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The present conference was organised by Aart Blokhuis, Dieter Jungnickel, James Hirsch-
feld and Jef Thas.

There were 48 participants, for many of whom it was the first visit to Oberwolfach. This
included several PhD students as well as postdoctoral fellows who had recently completed
their PhD’s. The national distribution of the participants according to their institutions
was as follows:

Australia 1
Belgium 13
Bulgaria 1
Germany 8
Hungary 4
Israel 1
I[taly 6
The Netherlands 3
New Zealand 1
United Kingdom 4
United States 6

The programme consisted of 15 long talks during five mornings and 16 short talks during
four afternoons. Among the highlights were talks by Simeon Ball on semifields, Matthew
Brown on subquadrangles of generalized quadrangles, Roy Meshulam on expander graphs,
Bernhard Schmidt on difference sets, and Koen Thas on the classification of generalized
quadrangles.

On Thursday evening at a meeting of the Institute of Combinatorics and its Applications
there were presentations of two medals: the 1997 Kirkman medal to Bernhard Schmidt
and the 2000 Hall medal to Klaus Metsch.

A website

http://www.maths.susx.ac.uk/Staff/ JWPH/OBER /oindex.html
was arranged so that abstracts could be displayed in advance of the conference. Other
details as well as photographs of the conference are available there.
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Cone dependence — a basic combinatorial concept
R. AHLSWEDE
(joint work with L.H. Khachatrian)

Definition 1. A C E" is cone independent of B C E" if no a = (ay,...,a,) € A equals
a linear combination of B \ {a} with non—negative coefficients.

Definition 2. If A is cone independent of A we call A a cone independent set.

Definition 3. Study here the case that A, B C {0,1}" C E" and in particular
P(n) = {A C {0,1}": A is cone independent }.
Problem 1. Find ¢(n) £ max{|A|: A € P(n)}.

Problem 2. Given k,/,n e N, 1 <k < /¢ <n. Let A CV,”, the set of binary sequences

of length n and Hamming weight k, be such that V;* is cone independent of A and let
P,(k,?) be the set of all such sets. Find

Cn(k,g) = maXAepn(k’g) |A|
This is in general a very hard problem. For instance it is easily seen that in the case
¢ =k +1 we have ¢,(k,k +1) = T'(n,k,k + 1), the Turan number (T'(n, k,¢) equals the
maximal cardinality of a family of sets A C ([Z]) such that every B € ([7[}]) contains not
more than (ﬁ) — 1 subsets of A). These numbers are not even completely known for k& = 3.

Theorem 1. c,(k,n) = (".") if k | n or if k{n and n is large.

Theorem 2. With g,(s) = max{(*;"), (°;') + (s = 1)(n —s)}

e(2.0) = 9n (3) 5 if 2] ¢
2.4 {maX(L%J 2] 0n (551)), W21

Conjecture 1. ¢,(k,n) = max |H,|, where, for 1 < s <k and n; = (%1 -1,
S
H, = {v: (V1. vn) € VP2 D0y 23}.
i=1

Theorem 1 proves this for n large.

Conjecture 2. For k < ¢ < n, the number ¢,(k, ¢) behaves as in the case where cone
independence is replaced by linear independence.

Conjecture 3. lim % <1
n—o0

It is known that the limit exceeds 0.55.

Semifields, flocks and ovoids
SIMEON BALL
(joint work with Matthew Brown)

A semifield projective plane is a projective plane that is both a translation plane and a
dual translation plane. A semifield is an algebraic structure coordinatising such a plane.
Cohen and Ganley (1982) considered a particular class of commutative semifields (namely,
of rank 2 over the middle nucleus) whose existence they showed was equivalent to the
existence of two functions f,¢g : GF(q) — GF(q), such that both f and g are additive



and ¢(x)? + 4z f(z) is a non-square for all z € GF(q) \ {0}. For ¢ a power of 2 Cohen and
Ganley proved that the only example of such a semifield is GF(q?).

By André (1954) a translation plane may be constructed from a spread of a projective
space, and vice versa. A spread giving rise to a semifield translation plane is called a
semifield spread. A flock of a quadratic cone K of PG(3,¢q) is a partition of the points
of I, minus the vertex, into plane sections. By using the Klein quadric and the Klein
correspondence it is possible to construct a spread from a flock (found independently by
Walker and Thas). Such a spread is a semifield spread if and only if the flock can be
represented using functions f, g as in the work of Cohen and Ganley.

An ovoid of the quadric Q(4, q) is a set of ¢*> + 1 points of the quadric, no two collinear
on a line of the quadric. By the Klein correspondence an ovoid of Q(4,q) gives rise to a
spread of PG(3, ¢). When this spread is a semifield spread the ovoid is called a translation
ovoid. Thas (1997) gave a general geometrical correspondence between a translation ovoid
of Q(4,q) and a semifield flock.

So by considering the Cohen—Ganley functions f and g, the corresponding semifield
flock and translation ovoid of Q(4,q) we have 3 semifield planes. These planes are not
isomorphic in general, which seems to cause some confusion in the literature. To make
matters worse, by the ‘cubical array’ method of Knuth (1965) we can construct 6 possibly
non-isomorphic semifield planes from a given one.

In this lecture I will give a geometrical description of the Knuth ‘cubical array’ method
and then explain some of the connections between the semifield planes mentioned above.

A class of designs protecting against quantum jumps
THOMAS BETH

Quantum FError-Correcting Codes and their intrinsic relation to Self-Dual Codes and
Finite Geometries have been known as a hot topic of research in Quantum Informatics,
Combinatorics and Group Theory since 5 years; the discovery of so-called “Jump Codes”,
however, provides a rather new line of research in both Quantum Information Theory and
Design Theory.

In our presentation we intend to give a short introduction to the concept of so-called
“protected subspaces” of the Hilbert “state” space of multi-qu-bit quantum systems. From
this we derive the algebraic and finite geometric conditions, under which such protected
complex spaces can be generated. We shall show that in order to protect against sponta-
neous decay the so-called “Quantum Jumps” (which gave rise to the infamous name 100
years ago), special designs, called SEED’s (spontaneous emission error designs) must be
constructed. After defining the new class of t--SEED’s we derive necessary conditions for
their existence and construct several families of such objects based on the following result.

