oding the errors whi
h are greater than a spe
i�ed one.

In order to improve the results a multis
ale approa
h has been also applied.

Referen
es
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[2℄ J.L. Lisani, Comparaison Automatique d'Images par Leurs Formes, Ph.D Thesis, Universit�e de Paris-

Dauphine, July 2001.
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Some re
ent results on the minimizers of the Mumford-Shah fun
tional

Gianni Dal Maso

The Mumford-Shah fun
tional in dimension n is de�ned by

F

�

(u;K) :=

Z


nK

jruj

2

dx+H

n�1

(K) + �

Z


nK

ju� gj

2

dx ;

where 
 is a bounded open set in R

n

, H

n�1

is the (n� 1)-dimensional Hausdor� measure,

g : 
 ! R is a bounded measurable fun
tion, and � is a nonnegative 
onstant. The

fun
tional a
ts on pairs (u;K), with K 
losed subset of 
 and u 2 C

1

(
 nK). A pair

(u;K) is said to be a lo
al minimizer of F

�

in 
 if F

�

(u;K) � F

�

(u

0

; K

0

) for every (u

0

; K

0

)

with u

0

= u on �
. The Euler 
onditions for lo
al minimizers were found by Mumford and

Shah (1985).

Some new results on the minimizers of the Mumford-Shah fun
tional have been re
ently

obtained by using a 
alibration method introdu
ed by Alberti, Bou
hitt�e and myself (1999).

The �rst result has been proved by Mora and Morini (2000) in dimension n = 2 for the


ase � = 0: if (u;K) satis�es the Euler 
onditions for F

0

in 
, and if K is the union of a

�nite number of disjoint analyti
 
urves, whi
h are either 
losed or have their end-points in

�
, then for every x

0

2 
 there exists an open neighbourhood 


0

of x

0

su
h that (u;K) is

a lo
al minimizer of the Mumford-Shah fun
tional F

0

on 


0

. In other words, under these

regularity assumptions on K, the Euler 
onditions imply the minimality on suÆ
iently

small domains.

The se
ond result has been proved by Morini (2001) for arbitrary n � 2: if g is smooth

out of a 
losed hypersurfa
e M , on whi
h g is dis
ontinuous, then there exists a threshold

�

0

su
h that for every � � �

0

the fun
tional F

�

has a unique absolute minimizer (u

�

; K

�

),

and we have K

�

=M . In other words, under these assumptions on g the dis
ontinuity set

M is re
onstru
ted exa
tly by the solution of the Mumford-Shah fun
tional F

�

when � is

large enough.

The Computational Neuros
ien
e of Visual Attention

Gustavo De
o

Experimental observations in fun
tional imaging and single-
ell re
ording provides strong

eviden
es that attention modulates visual pro
essing by enhan
ing the responses of the

neurons representing the features or lo
ation of the attended stimulus and redu
ing the

suppressive intera
tions of neurons representing nearby distra
tors. In this talk, we formu-

late a neurodynami
al system 
onsisting of inter
onne
ted populations of 
orti
al neurons

distributed in di�erent brain modules whi
h 
an be related with the di�erent areas of the

dorsal and ventral path of the primate 
ortex . We show that obje
t re
ognition and visual

sear
h 
an be explained in the theoreti
al framework of a biased 
ompetitive neurody-

nami
s. The top-down bias 
an guide attention to 
on
entrate at a given spatial lo
ation

or at given features. The neural population dynami
s are handled in the framework of

the mean-�eld approximation, i.e. by the analyti
al des
ription of the mean a
tivity of a

population of neurons.
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Dete
tion of Geometri
 Stru
tures in an Image by Helmholtz Prin
iple

Agn

�

es Desolneux

(joint work with Lionel Moisan and Jean-Mi
hel Morel)

A

ording to gestalt theory, grouping is the law of visual per
eption: whenever points

or previously formed obje
ts have a geometri
 
hara
teristi
 in 
ommon (alignment, same


olour, parallelism, et
.) they get grouped and form a new, larger, visual obje
t, 
alled a

\gestalt". In the present work, we try to give a mathemati
al framework to this grouping

phenomenon. We use a generi
ity prin
iple, also 
alled Helmholtz prin
iple, whi
h roughly

says that we 
an do our probabilisti
 estimates as if the points were independent and had

uniformly distributed 
hara
teristi
s. The main de�nition is then the one of "-meaningful

event: an event is said "-meaningful if the expe
tation of the number of o

urren
es of this

event in an image is less than ". We apply this de�nition to di�erent types of geometri


events:

- alignment in an image (at ea
h pixel of the image, we 
ompute an orientation, and then


onsider the segments whi
h 
ontain \a lot of" points having their orientation aligned with

the one of the segment, a

ording to a given pre
ision),

- boundaries and edges (
losed level lines, or pie
es of level lines of the image whi
h have

a high minimal 
ontrast),

- alignments of points (equivalent to �nding meaningful peaks in the Hough Transform),

- grouping obje
ts a

ording to their size, or orientation or grey-level,

- grouping points whi
h are 
lose.

In ea
h 
ase, we also de�ne a notion of maximality (related in some sense to the \masking

phenomenon" des
ribed by Gestaltists): an event is said maximal meaningful if it does not


ontain or is not 
ontained in a more meaningful event.

Learning the Statisti
al Model of a Per
eptive System in a Natural Visual

Environment

Thomas Feldman

Our proje
t aims at designing a low-level per
eptive system whi
h task should be to

learn the ba
kground statisti
al model of its environnement.It is based on to prin
iples

: the �rst one is that the internal representation in the system should re
e
t the most

essential lo
al information about the environment in the sense of the Information Theory

while preserving the low 
omplexity of the system; the se
ond one is that the system

should mimi
 its environment by learning short-range intera
tions between responses to

the environment a
ross the system.

The system is given a grays
ale images database, over whi
h are learned se
ond order

statisti
s, in order to de
ompose ea
h 12x12 pat
h image of the database a

ording to

their prin
ipal 
omponents. Thus we design around 10 P.C.A �lters whi
h role is to retain

essential lo
al information about the per
eived images.

