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The present 
onferen
e was organised by Aart Blokhuis, Dieter Jungni
kel, James Hirs
h-

feld and Jef Thas.

There were 48 parti
ipants, for many of whom it was the �rst visit to Oberwolfa
h. This

in
luded several PhD students as well as postdo
toral fellows who had re
ently 
ompleted

their PhD's. The national distribution of the parti
ipants a

ording to their institutions

was as follows:

Australia 1

Belgium 13

Bulgaria 1

Germany 8

Hungary 4

Israel 1

Italy 6

The Netherlands 3

New Zealand 1

United Kingdom 4

United States 6

The programme 
onsisted of 15 long talks during �ve mornings and 16 short talks during

four afternoons. Among the highlights were talks by Simeon Ball on semi�elds, Matthew

Brown on subquadrangles of generalized quadrangles, Roy Meshulam on expander graphs,

Bernhard S
hmidt on di�eren
e sets, and Koen Thas on the 
lassi�
ation of generalized

quadrangles.

On Thursday evening at a meeting of the Institute of Combinatori
s and its Appli
ations

there were presentations of two medals: the 1997 Kirkman medal to Bernhard S
hmidt

and the 2000 Hall medal to Klaus Mets
h.

A website

http://www.maths.susx.a
.uk/Sta�/JWPH/OBER/oindex.html

was arranged so that abstra
ts 
ould be displayed in advan
e of the 
onferen
e. Other

details as well as photographs of the 
onferen
e are available there.
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Cone dependen
e | a basi
 
ombinatorial 
on
ept

R. Ahlswede

(joint work with L.H. Kha
hatrian)

De�nition 1. A � E

n

is 
one independent of B � E

n

if no a = (a

1

; : : : ; a

n

) 2 A equals

a linear 
ombination of B r fag with non{negative 
oeÆ
ients.

De�nition 2. If A is 
one independent of A we 
all A a 
one independent set.

De�nition 3. Study here the 
ase that A;B � f0; 1g

n

� E

n

and in parti
ular

P (n) =

�

A � f0; 1g

n

: A is 
one independent

	

.

Problem 1. Find 
(n) , maxfjAj : A 2 P (n)g.

Problem 2. Given k; `; n 2 N , 1 < k < ` � n. Let A � V

n

k

, the set of binary sequen
es

of length n and Hamming weight k, be su
h that V

n

`

is 
one independent of A and let

P

n

(k; `) be the set of all su
h sets. Find




n

(k; `) = max

A2P

n

(k;`)

jAj:

This is in general a very hard problem. For instan
e it is easily seen that in the 
ase

` = k + 1 we have 


n

(k; k + 1) = T (n; k; k + 1), the Turan number (T (n; k; `) equals the

maximal 
ardinality of a family of sets A �

�

[n℄

k

�

su
h that every B 2

�

[n℄

`

�


ontains not

more than

�

`

k

�

� 1 subsets of A). These numbers are not even 
ompletely known for k = 3.

Theorem 1. 


n

(k; n) =

�

n�1

k

�

if k j n or if k - n and n is large.

Theorem 2. With g

n

(s) = max

��

2s�1

2

�

;

�

s�1

2

�

+ (s� 1)(n� s)

	




n

(2; `) =

(

g

n

�

`

2

�

; if 2 j `

max

��

n

2

� �

n

2

�

; g

n

�

`+1

2

��

; if 2 - `:

Conje
ture 1. 


n

(k; n) = max

s

jH

s

j, where, for 1 � s � k and n

s

=

�

n�s

k

�

� 1,

H

s

=

�

v = (v

1

; : : : ; v

n

) 2 V

n

k

:

n

s

P

i=1

v

i

� s

	

:

Theorem 1 proves this for n large.

Conje
ture 2. For k � ` � n, the number 


n

(k; `) behaves as in the 
ase where 
one

independen
e is repla
ed by linear independen
e.

Conje
ture 3. lim

n!1


(n)

2

n

< 1.

It is known that the limit ex
eeds 0:55.

Semi�elds, 
o
ks and ovoids

Simeon Ball

(joint work with Matthew Brown)

A semi�eld proje
tive plane is a proje
tive plane that is both a translation plane and a

dual translation plane. A semi�eld is an algebrai
 stru
ture 
oordinatising su
h a plane.

Cohen and Ganley (1982) 
onsidered a parti
ular 
lass of 
ommutative semi�elds (namely,

of rank 2 over the middle nu
leus) whose existen
e they showed was equivalent to the

existen
e of two fun
tions f; g : GF(q) ! GF(q), su
h that both f and g are additive
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and g(x)

2

+ 4xf(x) is a non-square for all x 2 GF(q) n f0g. For q a power of 2 Cohen and

Ganley proved that the only example of su
h a semi�eld is GF(q

2

).