Theorem . Any s-resolvable t-design S(t,k,u) forms an s-SEED.

Example 1. A 1-SEED is naturally provided by the parallel classes of an AG(2,p).
Example 2. Any Kirkman System provides a 2-SEED.

The classification of SEED’s seems to be a wide open problem; in the special case of
SEED’s with a nontrivial group action, relations to some extremal graph problems will
be mentioned. Finally we give bounds for the existence of SEED’s and special classes of
Codes and Geometries with some exotic group actions generating such designs.

This is joint work with Gernot Alber and his group at Ulm University, Chris Charnes
at University of Melbourne and Markus Grassl at Universitat Karlsruhe.



Projective planes, coverings and a network problem
JURGEN BIERBRAUER
(joint work with F. Pambianco and S. Marcugini)

Define a covering C'(n, k,r) to be a family of subsets (blocks) of an n-set, such that each
block has size < k, each point is on < r blocks and any pair of points is on a common
block.

The main problem is to determine Cov(k, ), the maximum n such that C'(n, k, r) exists.
This problem arises in packet switched network design (n network sites, connected by links
or busses, where each site has at most r communication ports, each link can connect at
most k sites and any pair of sites appear on a common link). We think of r as fixed
and k > r. It has been observed in the network literature that projective planes of order
q = r — 1 can be used to construct such coverings. Charlie Colbourn (Projective planes
and congestion-free networks, to appear in Discrete Applied Mathematics) formalized this
and pointed out a link to (k,n)-arcs

We give a general definition of a weighted arc in a projective plane of order ¢ and
derive coverings from weighted arcs. Call such a covering geometric. 1t is linear geometric
(equivalent to 3-dimensional linear codes) when the underlying plane is the Desarguesian
plane PG(2,q).

We use a result of Fiiredi’s on the fractional matching number to determine Cov(k,r)
when ¢ = r — 1 is a prime-power and £ is large enough. In particular every C(n, k,q + 1),
where n > ¢k, is geometric.

The case when ¢ = r — 1 is not a prime-power leads to an interesting existence problem
concerning a family of symmetric partially balanced designs, which in some sense are
close to being projective planes. We demonstrate the method by constructing good covers
C(n, k,7) based on such a design on 40 points, which was constructed by Alan Ling.

Collineation groups of ovals with more than one orbit
ARRIGO BONISOLI

Let m be a finite projective plane of odd order n with an oval Q which is left invariant
by a collineation group G. The most powerful results in this situation require G' to act
primitively or at least transitively on 2. Much of the machinery developed to this purpose
involved Hering’s theory of irreducible collineation groups, that is groups fixing no point,
no line and no triangle.

In recent years interesting classes of planes have been shown to possess ovals whose
collineation groups have two orbits, one of which may well shrink to a single point. More
generally, one might like to see what happens if the group G is intransitive on ) and,
possibly, reducible on .

I would like to illustrate some recent contributions in this area, under the assumption
that the G—orbits on €2 are precisely two and at least one of these is primitive.



Subquadrangles of generalized quadrangles of order (g, ¢%)
MATTHEW BROWN
(joint work with J. A. Thas)

A subquadrangle of a generalized quadrangle is a (proper) subgeometry that is also a
generalized quadrangle. Many of the known generalized quadrangles of order (g, ¢?) have
subquadrangles of order ¢ (that is, order (¢, ¢)). The generalized quadrangle Q(5, q) arising
from a non-singular elliptic quadric £ in PG(5, ¢) has subquadrangles isomorphic to the GQ
Q(4, q) given by non-singular hyperplane sections of £. The GQ T3(2) of Tits constructed
from an ovoid Q of PG(3, ¢) has subquadrangles T5(O), of order ¢, for each oval O that is
a section of 2.

If F is a flock of a quadratic cone in PG(3,¢), then it is well-known that a GQ S(F)
of order (¢2,¢) (and so the dual of a GQ of order (q,¢*)) may be constructed from F. In
the case where ¢ is even there exists a set of ovals {Oy,...,0,1} (called a herd) such
that S(F) has subquadrangles isomorphic to T5(0;) for i = 1,... ¢+ 1. This connection
between flocks, GQs and herds of ovals has been an important construction method for
ovals in Desarguesian planes of even order.

In this talk I will survey recent classification results on subquadrangles of order ¢ of
generalized quadrangles of order (g, ¢?). I will also outline a proof of the result that when
q is even a dual flock generalized quadrangle contains only the subquadrangles that are
the dual of those arising from the corresponding herd ovals.

What is an elliptic curve ?
FraNcis BUEKENHOUT

Is an elliptic curve the same object as a plane cubic curve without singular points over
any extension of the ground field? Is it the same object as a curve defined by some
simple specific equation? A lot of confusion has invaded this matter in view of its sudden
popularity and the need of simple explanations.

Let me recall that there exist elliptic curves other than cubics such as a quartic with two
double points and a sextic with nine cusps. The truth: every cubic without singular points
is an elliptic curve. Moreover, every plane projective elliptic curve is birationally equivalent
to a cubic. Where is the difference? The automorphism group of a cubic is small, it is
finite of bounded order. It is by no means transitive on the points of the curve except for
small cases. It is a subgroup of the collineation group of the projective plane surrounding
the cubic. Every point p of the cubic determines a natural symmetry of order two but
this is not an automorphism of the cubic except when p is an inflexion point. However,
that symmetry is an automorphism of the elliptic curve. It is a birational automorphism.
The group of birational automorphisms of an elliptic curve is transitive on its points.
It preserves the elliptic curve but moves the underlying cubics. In my opinion, besides
their algebraic origin and structure, cubics and elliptic curves are geometric objects that
deserve an approach and characterization in the context of Incidence Geometry. Also, that
structure is rich enough in order to get rid of the surrounding plane. On this conviction, I
have defined a concept of GECC or Generalized Elliptic Cubic Curve. It goes along with
a concept of GEC or Generalized Elliptic Curve. A GEC is a set of points equipped with
a sharply transitive set of involutory transformations called symmetries. Every GECC has
a canonical structure of GEC. Unlike the classical case, not every GEC is isomorphic to
the GEC derived from a GECC. Every GEC equipped with a point-origin gives rise to a



commutative loop. In the latter, the presence of a GECC is detected by a particular element
called associative. A commutative loop with a specified associative element determines a
GECC. A commutative loop with no specified element determines a GEC.