The marginal histograms of the responses to ea
h �lter are then 
omputed. All but the

�rst one 
an be 
oarsely quanti�ed in 3 values, dis
riminating typi
al from rare responses

to the �lters. The internal representation is then designed by a redundant grid of 
olumns

of P.C.A �lters followed by the 
oarse quanti�
ation mentioned above. It has been ex-

perimentally shown that this light representation is suÆ
ient for re
onstru
ting the visual

environment.
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Figure 1. Marginal histograms of the responses to P.C.A. �lters

Figure 2. Layers of the quantized representation

Until now, the system had only learned the marginal model of its response to its en-

vironment by sele
ting prin
ipal dire
tions and quanti�
ation thresholds. We then learn

short-range pairwise intera
tions a
ross layers of �lters. Ea
h statisti
 between pairs of re-

sponse 
ells lo
ated at neighbor spatial position and any verti
al range is then 
omputed.

This exhaustive 
omputation has been made possible by the 
oarse quanti�
ation that

drasti
ally redu
e the number of pairwise statisti
s needed to infer the response model,

a

ording to Maximum Entropy Prin
iple.

Figure 3. Lo
al model of intera
tions

Figure 4. Right: original pat
hes Left: sampled pat
hes

The inferred model is a Gibbs Field over the grid of 
olumns. This �eld is learned by

maximizing the 
lassi
al log-likelihood of the database by a sto
hasti
 gradient algorithm

using Monte-Carlo Markov Chains. The model is then sampled in order to 
he
k the

visual 
onsisten
y of the system. Our experiments 
learly show that it has learned a

visually stru
tured noise that present medium-range intera
tions despite its low 
omplexity


ompared to 
lassi
al visual models like Potts model.

This methodology allows us to naturally 
onstru
t a visual noise model whi
h a

ounts

for a large part of the variability of images without 
ontaining any meaningful information.

Considered as a ba
kground model, these noisy stru
tures are to be removed from the

image allowing oneself to fo
us on stru
tures of interest. This pro
edure should be useful

for robust indexing of image databases and automati
 dete
tion of obje
ts in an image.
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Inferen
e for Vision

Bill Freeman

(joint work with Jonathan Yedidia, Yair Weiss, and Egon Pasztor)

Abstra
t: In order to interpret images, we need to propagate image interpretation in-

formation a
ross spa
e. A useful probabilisti
 model that allows this is a Markov network.

We use syntheti
 examples to generate labeled training sets for two di�erent problem do-

mains: super-resolution (estimating a high-resolution imgae from a low-resolution one) and

motion estimation (estimating proje
ted opti
al 
ow from a pair of images).

We use belief propagation in a loopy Markov network to infer the s
ene estimates from

the input image data. Yedidia, Freeman, and Weiss re
ently showed that �xed points of

belief propagation 
orrespond to lo
al stationary points of the Bethe Free Energy, giving

theoreti
al justi�
ation to this approa
h. I presented results for both the super-resolution

and motion estimation problems using the same probabilisti
 ma
hinery.

Web pointer for related papers: http://www.ai.mit.edu/people/wtf/publi
ations.html

Neural Model for the re
ognition of 
omplex biologi
al movements

Martin A. Giese

The per
eption of biologi
al movements plays an important role for the survival of many

spe
ies. In spite of this fa
t, the underlying neural me
hanisms are largely unknown.

We have developed a biologi
ally plausible neural model that a

ounts for a variety of

experimental results from psy
hophysi
s, neurophysiology, and fun
tional imaging. The

model suggests that 
omplex movements are neurally en
oded in terms of prototypi
al

examples of body 
on�gurations and opti
 
ow �eld patterns in neurons in the superior

temporal sul
us, and potentially the infratemporal 
ortex. The model shows that position-

and s
ale-invariant re
ognition of su
h patterns 
an be a

ounted for by a hierar
hi
al

system of neural dete
tors with two pathways that analyze from and motion information,

where invarian
e is a
hieved by nonlinear pooling of neural dete
tor responses.

As one possible me
hanism for the asso
iation of information over time the model pos-

tulates asymmetri
 lateral 
onne
tions between high-level neural pattern dete
tors. The

underlying neural dynami
s 
an be des
ribed in an idealized form by the nonlinear integro-

di�erential equation for the membrane potential u(x; t):

� _u(x; t) + u(x; t) =

Z

1

�1

w(x� y)f(u(y; t) dy + s(x; t)(2)

with the asymmetri
 intera
tion kernel w(x) 6= w(�x), and the translating stimulus

s(x; t) = S(x � vt), where v is a real 
onstant. The threshold fun
tion f is monotoni-


ally in
reasing and bounded. Under appropriate 
onditions, we 
an show the existen
e

of a form-stable traveling pulse solution of this equation, where the pulse propagates with

the stimulus velo
ity v.

A Bayesian multiple-blob tra
ker

Mi
hael Isard

This talk des
ribes how a multiple-person tra
ker 
an be formulated as a problem in

Bayesian sequential inferen
e. A state-spa
e is de�ned in
luding the number of people

in the s
ene as a dis
rete variable along with 
ontinuous variables des
ribing the position
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and shape of ea
h person. A whole-image likelihood model is then des
ribed whi
h relies

on a stati
-
amera assumption to build an a

urate model of the ba
kground, and an eÆ-


ient algorithm for evaluating this likelihood is demonstrated. Finally the talk shows that

despite the highly non-linear nature of both dynami
al model and likelihood model it is

easy to implement the tra
ker using a parti
le �lter to get good robust results.

Two Regularities in Visual S
enes: Statisti
al Interdependen
ies and Rigid

Body Motion

Norbert Kr

�

uger

Vision fa
es the problem of an extremely high degree of vagueness and un
ertainty in its

low level pro
esses su
h as edge dete
tion, opti
 
ow analysis and stereo estimation. How-

ever, the human visual systems a
quires visual representations whi
h allows a
tions with

high pre
ision and 
ertainty within the 3D world under rather un
ontrolled 
onditions. The

human visual system 
an a
hieve the needed 
ertainty and 
ompleteness by integrating vi-

sual information a
ross modalities. This integration is manifested in the huge 
onne
tivity

between brain areas in whi
h the di�erent visual modalities are pro
essed as well as in the

large number of feedba
k 
onne
tions between higher and lower 
orti
al areas.

The essential need for integrating visual information a
ross modalities in addition to

optimising single modalities has been re
ognised in the vision 
ommunity after a long pe-

riod of work on improving single modalities. The power of modality fusion arises from the

huge intrinsi
 relations given by deterministi
 and statisti
 regularities a
ross visual modal-

ities, su
h as e.g., the 
oherent motion of obje
ts or the high likelihood of the o

urren
e

of 
ollinear line segments in visual s
enes. Two important regularities in visual data with

distin
t properties are (1) motion (most importantly rigid body motion, RBM) and (2) sta-

tisti
al interdependen
ies between features su
h as 
ollinearity and symmetry. In 
ontrast

to RBM, the statisti
al interdependen
ies between features are mu
h harder to des
ribe

analyti
ally. A

ordingly, developmental psy
hology shows strong eviden
e that visual ex-

perien
e plays an important role to a
hieve the ability to use these interdependen
ies in

visual pro
essing (e.g., the e�e
t of illusionary 
ontours appears after 5 month).