By Andr�e (1954) a translation plane may be 
onstru
ted from a spread of a proje
tive

spa
e, and vi
e versa. A spread giving rise to a semi�eld translation plane is 
alled a

semi�eld spread. A 
o
k of a quadrati
 
one K of PG(3; q) is a partition of the points

of K, minus the vertex, into plane se
tions. By using the Klein quadri
 and the Klein


orresponden
e it is possible to 
onstru
t a spread from a 
o
k (found independently by

Walker and Thas). Su
h a spread is a semi�eld spread if and only if the 
o
k 
an be

represented using fun
tions f; g as in the work of Cohen and Ganley.

An ovoid of the quadri
 Q(4; q) is a set of q

2

+ 1 points of the quadri
, no two 
ollinear

on a line of the quadri
. By the Klein 
orresponden
e an ovoid of Q(4; q) gives rise to a

spread of PG(3; q). When this spread is a semi�eld spread the ovoid is 
alled a translation

ovoid. Thas (1997) gave a general geometri
al 
orresponden
e between a translation ovoid

of Q(4; q) and a semi�eld 
o
k.

So by 
onsidering the Cohen{Ganley fun
tions f and g, the 
orresponding semi�eld


o
k and translation ovoid of Q(4; q) we have 3 semi�eld planes. These planes are not

isomorphi
 in general, whi
h seems to 
ause some 
onfusion in the literature. To make

matters worse, by the `
ubi
al array' method of Knuth (1965) we 
an 
onstru
t 6 possibly

non-isomorphi
 semi�eld planes from a given one.

In this le
ture I will give a geometri
al des
ription of the Knuth `
ubi
al array' method

and then explain some of the 
onne
tions between the semi�eld planes mentioned above.

A 
lass of designs prote
ting against quantum jumps

Thomas Beth

Quantum Error-Corre
ting Codes and their intrinsi
 relation to Self-Dual Codes and

Finite Geometries have been known as a hot topi
 of resear
h in Quantum Informati
s,

Combinatori
s and Group Theory sin
e 5 years; the dis
overy of so-
alled \Jump Codes",

however, provides a rather new line of resear
h in both Quantum Information Theory and

Design Theory.

In our presentation we intend to give a short introdu
tion to the 
on
ept of so-
alled

\prote
ted subspa
es" of the Hilbert \state" spa
e of multi-qu-bit quantum systems. From

this we derive the algebrai
 and �nite geometri
 
onditions, under whi
h su
h prote
ted


omplex spa
es 
an be generated. We shall show that in order to prote
t against sponta-

neous de
ay the so-
alled \Quantum Jumps" (whi
h gave rise to the infamous name 100

years ago), spe
ial designs, 
alled SEED's (spontaneous emission error designs) must be


onstru
ted. After de�ning the new 
lass of t-SEED's we derive ne
essary 
onditions for

their existen
e and 
onstru
t several families of su
h obje
ts based on the following result.

Theorem . Any s-resolvable t-design S(t; k; u) forms an s-SEED.

Example 1. A 1-SEED is naturally provided by the parallel 
lasses of an AG(2; p).

Example 2. Any Kirkman System provides a 2-SEED.

The 
lassi�
ation of SEED's seems to be a wide open problem; in the spe
ial 
ase of

SEED's with a nontrivial group a
tion, relations to some extremal graph problems will

be mentioned. Finally we give bounds for the existen
e of SEED's and spe
ial 
lasses of

Codes and Geometries with some exoti
 group a
tions generating su
h designs.

This is joint work with Gernot Alber and his group at Ulm University, Chris Charnes

at University of Melbourne and Markus Grassl at Universit�at Karlsruhe.
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Proje
tive planes, 
overings and a network problem

J

�

urgen Bierbrauer

(joint work with F. Pambian
o and S. Mar
ugini)

De�ne a 
overing C(n; k; r) to be a family of subsets (blo
ks) of an n-set, su
h that ea
h

blo
k has size � k; ea
h point is on � r blo
ks and any pair of points is on a 
ommon

blo
k.

The main problem is to determine Cov(k; r); the maximum n su
h that C(n; k; r) exists.

This problem arises in pa
ket swit
hed network design (n network sites, 
onne
ted by links

or busses, where ea
h site has at most r 
ommuni
ation ports, ea
h link 
an 
onne
t at

most k sites and any pair of sites appear on a 
ommon link). We think of r as �xed

and k > r: It has been observed in the network literature that proje
tive planes of order

q = r � 1 
an be used to 
onstru
t su
h 
overings. Charlie Colbourn (Proje
tive planes

and 
ongestion-free networks, to appear in Dis
rete Applied Mathemati
s) formalized this

and pointed out a link to (k; n)-ar
s

We give a general de�nition of a weighted ar
 in a proje
tive plane of order q and

derive 
overings from weighted ar
s. Call su
h a 
overing geometri
. It is linear geometri


(equivalent to 3-dimensional linear 
odes) when the underlying plane is the Desarguesian

plane PG(2; q):

We use a result of F�uredi's on the fra
tional mat
hing number to determine Cov(k; r)

when q = r � 1 is a prime-power and k is large enough. In parti
ular every C(n; k; q + 1);

where n > qk; is geometri
.