What is an elliptic curve? As a first step to the answer it is a GEC whose underlying
loops are abelian. More steps remain to be made.

Recent results on projective and affine full embeddings of («, 5)-geometries
F. DE CLERCK

An (o, 5)-geometry is a connected partial linear space S of order (s,t) (s + 1 points on
a line, t + 1 lines through a point) such that for any point-line antiflag (z, L) the incidence
number «(z, L), being the number of points on L and collinear with z, is equal to either
a or . If the point graph of § is a strongly regular graph, then S is called a strongly
reqular («, 3)-geometry. Well-known classes of strongly regular («, §)-geometries are the
partial geometries pg(s,t,«) (o« = 3, and especially the generalized quadrangles GQ(s,t),
a = 3 =1) and the semipartial geometries (8 = 0, and especially the partial quadrangles
PQ(s,t), « = 1). A semipartial geometry that is not a partial geometry is called proper.
Partial geometries fully embedded in a projective space or in an affine space are completely
classified. The classification of semipartial geometries embeddable in a projective space is
known for @ > 1 and for s > 2. The classification of semipartial geometries embeddable in
an affine space is known for the dimensions 2 and 3, but is open for higher dimensions.

We report on following recent results in this area.

1. On the embedding of (0, o)-geometries in affine spaces (joint work with Matthew
Brown and Mario Delanote)

1. If S is the dual of a proper semipartial geometry embedded in an affine space AG(n, q)
then o = 1.

2. Let S be an spg(q — 1,¢%,2,2¢(q — 1)) embedded in AG(4,¢), then ¢ = 2" and § is
the Hirschfeld-Thas model of the semipartial geometry known as TQ(4, q).

2. On the embedding of dual partial quadrangles in projective spaces (joint
work with Nicola Durante and Jef Thas)

Let L be a line on a nonsingular Hermitian variety H in PG(3,¢%). The incidence
structure S = (P, B, 1) defined by taking as point set P the point set of  not on L and
as line set B the set of lines of H minus all the lines concurrent with L, is a dual partial
quadrangle embedded in PG(3,¢?). Tt is a long standing conjecture that this geometry is
the only proper dual partial quadrangle embedded in a projective space. We can prove
this conjecture under some mild extra conditions.

3. On the embedding of («,)-geometries in projective spaces (joint work with
Sara Cauchie and Nicholas Hamilton)

Without assuming that the («, 3)-geometry is strongly regular it is still possible to prove
some classification results on such embeddable geometries. We classified (v, 3)-geometries
fully embedded in PG(n, ¢), for @ > 1, ¢ odd, under the assumption that there is at least
one plane of PG(n,q) such that the geometry induced by S in that plane is a partial
geometry (with incidence number « or 3).



Binary codes of odd order Buekenhout—Metz unitals
G. L. EBERT
(joint work with K. L. Wantz)

Treating the points and secant lines of any unital as a 2 — (¢* + 1,¢ + 1,1) design, one
can construct the linear code spanned by the characteristic vectors of the blocks over some
prime field F,. A well-known conjecture, first suggested by B. R. Andriamanalimanana
in his Ph.D. thesis at Lehigh University (1979), states that in the case when the unital is
classical (Hermitian), the dimension of this code is ¢* — ¢ + ¢ for any prime p that divides
q> — 1. This conjecture now has been verified by machine for ¢ < 13, but the general result
remains unproven. It appears to be a difficult problem.

In this talk we consider the case when the unital is a non-classical Buekenhout—Metz
embedded in PG(2,¢?) for odd ¢q. For a given odd prime power ¢, there is a unique (up
to projective equivalence) Buekenhout—Metz unital which can be expressed as a union of ¢
conics in PG(2,¢*), mutually tangent at some point P.,. It is the only Buekenhout-Metz
unital, including the classical unital, which contains a conic of PG(2, ¢?), and the presence
of the above ¢ conics makes the determination of the 2—rank (p = 2) of the associated
binary linear code a more tractable problem, or at least it so appears. One easily obtains an
upper bound of ¢* — ¢ +1 for this 2—rank, and we conjecture that indeed this bound is the
2—rank. We also have a conjectured basis consisting of certain weight-2 vectors associated
with the above conics, thus implying that the minimum weight of this binary code is two.
It should be noted that the minimum weight in the case of the classical unital is thought
to be ¢ + 1. Finally, we conjecture that for all remaining non-classical Buekenhout-Metz
unitals embedded in PG(2,¢?) for odd ¢ (and there are many such inequivalent unitals),
the 2—rank is ¢* and thus the binary code is simply the code of all even—weight vectors.

Extensions of generalized product caps
YVEs EDEL

A k—cap K in PG(n, q) is a set of k points, no three of which are collinear. The maximum
value of k for which there exists a k—cap in PG(n,q) is denoted by ma(n,q). Denote by
m;ﬁ(n, q) the corresponding value in AG(n,q). Aside of the cases k = 2,3 or ¢ = 2 the
precise values of the numbers ms(n, q), m;ﬁ (n,q) are known only in the following cases:
ms(4,3) = m3¥ (4,3) = 20, my(5,3) = 56, m2¥ (5,3) = 45, and my(4,4) = 41. Finding the
exact value for my(n,q) or m;ﬁ (n,q), n >4, ¢ > 2 seems to be a very hard problem. As
an application of our new construction we obtain improved lower bounds on some values
ma(n, 3). The smallest examples are a 1216—cap in PG(9,3) and a 6464-cap in PG(11, 3).