Collinearity and parallelism do not des
ribe a deterministi
 relation between features but

probabilisti
 relation, e.g., the o

urren
e of a line segment in visual data has a distin
t

impa
t on the likelihood of the o

urren
e of a line segments at a di�erent position with

di�erent orientation (see, e.g. Krueger (1998). Collinearity and Parallelism are Statisti
ally

Signi�
ant Se
ond Order Relations of Complex Cell Responses. Neural Pro
essing Letters

8(2)). In my talk I address the statisti
s of natural s
enes regarding additional modalities

su
h as 
olor or opti
 
ow. As a main result it turns out that statisti
al interdependen
ies in

visual s
enes be
ome signi�
antly stronger when multiple modalities are taken into a

ount.

This result gives further eviden
e for the assumption, that despite the vagueness of low level

pro
esses stability 
an be a
hieved by integration information a
ross modalities. Se
ond,

the attempt to model the appli
ation of Gestalt laws based on statisti
al measurements,

as suggested re
ently by some resear
hers (e.g., Geisler, Elder, Krueger, Sigman) gets

further support. Third, the results in this paper suggest to formulate the appli
ation of

Gestalt prin
iples in a multi-modal way. Finally, as a by-produ
t of our simulations it

turns out that edge{like stru
tures are more dominant 
ompared to line{like stru
tures in

intrinsi
ally one-dimensional image pat
hes.
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Visual lo
alization in the presen
e of sa

ades and motion

Markus Lappe

Estimating the lo
ation of an obje
t in visual spa
e be
omes diÆ
ult when motion is

involved. Be
ause of laten
ies in the visual system the position of the obje
t might have


hanged by the time its visual image is pro
essed in the 
ortex. This happens irrespe
tive

of wether it is the obje
t that moves, or the eye (e.g. by a sa

ade). My talk des
ribes

illusory mislo
alisations of brie
y presented obje
ts in these situations and dis
usses their

impli
ation for the me
hanisms of dynami
 visual spa
e representation in the brain.

The �rst part of the talk is 
on
erned with errors in the lo
alization of a moving obje
t.

In the so-
alled 
ash-lag-e�e
t, a strobos
opi
ally illuminated moving obje
t appears to

lag behind a 
ontinuously lit moving obje
t when both are physi
ally aligned. Originally

this has been interpreted as a predi
tive 
omponent in the per
eption of the 
ontinuously

moving obje
t. More re
ent studies instead suggested a delayed pro
essing of the 
ashed

obje
t. As a third alternative, I present a model of the 
ash-lag e�e
t that is based simply

on an extended temporal averaging of the position between the two obje
ts, thus involving

again a relative distan
e measure. Predi
tions of the model, among them a 
ash-lead e�e
t

for 
ertain parameter 
ombinations, are 
orroborated in experiments.

The se
ond part of the talk is 
on
erned with errors in the lo
alization of visual stimuli

that are 
ashed shortly before or during a sa

adi
 eye movement. When this is done in

darkness without other visual 
ues present, the 
ash appears shifted in the dire
tion of the

sa

ade. In 
ontrast, when visuospatial referen
es are available the 
ash is mislo
alized

towards the sa

ade target, implying a 
ompression of the metri
 of spa
e by the sa

ade.

The �rst type of error ('shift') is attributed to a mismat
hed time 
ourse of the extraretinal

signal that a

ompanies the sa

ade. It is an error in the absolute judgement of position

in spa
e. The se
ond type of error ('
ompression') appears to involve a misper
eption of

the distan
es between the 
ash and other visual obje
ts, the judgement based on relative,

retinal signals.

The role of feedba
k in visual per
eption

Tai Sing Lee

Simon Thorpe showed that when an image was 
ashed on the s
reen for only 20 mse
,

both human and monkey subje
ts 
an grasp the gist of the s
ene very rapidly and rea
t

with a mean rea
tion time of 220 mse
. This leaves very little time for intera
tive 
omputa-

tion to happen a
ross the visual hierar
hy, suggesting that re
ognition and 
ategorization

might happen primarily in a feedforward manner as the �rst volley of spikes thundering

through the brain. Many existing fa
e dete
tion 
omputer vision systems indeed 
an op-

erate in this way, and are pretty su

essful in dete
ting fa
es using maximum likelihood

test simply on the statisti
s of Gabor �lter responses. I would suggest the re
ognition

does not ne
essarily mean per
eption. When the subje
ts rea
ted to the images, they

might be a
ting on a subliminal level, without 
ons
ious per
eption, as in blind sight. Vi-

sual pro
essing might best be understood as a two-stage pro
ess: The �rst volley of spikes

stimulates the memory areas to generate hypotheses about obje
ts in a visual s
ene. These

hypotheses are then fed ba
k to the early visual areas to impose the 
ontextual priors to

guide per
eptual pro
essing, or in Andrew Blake's words, 
leaning up the details. In 
on-

trast to Marr's model, this view suggests re
ognition pre
edes per
eption, rather than the

other way around. The 
ontextual priors are 
ommuni
ated top-down through the visual
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hierar
hy with the massive re
urrent feedba
k 
onne
tions. They made robust per
eptual

inferen
e possible. I reviewed some of the neurophysiologi
al literature on the neural basis

of per
eption, in parti
ular, the works of Logothetis, Newsome, Desimone, Motter and

Lamme. I also reported some of my own data on eviden
e of feedba
k modulation on early

visual pro
essing.

Neural Implementation of Figure-Ground Segmentation

Christoph von der Malsburg

Opening remark 1: A solid experien
e of 
omputer vision is that individual fun
tional


omponents, su
h as shape from shading et
., 
annot be made to a
t reliably in natural

visual environments. The goal must therefore be to integrate subsystems with ea
h other.

Thus, segmentation of s
enes will only start to work if several 
ues, among them 
ommong

motion, texture, 
ontour, 
olor, stereo and known form, are 
oupled to help ea
h other solve

the problem. Important issues in systems integration are the determination of momentary

relevan
e, 
on�den
e levels, and appropriate interfa
es.