A natural asymptotic problem is the determination of

. logq (mQ(na Q)) . logq (m;ﬁ (TL, q))
p(g) = limsup ————= = limsup :

n—00 n n—00 n
It is well known that % < u(q) < 1. The affine points of a family of caps in PG(6,q)
from yield the slightly better bound pu(q) > élogq(q4 + ¢* — 1). No better lower bound
seems to be known for general ¢q. Exceptions are the ternary and quaternary cases. It
follows from Calderbank and Fishburn that p(3) > 0.7218.... The 120 affine points of the
cap in PG(5,4) found by Glynn show that ;(4) > 0.6906... The construction given here
can be seen as a generalization of one of the constructions of Calderbank and Fishburn.




Although the construction works for general ¢ all our applications are in the ternary case.
Our constructions of caps in ternary affine spaces lead to a better bound for p(3). We will
show that p(3) > 0.7248. ...

This leaves us with two research problems. Firstly to improve the bound on x(3) by
finding better capsets, secondly to find good caps to which we can apply the construction
for ¢ > 3.

More information can be found at www.mathi.uni-heidelberg.de/~yves

Some new results about directions
ANDRAS GAcs
(joint work with Tamds Szonyi)

We discuss some new results about the possible number of directions a set of ¢ points in
AG(2,q) can determine. We prove that if ¢ is the square of an odd prime p, then besides
lines (determining one direction), Baer subplanes (determining p + 1 directions) and the
graph of the function z(4+)/2 (determining ‘1%3 directions), any set determines at least
q+ %p directions. This is sharp, the construction is due to O. Polverino, T. Szoényi and Zs.
Weiner.

In the second part of the talk we show that a partial spread of size k in PG(2,q) is
equivalent to a set of k — 1 points in AG(2, ¢?) not determining a Baer subline. Using this
we construct maximal partial spreads of size ng + 1 for any n such that 3log(q) < n < gq.

The invariant graphs, tournaments and codes of projective planes of even
order

D. G. GLYNN

Starting from Rota’s basis conjecture about having another way of dividing n? points
of a matroid of rank into n bases (given one way of doing it), we saw about a year ago
a way to construct invariants of nets of even order using digraphs constructed from the
signs of their “von Staudt” projectivities. This has now been applied to projective planes
of even order, and we shall summarize some of the more important results. For example,
any projective plane of order ¢ = 0 (mod 4) has an invariant tournament (or 2-graph,
defined up to some switchings), and every projective plane of order ¢ = 0 (mod 4) has an
invariant graph (2-graph, based on the points or lines). In these graphs or tournaments the
neighbourhoods of vertices are codewords associated with the binary code of the plane. In
the case of ¢ = 2 (mod 4) quite strong things can be said about the kind of tournaments
that appear: for example we know the ranks of their adjacency matrices: they generate
(close to) self-dual codes reminiscent of the duadic codes. This leads to strong conjectures
about certain chains of codes in the binary antiflag-space of the projective planes.

In the case of any k-net of even order ¢, there is a basically unique (up to complements)
graph or tournament with k vertices associated with it. Quite often these graphs are
non-trivial and show a great deal of structure, but a conjecture is that the graph of any
translation or dual translation plane net coming from any point or line is trivial. This says
something quite strong about the Latin squares of order ¢ that can be constructed from
any three concurrent lines or collinear points in such a plane of order gq.



Even though the graph at any point or line of a cyclic projective plane is trivial, the
graph of the whole plane is definitely not, and this could turn out to be a useful new
direction for this unfinished (perhaps “never-ending”?) chapter in finite geometry.

Restrictions on the size of partial ovoids in finite classical polar spaces and in
the split Cayley hexagon

P. GOVAERTS
(joint work with L. Storme and H. Van Maldeghem)

A partial ovoid O of a finite classical polar space P is a set of points of P such that no
generator of P contains two points of O. If every generator of P contains one element of
O, then O is called an ovoid. A partial ovoid O of the split Cayley hexagon H(q) is a set
of mutually opposite points of H(q). If it has size ¢® + 1 then it is called an ovoid. In both
cases, the deficiency of a partial ovoid is the number of points it lacks to be an ovoid.

An extendability result for partial ¢-spreads of finite classical polar spaces can be used to
exclude the existence of maximal partial ovoids of certain sizes of the generalised hexagon
H(q): for large maximal partial ovoids of H(g), the deficiency is even. It also yields an
extendability result for partial ovoids of H(3,¢?), which can be used to prove an upper
bound for the size of partial ovoids of H(4,¢?). This upper bound can, with a technique
that works for any finite classical polar space, be lifted to an upper bound for partial ovoids
of H(2n,¢*), n > 2.

Theorem . Let O be a partial ovoid of H(2n, ¢?), n > 2. Then
O] < ¢ +1-2/3(¢" = 1)"*(2¢ + 1).

New constructions of maximal arcs in Desarguesian projective planes
NICHOLAS HAMILTON

A mazimal {q(n—1)+n;n}-arcin a projective plane of order ¢ is a subset of g(n—1)+n
points such that every line meets the set in 0 or n points for some 2 < n < q. For such
a maximal arc n is called the degree. If K is a maximal {q(n — 1) + n;n}—arc, the set of
lines external to K is a maximal {¢(¢ — n + 1)/n;¢/n}—arc in the dual plane called the
dual of K.

In 1997, Ball, Blokhuis and Mazzocca proved using polynomial techniques that no odd
order Desarguesian projective plane contains a non-trivial maximal arc. For even order
Desarguesian projective planes there are several constructions known. There are the hy-
perovals (degree 2) and their duals, a construction from 1969 by R.H.F. Denniston, and
one from 1974 by J.A. Thas.

Since it had been over 25 years since new maximal arcs, apart from hyperovals, had
been found in Desarguesian projective planes it was beginning to look like there might
not be others to find. Then earlier this year R. Mathon announced a new method of
construction. The idea was to take a certain set of conics on a common nucleus and to
define an addition on this set. A subset of conics is then closed if the sum of any two
elements is in the set. Mathon then showed that any closed set of conics gives rise to a
maximal arc. In particular, Denniston maximal arcs may be thought of as closed sets of
conics. In the paper Mathon gave a very large number of constructions of closed sets of
conics in PG(2,32) and PG(2,64), as well as infinite families of examples. The examples
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have many interesting and surprising properties. Many of the maximal arcs so constructed
have trivial collineation stabiliser, and the Lunelli-Sce hyperoval in PG(2,16) as well as the
Cherowitzo hyperoval in PG(2,32) may be thought of as duals of maximal arcs arising from
closed sets of conics. In a subsequent paper Mathon and myself constructed more classes of
closed sets of conics as well as obtaining results on the geometric structure of the maximal
arcs and their collineation stabilisers. In a further paper I gave methods for testing when
a closed set of conics what not of type Denniston, and gave another construction of closed
sets of conics and so maximal arcs.

In this talk I will give a survey of the recent constructions of maximal arcs and their
structure.

Designing the IEEE 802.12 transmission code
JONATHAN JEDWAB

In 1995 the Institute of Electrical and Electronic Engineers (IEEE) approved a new in-
ternational standard for the transmission of data at 100Mbit/s. This standard specified
a binary code mapping that was designed to satisfy multiple constraints simultaneously.
Eight years after selecting this code and presenting its properties to the TEEE T have per-
mission to explain the principles underlying its design, which include geometrical insight,
combinatorial reasoning and computer search.

Extremal problems under dimension constraints
L.H. KHACHATRIAN
(joint work with R. Ahlswede and H. Aydinian)

Let [n] £ {1,...,n}, 2" £ {4 : A C [n]}, and ([:)]) £ {A €2 |A = w}. We
associate with each subset A its characteristic (0,1)—vector in R”. The corresponding
notation for (0,1)-vectors is the following: E(n) £ {0,1}" and E(n,w) = {2" € E(n) : 2"
has w ones}. The set—theoretical notions like intersection, union, antichain, etc. are
extended to (0,1)-vectors in a natural way. The dimension of & C R" is defined by
dim(S) £ dim span(S).

A generic extremal problem under dimension constraint is the following. Let A C E(n)
satisfy some set-theoretical properties (say antichain, pairwise non—empty intersections,
etc.). In addition we require A to have dim(A) = k (k < n) and ask for the A with
maximum or minimum size and with the given properties.

In this talk we consider several problems, results and conjectures in this direction.

Our first result is the determination of the function

M(n, k,w) = max{|d N E(n,w)|: U is a k-dimensional subspace of R"}.

We proved that (i) M(n,k,w) = M(n,k,n — w); (ii) M(n,k,w) = (Z), if 2w < k;
(it) M (n, k,w) = (F2%) 220k if k < 2w < 2k —2; (iv) M(n, k,w) =21 ifk—1 <w <
n/2.

The antichain problem under dimension constraint is to determine

Ai(n) £ max{|F|: F C E(n),dim(F) < k, F is an antichain}.
Our conjecture, that Ag(n) = M (n, k, LgJ), is proved forn > 2k —2or k =n — 1.
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The intersection problems are to determine Ji(n,t) = max{|A| : A C E(n), A is t-
intersecting, dim(A) = k} and Jg(n,w,t) (the same function when A C E(n,w)). Let
K(n,t) C 2i" denote the Katona set.

We conjecture that, for t >n — k41,

Je(n,t) = IK(k=1,t—(n—k+1)|+|Kk—-1,t+ (n—k+1)),
if 2|(n +t) and
Jp(n,t) =2|K(k —2,t — (n—k+1))|+2|K(k —2,t+ (n—k+1))],
if 24 (n+1).
We show that (i) Ji(n,t) = 2571, for t <n—k+1; (i) Je(n,t) = 2" 2 for n > 3k — 1,
t = n—k+2; (iii) the conjecture holds for the cases (a) t > 2(n—k)—1, (b) k <n < k+3,
(c) n> kVE/V2.
For Ji(n,w,1) with w < n/2 we conjecture that Ji(n,w,1) = M(n — 1,k,w — 1) and
prove this when k£ < w or k < 2w < 2k — 2.

Transitive ovoids of the Hermitian surface
GABOR KORCHMAROS
(joint work with Antonello Cossidente)

Let #(3,¢?) be the (non-degenerate) Hermitian surface in PG(3,¢?), and let G 2
PGU(4,¢% be the linear collineation group preserving #(3,q?). An owvoid of H(3,q?)
is a set of point on H(3,¢?) which has exactly one common point with every generator of
(3, ¢%). Every ovoid consists of ¢>+ 1 pairwise non-conjugate points of (3, ¢*). An ovoid
O is called transitive if the subgroup H of G preserving O acts transitively on the point-set
of O. A known example of a transitive ovoid is the classical ovoid consisting of all points in
the intersection of (3, ¢*) with a non-tangent plane. The existence of many non-classical
ovoids was pointed out by Payne and Thas. Nevertheless, transitive non—classical ovoids
are known to exist only for ¢ even. The following classification theorem was announced on
the occasion of the 18" British Combinatorial Conference held at the University of Sussex,
1 to 6 July, 2001.

Theorem . For q even, there are exactly two projectively non—equivalent transitive ovoids

of H(3,¢%).

The theorem depends on both combinatorial results from finite geometry and deep the-
orems from finite group theory. The aim of the present talk is to outline of the proof.

Distance-regular geometries
ELISABETH KUIJKEN
(joint work with F. De Clerck)

A distance-regular geometry is a partial linear space of order (s, t) satisfying the following
axioms, where d is the diameter of the point graph.

e There exist constants ag; 1, 1 < ¢ < d, such that for any point-line pair (p, L) at
mutual distance 22 — 1 in the incidence graph there are exactly as; | points on L
which are at distance 2i — 2 from p.
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e There exist constants to;, 1 <4 < d, such that for any two points p and ¢ at mutual
distance 2¢ in the incidence graph there are exactly t9; + 1 lines through p which are
at distance 27 — 1 from gq.