Opening remark 2: I gave a 
oarse overview of the visual system, espe
ially its 
orti
al

organization in terms of representation areas, 
olumns and hyper
olumns and their �bre


onne
tion patterns.

Opening remark 3: The binding problem. The 
lassi
al view has it that the brain

represents things in terms of elementary symbols, 
orresponding to individual neurons.

This raises the problem that simultaneously a
tive sets of neurons have, a

ording to that

view, no means of keeping themselves separate from ea
h other. I dis
ussed the need to

introdu
e dynami
 links, giving the brain dynami
 graphs as data stru
ture. An elementary

way to represent links is by signal syn
hronization and rapidly swit
hing synapses. A more

powerful implementation uses multi
ellular nodes whi
h a
tivate subsets of appropriately


onne
ted neurons in order to dynami
ally a
tivate the desired links.

Figure-ground segmentation: The basi
 idea is that neurons that belong to the �gure

are to be syn
hronized with ea
h other, and similarly for the neurons belonging to the

ground. To a
hieve this end, feature-representing neurons in the visual 
ortex are 
onne
ted

positively if they are likely to be part of the same �gure: P (i; j) > �) T

ij

> 0; or T

ij

� 0

otherwise. Here, i; j stand for neurons, i � j means that i and j belong the the same

�gure, P (i � j) gives the probability thereof, and T

ij

is the strength of 
onne
tion between

neurons i and j. The gestalt laws 
an all be implemented in this way in terms of neural


onne
tion strenghts. When lumping together all neurons a
tivated from one point in

visual spa
e, that is, all neurons belonging to the same hyper
olumn, one 
an de�ne W

lm

,

the 
ombined strength of 
onne
tion between points l and m. Thus, all segmentation 
ues

are integrated into the quantity W

lm

. Segmentation 
an now be formulated in terms of

a set of di�erential equations des
ribing neural signals, where strong 
onne
tions 
onspire

to 
reate signal 
orrelations within the �gure and within the ground, and anti
orrelation

between them. An alternative des
ription of signal dynami
s is in terms of the "energy"

fun
tion E = �1=2

P

lm

T

lm

�

l

�

m

; where �

i

2 f1;�1g are labels ("spins") for �gure and

ground, resp., and the probability of a global label distribution f�g is des
ribed by a Gibbs

distribution P (f�g) = (1=Z)exp(��E(f�g)):
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Introdu
tion to Gestalt theory

Jean-Mi
hel Morel

In this brief introdu
tion to a monumental group work (1923-75), I have outlined the

aims, tools and results of the so 
alled geometri
 Gestalt. Founded by Wertheimer, this

phenomenologi
al methodology is based on presentations to subje
ts (mostly humans, but

also animals) of geometri
 �gures. It tries to tra
k the geometri
 "organizing laws" by

whi
h points of the retinal per
eptum end per
eptually grouped into organized entities.

The organizing laws are of a geometri
 nature (alignement, 
loseness, 
losedness, paral-

lelism, similarity of shape, 
onstant width, 
onvexity, symmetry...) and are at work in

the per
eption of any image. The geometri
 laws mostly 
ollaborate in the formation of

Gestalts and this led me to de�ne them as "partial gestalts", in opposition to the global

gestalts. The per
eption of global gestalts is somewhat opaque, in that by the "Gliederung"

law, "only parts of the whole are visible, whi
h 
ontribute to the overall per
eived organi-

zation of the whole". For instan
e, the per
eived parts of a square are its sides, its 
orners,

and nothing else.

The "masking" phenomenon is a 
onsequen
e of the Gliederung (arti
ulation whole-

parts) and is illustrated in spe
ta
ular and simple experiments, some of whi
h were thor-

oughly dis
ussed in an evening session. The gestaltist's method is extremely 
lever, in

that he uses a wide variety of "ung�unstigen Bedingungen" (unfavourable observation 
on-

ditions) like darkness, distan
e, short exposition, lateral vision to enfor
e the prevalen
e

of organizing laws against the in
uen
e of the presented image. The per
eived image is

driven by geometri
 laws towards a mu
h more regular pattern than the presented one and

the 
omparison illustrates the relative strength of the various "partial gestalts".

Of 
ourse, during my exposition, Computer Vision was the aim and the masked partner.

The aims of Computer Vision are exa
tly parallel to the ones of Gestaltists : to de�ne

organizing laws for dete
ting patterns in an image. The method is equally parallel : in


lassi
al 
omputer vision, one tries to de�ne "features", whi
h 
learly are the 
omputational


ounterpart of partial gestalts.

The understanding of Gliederung remained as widely open as the problem in Computer

Vision of the global understanding of a digital image. The gestaltists ended in somewhat

byzantine experiments on 
on
i
ts between partial gestalts. These experiments are too

parti
ular, with too many partial gestalts a
ting together. The 
on
lusions drawn from

su
h experiments remained un
ertain. Clearly, 
omputer vision is the logi
al 
ontinuation

of gestaltism and permits to develop a new experimental devi
e : the 
omputation of

partial gestalts and, hopefully, to laun
h the sear
h for mathemati
al prin
iples, probably

of a variational type, giving an a

ount of the Gliederung. I suggested as a partial realisti


aim the s
anning and automati
 analysis of the gestalt �gures. A lively dis
ussion ensued.

Spe
ulation on the modeling of 
ortex

David Mumford

This talk presented a set of issues involving what possible neural me
hanisms may solve

a series of di�erent 
omputational issues. I began by reviewing a set of new physiologi
al

results, from the last 5 years, whi
h suggest that the substrate of neural 
omputation, the

neurons and their lo
al 
ir
uits, may follow very di�erent prin
iples from standard neural

nets. These were the results of Markram and Abbott on the 
omplex dynami
s of single

synapses, the results of Larkum, Zhu and Sakmann on ba
k propagating Ca++ spikes and
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the results of Connors on gap jun
tions between inhibitory neurons. Then the spike de
od-

ing problem was addressed and the suggestion was made that a spike train is not a message

to be de
oded but a tiny fragment of a dan
e being 
arried out by an extended assembly.

This was reinfor
ed by re
alling that 
ortex has no "�re-walls": 50pyramidal output is sent

immediately to distant areas. The binding problem was dis
ussed and a formulation for

dealing with this, "Mixed Markov Models", due to A. Fridman was des
ribed. The rest of

the talk dealt with the proposal that a fundamental problem for 
orti
al 
omputation is the

absen
e of "registers" or "
a
hes", pla
es to tu
k 
urrent per
epts, ideas, plans, hypotheses

while a
tivity progresses. I 
all this the "2 idea problem": how 
an a 
olumn maintain >

1 states at on
e, one being the immediate one but the other being a previous state not

yet understood, or a hypothesis or one of several interpretations not yet disambiguated.