Distance-regular geometries are generalizations of both (semi)partial geometries (d = 2)
and regular near-polygons (ag; 1 = 1 for all ¢, 1 < ¢ < d), and their point graphs are
distance-regular. We discuss some infinite classes of proper distance-regular geometries,
which are neither (semi)partial geometries nor regular near-polygons. Characterizations of
these geometries follow from characterizations of their point graphs. Finally it is proved
that the dual of a semipartial geometry spg(s, t, o, ) with ¢ > s and p = o? is a distance-
regular geometry with d = 3. As the only known examples of semipartial geometries with
a distance-regular dual have ;1 = a?, it is conjectured that this is a necessary condition as
well.

On arcs in projective Hjelmslev planes over finite chain rings
IvAN N. LANDJEV

Let IT be a projective Hjelmslev plane over a chain ring R of cardinality ¢® and nilpotency
index 2, that is, a ring with R > RadR > (0) and R/Rad R ~ F,. A (k,2)-arc in IT is
a set of points no three of which are collinear. Denote by my(Il) the maximum possible
cardinality of such arcs. It is known that

2
¢+ q+1 forqeven;
ma(II) < { q> for ¢ odd .

We prove, using Witt vectors, that (4¢ + 2¢ 4 1,2)-arcs do exist in projective Hjelmslev
planes over Galois rings of order 4! and characteristic 4. Further, we prove that such arcs
do not exist for chain rings of characteristic 2.

RWPRI and (27), flag-transitive linear spaces
DIMITRI LEEMANS
(joint work with Francis Buekenhout and Paul-Olivier Dehaye)

The classification of finite flag-transitive linear spaces is almost complete. For the thick
case, this result was announced by Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck
and Saxl, and in the thin case (where the lines have 2 points), it amounts to the classifica-
tion of 2-transitive groups, which is generally considered to follow from the classification
of finite simple groups. These two classifications actually leave an open case, which is
the so-called 1-dimensional case. In this talk, we work with two additional assumptions.
These two conditions, namely (27"); and RWPRI, are taken from another field of study in
Incidence Geometry and allow us to obtain a complete classification. In particular, for the
1-dimensional case, we show that the only (27); flag-transitive linear spaces are AG(2,2)
and AG(2,4), with ATL(1,4) and AT'L(1,16) as respective automorphism groups.
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Spreads in H(q) and 1—systems of Q(6,q)
G. LUNARDON
(joint work with I. Cardinali, O. Polverino and R. Trombetti)

In this paper we prove that the projections along reguli of a translation spread of the
classical generalized hexagon H (q) are translation ovoids of Q)(4, ¢). As translation ovoids of
Q(4,q), g =27, are elliptic quadrics, this forces that all translation spreads of H(q),q = 2",
are semi-classical. By representing H(q) as a coset geometry, we obtain a characterization
of a translation spread in terms of a set of points of PG(3,¢) which belong to imaginary
chords of a twisted cubic and we construct a new example of semi-classical spread of
H(q),q = 2". Finally, we give a canonical construction of semi-classical locally Hermitian
1—systems of (6, q) which are spreads of Q~(5, ¢), proving that there exist semi-classical
non-Hermitian locally Hermitian spreads of Q= (5, q).

On 1-systems of Q(6,¢), ¢ even
DEIRDRE LUYCKX
(joint work with J. A. Thas)

A 1-system M of the parabolic quadric Q(6,¢) in PG(6,q) is a set {Lo, Ly,..., Lpa}
consisting of ¢* + 1 lines on Q(6, ¢) having the property that the tangent space of Q(6, q)
at L; has no point in common with (Lo U Ly U... U Lg) \ L;, i = 0,1,...,¢*. We will
discuss a method to construct new locally hermitian 1-systems of Q(6, ¢), g even; for ¢ odd,
this was already done in previous work. One of these 1-systems is the spread Si; of the
hexagon H(q), ¢ = 2%¢, which was discovered independently by A. Offer and G. Lunardon
and our method yields a geometric way to construct Syz. Also, we can classify these new
1-systems as the only ones on @Q(6,¢) which are locally hermitian and semiclassical, but
not contained in a 5-dimensional subspace.

Our class of new 1-systems has beautiful applications in a wide range of fields. By
projection from the nucleus of Q(6,¢) onto a PG(5,¢) not containing the nucleus, every
1-system of Q(6, q), ¢ even, yields a 1-system of W5(q). Thus we have found a new class of
1-systems of W5(q). It is known that the set of points on the lines of a 1-system of W5(q)
has two intersection numbers with respect to hyperplanes and consequently every such
1-system defines a two-weight code and a strongly regular graph. It has also been shown
that every 1-system of Ws(q) is an SPG-regulus and hence yields a semipartial geometry.
So our class of 1-systems provides us with examples of two-weight codes, strongly regular
graphs and semipartial geometries. Concerning the semipartial geometries, we can show
that some of them are new, but for the two-weight codes and the strongly regular graphs,
this question has to be investigated further.

Group algebras and expanders
R. MESHULAM
(joint work with A. Wigderson)

Expander graphs are essential tools in a variety of combinatorial, algorithmic and coding
theoretic problems. We discuss constructions of expanders which utilize certain group
algebras over finite fields.
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Let G be a finite group and let p be a prime such that (p,|G]|) = 1. A subset A of the
group algebra F,[G] is d—balanced if all non-trivial Fourier coefficients of A are bounded
by 1 — 9.

We give a (nearly sharp) representation theoretic condition which guarantees that F,[G]
has a few G-orbits whose union A is ¢-balanced. Let r4(G;F) denote the number of
irreducible representations of GG over F of dimension at most d and let

m(G;F) = max(log, ra(G; F))/d .

Theorem 1. For any § < %, there exist s = O(ﬁ(m(G;]}?p) +logp)) elements hy, ...,

hs € F,[G] such that the multiset A = U;_,Gh; C F,|G| is §-balanced.

One consequence of Theorem 1 is a simple construction of asymptotically good codes
which uses relatively few randomized bits. For other applications we need an exponential
bound on the number of d—dimensional representations in terms of the Kazhdan Constant
k of a generating set S C G.

Theorem 2. If G is an M;-group, that is, any complex irreducible representation of G is
induced from a representation of dimension at most ¢ of some subgroup of G, then

1\ oSl
ra(G; C) < <—> -

K

Our main application of Theorems 1 and 2 is a new iterative construction of expanding
Cayley graphs of nearly constant degree.

Large caps of the Klein quadric
KrLAus METSCH

A cap of a point line incidence structure Z is a set of points no three of which are collinear
in Z. The talk discusses large caps of the Klein quadric @* (5, ¢). If one considers Q7 (5, q)
embedded in PG(5,q), then a cap of Q*(5,q) is also a cap of PG(5,q), since the lines of
PG(5,q) that do not belong to Q1 (5, ¢) meet QT (5, ¢) in at most two points.

An easy counting argument shows that every cap of Q1 (5, q) satisfies |C] < (¢*+1)(qg+1)
for odd ¢, and |C| < (¢* + 1)(¢q + 2) for even gq.

Glynn constructed in 1988 caps of size (¢> + 1)(¢ + 1) of QT (5,q) for all g. While this
answers the question of the cardinality of a largest cap for odd ¢, it is not known whether
Q7 (5,q), q even, has a cap of size (¢*> + 1)(¢ + 1). Ebert, Sz6nyi and Metsch constructed
caps of size (¢>+1)(q+2) —q—1 of QT (5, q) for even q. They also showed for even ¢ that
every cap of C of QT (5,q) with |C| > (¢> +1)(¢ +2) — ¢ — 1 is contained in a cap of size
(¢° +1)(q +2).

The talk presents these examples and results as well as the following new results for caps
of QT (5,q) for odd ¢: Every cap C with |C| > ¢* + ¢* + 2 is contained in a cap of size
(¢> +1)(q + 1). Also, there exists caps of size ¢*> + ¢? + 1 that are not contained in larger
caps. The existence of a cap of size ¢* + ¢* + 2 of QT (5, q), ¢ odd, that is not contained in
a larger cap of Q*(5,¢) is an open problem.
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Cyclotomy, geometry, and perfect sequences
ALEXANDER POTT
(joint work with Gohar Kyureghyan)

Let
N-1
a = (ai)i:()
be a £1-vector. We define the correlation coefficients
N-1
Cy(a) := Z ;g g
i=0

where the indices are taken modulo N. We consider the problem to construct vectors where
max  |Cy(a)| (%)

te{l,...,N—1}
is small. It is well known that the correlation coefficients translate into intersection prop-
erties of the sets
D:={i:a; =1}
and
D+t:={i+t:i€ D}.
More precisely,
Ci(a) = N —4(|D|— |D N (D +t)]).
In the talk, we will discuss sequences where the maximum in (x) is < 4 (perfect sequences).
In particular, we discuss new constructions using cyclotomy and constructions related to
classical difference sets, hence classical geometry.

Asymptotic nonexistence of dihedral difference sets
BERNHARD SCHMIDT
(joint work with Ka Hin Leung)

Difference sets in cyclic groups exist in abundance, for instance, Singer, quadratic residue,
and twin prime difference sets. Remarkably, the situation changes dramatically if the group
structure is changed a little: It is conjectured that no nontrivial difference sets exist in
dihedral groups. In this talk, the following asymptotic result will be explained.

For any primes p1, ..., ps there are only finitely many products of powers of the p; which
can be orders of dihedral difference sets.

The main difficulty of the proof is that it has to work for all possible parameters of
dihedral difference sets. At the end, it boils down to making an apparently completely
intractable number—theoretic condition made tractable by complementary combinatorial
arguments.

On multiple blocking sets in Galois planes
L. STORME
(joint work with A. Blokhuis and T. Sz6nyi)

A t-fold blocking set B in PG(2,q) is a set of points such that every line of PG(2,q)
intersects B in at least ¢ points.
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In PG(2,q), q square, the Baer subplanes are the smallest 1-fold blocking sets not con-
taining a line, and in PG(2, ¢), ¢ a cube (but not a square) power, the two smallest 1-fold
blocking sets, not containing a line, are projected subgeometries PG(3,¢'/?).

In 1999, the authors studied ¢-fold blocking sets in PG(2,¢), ¢ square, of cardinality
t(q + 1) + ¢, where ¢t < ¢'/*/2 and where ¢ < ¢*/3. Tt was proved that such ¢-fold blocking
sets contain ¢ pairwise disjoint Baer subplanes.

In 1997, Lovdsz and Sz6nyi proved that minimal ¢-fold blocking sets in PG(2, ¢), ¢ = p",
p prime, of size t(q + 1) + ¢ with ¢ and ¢ satisfying some conditions, intersect every line in
t (mod p) points.

Using this latter result, for ¢-fold blocking sets in PG(2,q), ¢ square, whose cardinal-
ity satisfies a certain upper bound, we prove that they contain ¢ pairwise disjoint Baer
subplanes, or + — 1 pairwise disjoint Baer subplanes and one projected PG(3,¢'/?). For
t-fold blocking sets whose cardinality satisfies a larger upper bound, we prove that they
are the disjoint union of a number ¢, of Baer subplanes and a (¢ — ¢)-fold blocking set,
with 0 <ty < t.

Small multiple blocking sets in PG(4, ¢°) with respect to planes
PETER SZIKLAI
(joint work with S. Ferret, L. Storme and Zs. Weiner)

The smallest 1-fold blocking sets in PG(4, ¢?), with respect to planes, are well-known
already: planes; cones with a Baer-subplane as a base and a point as vertex, contained
in a 3-subspace; subgeometries PG(4,q). Our result extends this classification for ¢-fold
blocking sets (¢ small), which, under some bound, happen to be disjoint unions of the
previous examples. To achieving this we had to generalize previous theorems on planar
blocking sets (in the general form multiple points are allowed as well) and also to extend
the result about = 1 (mod p) -intersections of 1-fold blocking sets (with respect to k-
dimensional subspaces in PG(n,¢q)), by T. Szényi and Zs. Weiner.