It was suggested that the LTS inhibiting neurons of Connors might put assemblies of 
ells

into "idle" mode, whi
h 
ould be later rea
tivated.

AÆne-invariant shape re
ognition

Pablo Mus

�

e

(joint work with Fr�ed�eri
 Sur and Jean-Mi
hel Morel)

1. Affine-invariant 
oding of a shape

� Smoothing : aÆne 
urve shortening is used :

�x

�t

= j
urv(x)j

1=3

�!

n , where x is a point

on the border of the shape,

�!

n the normal ve
tor to the 
urve at this point (pointing

towards the 
on
avity) and 
urv(x) the 
urvature. See [1℄ for a fast algorithm.

� Lo
al 
odings : bitangen
y and parallelism are invariant features, so frames are

de�ned with bitangents and tangents at in
exion and \
at" points. In ea
h frame,

the 
urve is aÆne-invariant normalized, and a pie
e of it is des
ribed by a \word" (a

regular subsample of N points). See [2℄.

Figure 5. On the left : aÆne-invariant frame on the original 
urve. On the

right : normalized 
urve. The N points lie on both sides of the point C.

� Registration : a di
tionary is built for ea
h 
urve belonging to the database.

� Query : only words en
oding the database whi
h are similar to the query are kept

and 
onsidered as pre-mat
hings. Then the mappings between pre-mat
hings are

estimated and pre-mat
hings are extended. Real mat
hings are 
hosen to be long

enough extensions.
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2. Experimental results

� logo re
ognition : the 
onsidered shapes are maximal meaningful level lines. See

[3℄ and [4℄ for de�nitions and algorithms.

Figure 6. Mat
hing lines between left and right images are 
olored. This

mapping is not aÆne. Nevertheless a proje
tive mapping 
an be lo
ally

understood as an aÆne one.

� further developments :

{ image re
ognition in a huge database.

{ meaningful shapes : where is the information ?
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Variable Lifting and Mathemati
al Constraint Modeling in Computational

Vision

Christoph S
hn

�

orr

(joint work with Daniel Cremers, Jens Keu
hel, and Christian S
hellewald)

Introdu
tion. Mathemati
al approa
hes to the design of 
omputer vision systems vary


onsiderably from level to level in the pro
essing hierar
hy. At the signal level, it is 
onve-

nient to work in ve
tor spa
es. At higher levels, on the other hand, there is no natural order

of visual primitives extra
ted at the signal level. This gives rise to intri
ate 
ombinatorial


onstraints related to partitioning, grouping, and mat
hing of these primitives. A natural

question therefore is: How 
an these 
onstraints mathemati
ally be represented (i) su
h

that the model is more 
ompatible to those applied at the signal level, and (ii) su
h that


omputationally eÆ
ient implementations 
an be derived?

Another import issue 
on
erns the representation of knowledge at low{ and mid{level

pro
essing stages. How 
an intri
ate 
onstraints be learned (from visual data) representing

knowledge whi
h is relevant for various visual tasks?

Several resear
h proje
ts in our group are 
on
erned with the study of these problems

in various spe
i�
 
ontexts. These proje
ts are sket
hed in the following two se
tions. The

primary underlying mathemati
al theme whi
h is well known in pattern re
ognition sin
e

de
ades [1℄, may be summarized as follows:
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: Intri
ate sets of feasible solutions have simpler des
riptions in higher dimensional

spa
es.

This fa
t is of 
ru
ial importan
e for applying both statisti
al learning theory [2℄ and

advan
ed optimization strategies [3℄ to 
omputational vision.

Statisti
al shape learning and variational segmentation. The obje
tive of this

proje
t is to model statisti
al learning of outlines of 3D-obje
ts in an unsupervised way for

the purpose of variational segmentation. To this end, ve
tor representations x

C

of 
ontours

C of the sample set are transformed by a mapping � into a high{dimensional feature spa
e

F using kernels K whi
h satisfy the Mer
er 
ondition [2℄: (�(x

C

); �(x

C

0

))

F

= K(x

C

; x

C

0

):

By statisti
al de
orrelation and 
ompression in the feature spa
e a nonlinear potential in

the original shape spa
e is obtained whi
h represents familiar shapes. This representation

is used in 
ombination with a modi�ed version of the Mumford and Shah approa
h for

variational image segmentation (Fig. 7).

Numeri
al experiments show that this model is able to model real 2D{shape variations

of proje
ted views of 3D{obje
ts as well as to dis
riminate the views of di�erent obje
ts

in an unsupervised way. The nonlinear shape statisti
s makes the approa
h robust against


lutter. The variational approa
h makes the approa
h robust against initialization, lo
al

minima and noise.

Figure 7. Segmentation (left, mid) and unsupervised representation of vi-

sual shapes (right).

Convex relaxation of problems of mid{level vision. The obje
tive of this proje
t

is 
onstraint modeling and mathemati
al relaxation of diÆ
ult 
ombinatorial problems

of mid{level 
omputational vision like image partitioning, per
eptual grouping and graph

mat
hing. Mathemati
ally, these problems 
an be represented as instan
es of the following

optimization problem: inf

x2
\S

J(x), where 
 models a set of indi
ator variables and

S � R

n

represents further 
onstraints depending on the problem instan
e.

Computationally tra
table approa
hes are obtained by relaxing the Langrangian dual

of these optimization problems and solving a 
onvex optimization problem in a higher{

dimensional matrix spa
e (Fig. 8). By this, 
on�gurations of visual primitives are em-

bedded into a high{dimensional ve
tor spa
e along with tight approximations of the 
om-

binatorial 
onstraints whi
h however, are mu
h more 
onvenient from the optimization

point-of-view. Numeri
al results for established ben
hmark problems [4℄ show the remark-

able performan
e of this approa
h.
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Figure 8. Image partitioning (left) and per
eptual grouping (right) by 
on-

vex programming.
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Algebrai
 Embedding of the Per
eption-A
tion Cy
le

Gerald Sommer

Starting with a DFG proje
t in 1996, our resear
h group established a new dire
tion of

resear
h whi
h has been attra
ting more and more attention in the 
ommunity ever sin
e.

The Per
eption-A
tion Cy
le

Vision is too hard a task to be performed su

essfully by ina
tive systems. A per
eption-

a
tion 
y
le is the representational framework for per
eption and a
tion within the be-

haviour based paradigm for designing 
ompetent systems. A PAC 
annot be designed by

separating the problem into per
eption and a
tion tasks. Instead, the intera
tion between

per
eption and a
tion has to be an integrate part in the design of either task.

The Geometri
 Algebra (Cli�ord Algebra) as Embedding Frame

We believe that the 
hoi
e of representations is 
ru
ial to obtain life-like system behaviours.

The di�erent s
ienti�
 dis
iplines whi
h address the di�erent aspe
ts of a PAC, largely

work with 
ompletely di�erent and at times unsatisfa
tory representation s
hemes. The

preferred representation s
hemes are based on ve
tor algebra. Typi
ally, important trans-

formations 
annot be expressed by linear operations on ve
tors. Instead, non-linear trans-

formations are often approximated by an iterative appli
ation of appropriate linear trans-

formations. A further drawba
k of ve
tor algebra is that higher order geometri
 entities

like lines, planes, 
ir
les, spheres, have no 
ompa
t, linear representation. Consequently,

linear transformation operators of su
h higher order entities do not exist, as well. We

propose the use of geometri
 algebra (GA) as introdu
ed by D. Hestenes, instead of ve
tor

algebra. Geometri
 algebra belongs to a 
ertain 
lass of Cli�ord algebras. In GA higher

order geometri
 entities 
an be de�ned in a 
ompa
t form. Furthermore, linear operators

are available for transformations that in ve
tor algebra are non-linear. These operators 
an

also be applied to any type of geometri
 entity expressible in GA and not just to ve
tors.

One advantage of GA that follows from these properties is that real-time 
apability is

more likely to be a
hieved. Another advantage is that GA enables us to express geometri


entities we are interested in, dire
tly as algebrai
 obje
ts. This improves the geometri
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insight into a problem dramati
ally and leads more easily to the sought for solution. In

the following some appli
ations of GA to 
omputer vision problems that were developed

in our group are presented.

Problem: Missing Linear Theory of Multi-dimensional Signals

Theoreti
ally, the methodology of 
ontemporary image analysis is based on one-dimensional

signals. The topologi
ally new quality of multi-dimensional signals 
annot be adequately

modelled in 
omplex algebra. Furthermore, intrinsi
ally multi-dimensional stru
tures 
an

only be dete
ted by non-linear operations. These fa
ts are related to the missing de�ni-

tion of a multi-dimensional phase as the geometri
ally relevant feature be
ause of limited

possibilities of representing symmetries in the 
omplex domain. In prin
iple, in Cli�ord

harmoni
 analysis the way to over
ome these problems is outlined. We 
ould show how

to extent the 
on
epts of the Fourier transform, the Hilbert transform and the analyti


signal by adequate embedding in a geometri
 algebra. For 2D signals the Riesz transform

generalizes the Hilbert transform and the monogeni
 signal generalizes the analyti
 signal.

This is derived from the 3D Lapla
e equation. In that frame, images are ve
tor �elds and

operations are spinors. Interestingly, the third 
oordinate 
orresponds to a s
ale param-

eter. It 
ould be shown that the 
orresponding linear s
ale-spa
e is a real alternative to

the Gaussian s
ale-spa
e. Quadrature �lters 
an be 
onstru
ted for intrinsi
ally 1D sig-

nals from orders 0 and 1 of the spheri
al harmoni
s and for intrinsi
ally 2D signals from

orders 2 and 3. In total, a set of seven spinor-valued �lters 
an be applied by 
onvolution.

Thus, instead of the 
ommonly known lo
al features (energy and phase) in 1D signals, a

multive
tor of seven orthogonal features exists for 2D signals.

Problem: Limited Bias of the Real Per
eptron

The universal approximation property of MLP nets is redu
ed in its importan
e if the

neurons only a

ept real data. The 
omputed s
alar produ
t results in a bad balan
e of

bias/varian
e in the 
ase of noisy data. In other words, in real ve
tor spa
e there are

too few 
onstraints for a su

essful separation of any intrinsi
 varian
e of data from noise


ontributions. A Cli�ord neuron, on the other hand, operates in Cli�ord (or geometri
)

algebra. By the nature of the 
hosen produ
t the resulting linear spa
e is presenting a ri
h

subspa
e stru
ture whi
h 
onstrains learning. Another interpretation of the advantageous

behaviour of Cli�ord neurons is related to Cli�ord groups whi
h are indu
ed by the 
hosen

algebra and whi
h result in usefull 
onstraints. We 
ould show that a single Cli�ord neuron

learns geometri
 transformations whi
h only 
an be learned by several real neurons (or even

not at all, as in the 
ase of the Moebius transform). Not only the 
omputational ressour
es

are redu
ed. Cli�ord neurons a
t as linear operators in the algebrai
ally deformed spa
e.

Be
ause of their group-based 
onstraint they give a far better generalization of noisy data

than real neurons.

Problem: Strati�
ation of Geometry in Computer Vision

O. Faugeras proposed a strati�
ation hierar
hy of proje
tive, aÆne and metri
 spa
es an

observer should a

ess depending on his/her situation and embodiment. Up to now all

these strata have only been used in a few 
ases. Pose estimation, for example, 
an and has

been formulated and solved as a proje
tive, metri
 and kinemati
 task. Changing from

one stratum to another is not well understood so far. Espe
ially if instead of points higher

order geometri
 entities (e.g. lines) are used.

By embedding the 2D/3D pose estimation problem into 
onformal geometri
 algebra, we


ould develop an algorithm whi
h uses all three strata simultaneously. This was possible

be
ause within 
onformal geometri
 algebra we 
an express kinemati
 transformations,

proje
tions and metri
 measurements.
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Note that the basi
 observable entities whose kinemati
 parameters 
an be linearly es-

timated are not only points, but also spheres, 
ir
les, planes, and lines in 3D spa
e. As

a dire
t appli
ation we developed an algorithm that linearly estimates the pose of arti
u-

lated obje
ts as kinemati
 
hains. This algorithm runs at video rate real-time. The pose

estimation 
an be performed based on di�erent geometri
 entities, also taking into a

ount

the relative trustworthyness of di�erent measurements. The algorithm works by estimat-

ing the e�e
t of motors (multipli
ative spinor representations of rotation and translation)

on geometri
 entities su
h that a distan
e measure of a 
onstraint in Eu
lidean spa
e is

minimized. But instead of using the Lie group representation of motors as spinors, we use

their twist representation and perform the pose estimation in a Lie algebra.