A Lenz—Barlotti classification for finite generalized quadrangles
KoEN THAS

In Finite Geometries, P. Dembowski wrote that an alternative approach to the study
of projective planes began with the paper Homogeneity of projective planes by R. Baer
(1942), in which the close relationship between Desargues’ theorem and the existence of
central collineations was pointed out. Baer’s notion of (p, L)-transitivity, corresponding
to this relationship, proved to be extremely fruitful; it provided a better understanding
of coordinate structures and it led eventually to the only coordinate-free classification of
projective planes existing today, namely the classification by H. Lenz in Kleiner Desar-
guesscher Satz und Dualitdt in projektiven Ebenen (1954) and A. Barlotti in Sulle possibili
configurazioni del sistema delle coppie punto-retta (A, a) per cui un piano grafico risulta
(A, a)-transitivo (1958). Due to deep discoveries in finite group theory, the analysis of this
classification has been particularly penetrating for finite projective planes in recent years.

For generalized quadrangles (GQ’s), J.A. Thas and H. Van Maldeghem gave a (first)
definition of Desargues configurations and proved a result analogous to the theorem of
Baer for projective planes. Then H. Van Maldeghem, J.A. Thas and S.E. Payne gave a
second approach to the problem by introducing the notion of (p, L)-transitivity (with pIL)
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for GQ’s. They then proved that a GQ is Moufang if and only if it is (p, L)-transitive
for all flags (p,L). As a geometrical counterpart to (p, L)-transitivity, they introduced
the notion of a (p, L)-Desarguesian generalized quadrangle, and they proved that a finite
generalized quadrangle is (p, L)-Desarguesian if and only if it is (p, L)-transitive. Also, by
a celebrated theorem of J.A. Thas, S.E. Payne and H. Van Maldeghem, every half Moufang
GQ is automatically Moufang, and hence classical by the deep group-theoretical result(s)
of P. Fong and G.M. Seitz.

However, despite these promising results, a ‘good’ classification based on subconfigu-
rations of flags (p, L), respectively panels (p, L, q), for which the generalized quadrangle
is (p, L)-transitive, respectively (p, L, q)-transitive (which is defined in a similar way as
(p, L)-transitivity), seems (quite) far away and would yield many open classes very hard
to deal with. We present the following alternative.

A line L of a generalized quadrangle S is an azis of symmetry if it is regular, and if there
is a pair of distinct points (p, ¢) both incident with L for which the generalized quadrangle
is (p, L, q)-transitive. In our talk, we discuss a classification of generalized quadrangles
based on the possible subconfigurations of axes of symmetry.

As an application of the classification presented here, we were able to solve a recent
conjecture of W.M. Kantor.

Formulas for the number of Steiner triple and quadruple systems of low
2-rank

VLADIMIR D. TONCHEV

Doyen, Hubaut, and Vandensavel used methods from finite geometry to derive a lower
bound on the 2-rank of a Steiner triple system and proved that the classical Steiner triple
system of the lines in binary projective space is the unique (up to isomorphism) system of
minimum 2-rank. Teirlinck proved a similar bound for Steiner quadruple systems, in which
case the classical system of the planes in a binary affine space is the only one of minimum 2-
rank. The results of Doyen, Hubaut, Vandensavel and Teirlinck were extended by Assmus,
who proved that all Steiner triple or quadruple systems with the same number of points
and the same 2-rank span equivalent binary codes. In addition, Assmus gave an explicit
description of the code for any given rank, and determined its automorphism group. Using
these results, the author found recently an explicit formula for the total number of distinct
Steiner triple systems on 2" — 1 whose 2-rank is greater by one than the the minimum
2" —n —1, as well as a formula for the number of distinct Steiner quadruple systems on 2"
points of 2-rank 2" — n. Namely, the number of distinct Steiner triple systems on 2" — 1
points of 2-rank 2" — n is given by the formula

(2n—1 71)(277,—271)
3

(2" —1)1(2 — 92" o)
22" 1=1(gn=1 — 1)(2n=1 — 2) ... (2"1 — 2n=2)’
while the total number of Steiner quadruple systems on 2" points of 2-rank 2" —n is given
by the formula

(2n)!(22”*3(2"*131>(2"*2—1) B 22n_1_n)
02"+ U (gn1 _ qy(gn-2 — 1) (22— 1)

Apart from the classical Steiner triple and quadruple systems of minimum 2-rank and

their counterparts at the other end of geometric dimension, namely the designs of the

hyperplanes in a binary projective or affine space, where the designs are known to be
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unique, this appears to be the first occasion where a formula for the exact number of all
designs belonging to an infinite family is known. These formulas resemble the formula
for the number of all k-dimensional subspaces of a given n-dimensional space over a finite
field, or the number of isotropic subspaces of given dimension. The latter formula has
been widely used for the classification of self-dual codes in coding theory. The formulas
for the number of Steiner triple and quadruple systems can be used for the classification
of Steiner systems up to isomorphism. As an illustration, the classification of Steiner
quadruple systems on 16 points and 2-rank 12 will be given. The formulas can be used
also for deriving bounds on the number of isomorphism classes of Steiner systems of the
given rank. In particular, it is shown that the number of non-isomorphic Steiner triple or
quadruple systems of 2-rank 2" — n grows exponentially.

Some remarks on Steiner systems
HENDRIK VAN MALDEGHEM

I will make three remarks on Steiner systems, based on Table A5.1 in Beth, Jungnickel
and Lenz, Design Theory, Volume 2, second edition (1999). First, I will extend and refine
the class KW, also bringing automorphisms into play; then I will embed the classical
hexagons of order (¢, q) into new Steiner systems and show that for one class of these,
the automorphism group is precisely the group AutGs(q) (I will mention an application
of this). T also discuss the question whether it is possible to embed the dual split Cayley
hexagons into Steiner systems such that the blocks of the systems are all traces of points in
the hexagon (this gives rise to nontrivial geometric questions in Galois spaces). Finally, I
will state a general construction method for Steiner systems out of old ones and give some
examples.

Edited by J.W. P. Hirschfeld
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