Ultra-Rapid Visual Pro
essing { Computing with one spike per neuron

Simon Thorpe

Monkeys and humans are very fast and a

urate at de
iding whether previously unseen

natural images 
ontains a target 
ategory (ex. animal). Indeed, pro
essing is so fast that

it appears to rule out many popular models of visual pro
essing and 
oding in the nervous

system. In parti
ular, I will argue that su
h tasks must be possible under 
onditions

where neurons in any parti
ular pro
essing layer may only get to emit one spike before

the neurons in the next layer have to make a de
ision. I propose that one solution to this

dilemma is to use the relative ordering of spikes a
ross a population of neurons to en
ode

information, rather than a 
onventional �ring rate 
ode. Computer simulations show that

this approa
h is not only viable, but that systems using a single wave of asyn
hronous spikes


an out-perform many of the 
onventional image pro
essing te
hniques used in 
omputer

vision.

Variational prin
iples for se
ond order fun
tionals

Fran
o Tomarelli

(joint work with Mi
hele Carriero and Antonio Lea
i)

We fo
us the Blake & Zisserman fun
tional in image segmentation.

F (K

0

; K

1

; u) :=

Z


n(K

0

[K

1

)

�

jD

2

uj

2

+�ju�gj

q

�

dx+�H

n�1

(K

0

\
)+�H

n�1

((K

1

nK

0

)\
) ;

where 
 � R

n

is an open set, n � 2, H

n�1

denotes the (n � 1)-dimensional Hausdor�

measure and

q > 1 ; � > 0 ; 0 < � � � � 2� ; g 2 L

q

(
)

are given; while K

0

; K

1

� R

n

are Borel sets (a priori unknown) with K

0

[K

1


losed, u

is approximately 
ontinuous on 
 nK

0

and u 2 C

2

(
 n (K

0

[K

1

)).

If the triplet (K

0

; K

1

; u) is a minimizer and n = 2; 3 then K

0

[ K

1

may be interpreted

as an optimal segmentation of a mono
hromati
 image of given intensity g.

We review suÆ
ient 
onditions for existen
e of minimizing triplet, quantitative and

qualitative properties of su
h triplets and some results about numeri
al approximation.

Moreover we show ne
essary 
onditions ful�lled by minimizers, obtained by many types of

variations, and we expli
it Euler 
onditions of integral and geometri
 type ful�lled by the

optimal segmentation.

Existen
e of minimizers is proved by regularizing weak solutions when n = 2 and g 2

L

2q

lo


(
) .
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The Euler equation in the distribution sense, outside optimal segmentation K

0

[K

1

, is

�

2

u = �

q

2

�ju� gj

q�2

(u� g) in 
 nK

0

[K

1

;


oupled with homogeneous 
onditions for natural boundary operators asso
iated with the

de
omposition to the bi-harmoni
 operator.

First variations of the energy with respe
t to 
ompa
tly supported deformations of the

optimal segmentation provide an additional global Euler equation and a link between


urvature of the segmentation and the jump of the tra
es of hessian matrix.

We exhibit a non-trivial triplet satisfying all the ne
essary 
onditions proved for the

main part of the energy and a variational prin
iple of equi-partition of volume and surfa
e

energy.

We 
onje
ture that su
h triplet is a lo
al minimizer, unique up to sign 
hange, rigid

deformations of 
o-ordinates and/or addition of aÆne fun
tions.

Learning similarity metri
s between shapes

Alain Trouve

The design of good features and good similarity measures between features play a 
entral

role in any retrieval system for sear
hing a database. The use of metri
 similarities (ie


oming from a real distan
e) is also very important to allow a fast retrieval on large

databases. Moreover, these similarity fun
tions should be 
exible enough to be tuned to

�t some users model. These two 
onstraints, 
exibility and metri
ity are generaly diÆ
ult

to ful�ll. Our 
ontribution is two folds: We show that the kernel approa
h introdu
ed by

Vapnik, 
an be used to generate metri
 similarities, espe
ially for the diÆ
ult 
ase of planar

shapes seen in a rotation invariant way. Moreover, we show that mu
h more 
exibility 
an

be added by non rigid deformation of the indu
ed feature spa
e. De�ning an adequate

Bayesian users model, we des
ribe an estimation pro
edure based on the minimization of

the underlying log-likehood fun
tion.

Inferen
e in Markov Random Fields using Belief Propagation

Yair Weiss

(joint work with Bill Freeman and Jonathan Yedidia)

Inferen
e in Markov Random �elds is typi
ally exponential in the number of nodes. For

singly 
onne
ted graphs, the 
al
ulations 
an be done eÆ
iently using a simple, parallel

algorithm 
alled "belief propagation". This same algorithm 
an also be applied to multiply


onne
ted graphs. Su
h "loopy belief propagation" was thought to be a bad idea until the

dramati
 empiri
al su

esses of Turbo 
odes and other appli
ations. Re
ently, we have

been able to shed light on this by a number of analyti
al results.

Unsupervised Learning of Invarian
es in a Simple Model of the Visual System

Laurenz Wiskott

A new algorithm for unsupervised learning of invarian
es is presented. The basi
 idea is

to learn a nonlinear input-output fun
tion whi
h extra
ts slowly varying aspe
ts from the

input signal by minimizing the temporal variation of the output signal. This is a known

approa
h. The algorithm, however, di�ers from existing learning rules. Firstly, it 
omputes
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the solution in a 
losed form (like PCA) and is guaranteed to �nd the optimum within

the 
onsidered fun
tion 
lass. Se
ondly, not only one but many un
orrelated output signal


omponents 
an be generated easily, whi
h is important for hierar
hi
al networks.

The algorithm is applied to a simple model of the primate visual system with a one-

dimensional retina. Depending on what stimuli are used for training, the network 
an learn

translation-, s
ale-, rotation- (
y
li
 shift), 
ontrast-, or illumination-invarian
e. Relatively

few stimulus patterns are needed for training to a
hieve good generalization to new pat-

terns. The representation generated is suitable for pattern re
ognition. Overall the model

suggests that it may be plausible that our visual system learns invarian
es based on fairly

limited visual experien
e.

Representing Images by Gabor Wavelet Transform Magnitudes

Ingo Wundri
h

Several obje
t dete
tion and re
ognition approa
hes rely on Gabor responses as their

representation in order to obtain point-to-point 
orresponden
es between the input image

and the obje
t model. Similarity fun
tions 
onstru
ted from the magnitudes of the Gabor

wavelet provide a mu
h smoother similarity fun
tion whi
h 
an be optimized in a redu
ed

resolution. This approa
h turned out to be quite powerful in several obje
t dete
tion

and re
ognition frameworks. Despite its su

ess in su
h appli
ation domains the more

profound question arises wheter these magnitudes retain all the image information without

introdu
ing ambiguities.

The transition from the hI;  

~n

0

;m;l

i to the jhI;  

~n

0

;m;l

ij image representation is supported

by a 
olle
tion of theorems about magnitudes of the Fourier transform jFTIj stated by

Hayes. The major result 
on
erning the magnitudes is that almost all images de�ned on

an N

1

� N

2

support 
an be represented by jFTIj sampled at (2N

1

� 1)(2N

2

� 1) points

uniquely up to the sign and a point re
e
tion within this support. The ex
eptions from this

statement are of measure zero. For an appli
ation to the subband images of the dis
rete

Gabor wavelet transform the �rst step to take is to drop the assumption of real-valued

input to the transform from whi
h we are about to take the magnitudes.

Theorem 1. Let B(N

1

; N

2

) be the spa
e of all bandlimited fun
tions on the �nite support

f0; : : : ; N

1

�1g�f0; : : : ; N

2

�1g su
h that DFTI(~�) = 0 for j�

1

j �

N

1

4

; j�

2

j >�

N

2

4

, and let

the wavelet family  

~n

0

;m;l


onstitute a frame in B(N

1

; N

2

). For all I

1

; I

2

2 B(N

1

; N

2

) su
h

that hI

1

;  

~n

0

;m;l

i and hI

2

;  

~n

0

;m;l

i are only trivially redu
ible polynomials and jhI

1

;  

~n

0

;m;l

ij =

jhI

2

;  

~n

0

;m;l

ij 8~n

0

; m; l it follows that I

1

(~n) = �I

2

(~n).

In fa
t we do not lose more than the global sign information if we ignore the phases of


omplex Gabor responses in every subband. The pri
e one has to pay for it is the presumed

oversampling of the input image.

Motivated by existing Fourier phase retrieval algorithms an iterative pro
edure is 
on-

stru
ted having the magnitude subband images and one arbitrary image as inputs. The

latter provides its Gabor phases to be 
ombined with the magnitudes. After less than 1200

iterations one gets images retaining all the stru
tural information of ne
essity for robust

obje
t dete
tion/ re
ognition.
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Gabor phase spa
e mole
ules for image understanding

Rolf P. W

�

urtz

Exemplar-based obje
t re
ognition algorithms usually 
onsist of the following steps.

1. Extra
tion of \atomi
" visual primitives.

2. Combination of these to higher order \mole
ular" stru
tures.

3. Estimation of 
orresponden
e maps (\mat
hing") between the a
tual visual s
ene and

stored obje
t prototypes.

4. Organization of the memory of obje
t prototypes su
h that mat
hing and 
omparison


an be eÆ
ient.

5. Filtering of the video stream from the 
amera

Gabor wavelet transforms provide a ri
h and 
onvenient des
ription of an image. They

are atomi
 in the sense that they subdivide the 4-dimensional phase spa
e spanned by all

possible 
ombinations of these parameters into 
ells of minimal volume. They provide a

good model of simple 
ells in V1. The pre
ise form of the fun
tion is not 
ru
ial, but

the mat
hed �lter property (positivity in frequen
y spa
e) turns out to be very helpful. It

makes it very natural to des
ribe the atoms in terms of a lo
al amplitude (model for 
omplex


ells) and lo
al phase. The former has very favorable properties 
on
erning mat
hing

robustness, the latter is required for pre
ise lo
alization of 
orresponden
es.

Su

essful examples in
lude

Jets: used for fa
e re
ognition by elasti
 graph mat
hing;

Minijets: used for fa
e re
ognition by Gabor pyramid mat
hing;

Graphs and pyramids: as stru
tures 
oding for whole obje
t aspe
ts;

Corresponden
e stru
tures: the intermediate and �nal results of mat
hing;

Endstopped 
ells: a model for a spe
ial kind of 
ells in the visual areas V1 and V2.

Corner dete
tors: a multis
ale 
ombination of endstopped 
ells

Line elements: 
onne
tion stru
tures whi
h support the Gestalt rule of 
ollinearity;

Texture operators: used for the 
lassi�
ation of natural textures.

I have des
ribed in detail the methods of Elasti
 Graph Mat
hing, its extension to

bun
h graph mat
hing,and its embedding into a real-time re
ognition system. Con
eptual

problems with the ba
kground have been solved by the method of Gabor pyramid mat
hing,

whi
h has a detailed neuronal implementation. Finally, I gave an outlook on further

appli
ations of the 
on
ept.

Early Vision, Corti
al Columns, and the Tangent Bundle

Steven W. Zu
ker

The visual 
ortex in primates is organized around orientation, with "
olumns" of 
ells

exhibiting re
eptive �elds sele
tive for di�erent edge and line orientations at ea
h retino-

topi
 position. We identify the orientation 
olumn with the unit tangent bundle, R

2

� S

1

,

and 
onsider the question of how to stru
ture early vision in it. A di�erential-geometri


position is adopted, whi
h requires spe
ifying the 
onne
tion forms. We develop these

analagously for 
urve dete
tion, for stereo 
orresonden
e, and for texture-
ow and shad-

ing analysis. In 
urve dete
tion we interpret noisy edge "dete
tor" responses as putative

tangents to 
urves, and transport along the os
ulating 
ir
le to enfor
e` 
onsisten
y. For

texture-
ow, frame transport requires two 
urvatures (the 
onne
tion form evaluated in the

tangential and the normal dire
tions) and a heli
oid in R

2

� S

1

is the os
ulating obje
t.
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For stereo tangents to a spa
e 
urve are transported along an os
ulating helix, and the

Frenet 3-frame is proje
ted to obtain two mono
ular problems. The result, for stereo, is

a set of 
ompatibilities in (R

2

� S

1

) � (R

2

� S

1

) that 
ompute both spatial and orienta-

tion disparities. Me
hanisms for estimating the relevant 
urvatures were des
ribed, and

relaxation labeling (equivalent to a 
lass of polymatrix games) supports all 
omputations.

Examples of all 
omputations were shown.

Edited by Ingo Wundri
h
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