The 
ase when q = r� 1 is not a prime-power leads to an interesting existen
e problem


on
erning a family of symmetri
 partially balan
ed designs, whi
h in some sense are


lose to being proje
tive planes. We demonstrate the method by 
onstru
ting good 
overs

C(n; k; 7) based on su
h a design on 40 points, whi
h was 
onstru
ted by Alan Ling.

Collineation groups of ovals with more than one orbit

Arrigo Bonisoli

Let � be a �nite proje
tive plane of odd order n with an oval 
 whi
h is left invariant

by a 
ollineation group G. The most powerful results in this situation require G to a
t

primitively or at least transitively on 
. Mu
h of the ma
hinery developed to this purpose

involved Hering's theory of irredu
ible 
ollineation groups, that is groups �xing no point,

no line and no triangle.

In re
ent years interesting 
lasses of planes have been shown to possess ovals whose


ollineation groups have two orbits, one of whi
h may well shrink to a single point. More

generally, one might like to see what happens if the group G is intransitive on 
 and,

possibly, redu
ible on �.

I would like to illustrate some re
ent 
ontributions in this area, under the assumption

that the G{orbits on 
 are pre
isely two and at least one of these is primitive.
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Subquadrangles of generalized quadrangles of order (q; q

2

)

Matthew Brown

(joint work with J. A. Thas)

A subquadrangle of a generalized quadrangle is a (proper) subgeometry that is also a

generalized quadrangle. Many of the known generalized quadrangles of order (q; q

2

) have

subquadrangles of order q (that is, order (q; q)). The generalized quadrangle Q(5; q) arising

from a non-singular ellipti
 quadri
 E in PG(5; q) has subquadrangles isomorphi
 to the GQ

Q(4; q) given by non-singular hyperplane se
tions of E . The GQ T

3

(
) of Tits 
onstru
ted

from an ovoid 
 of PG(3; q) has subquadrangles T

2

(O), of order q, for ea
h oval O that is

a se
tion of 
.

If F is a 
o
k of a quadrati
 
one in PG(3; q), then it is well-known that a GQ S(F)

of order (q

2

; q) (and so the dual of a GQ of order (q; q

2

)) may be 
onstru
ted from F . In

the 
ase where q is even there exists a set of ovals fO

1

; : : : ;O

q+1

g (
alled a herd) su
h

that S(F) has subquadrangles isomorphi
 to T

2

(O

i

) for i = 1; : : : ; q + 1. This 
onne
tion

between 
o
ks, GQs and herds of ovals has been an important 
onstru
tion method for

ovals in Desarguesian planes of even order.

In this talk I will survey re
ent 
lassi�
ation results on subquadrangles of order q of

generalized quadrangles of order (q; q

2

). I will also outline a proof of the result that when

q is even a dual 
o
k generalized quadrangle 
ontains only the subquadrangles that are

the dual of those arising from the 
orresponding herd ovals.

What is an ellipti
 
urve ?

Fran
is Buekenhout

Is an ellipti
 
urve the same obje
t as a plane 
ubi
 
urve without singular points over

any extension of the ground �eld? Is it the same obje
t as a 
urve de�ned by some

simple spe
i�
 equation? A lot of 
onfusion has invaded this matter in view of its sudden

popularity and the need of simple explanations.

Let me re
all that there exist ellipti
 
urves other than 
ubi
s su
h as a quarti
 with two

double points and a sexti
 with nine 
usps. The truth: every 
ubi
 without singular points

is an ellipti
 
urve. Moreover, every plane proje
tive ellipti
 
urve is birationally equivalent

to a 
ubi
. Where is the di�eren
e? The automorphism group of a 
ubi
 is small, it is

�nite of bounded order. It is by no means transitive on the points of the 
urve ex
ept for

small 
ases. It is a subgroup of the 
ollineation group of the proje
tive plane surrounding

the 
ubi
. Every point p of the 
ubi
 determines a natural symmetry of order two but

this is not an automorphism of the 
ubi
 ex
ept when p is an in
exion point. However,

that symmetry is an automorphism of the ellipti
 
urve. It is a birational automorphism.

The group of birational automorphisms of an ellipti
 
urve is transitive on its points.

It preserves the ellipti
 
urve but moves the underlying 
ubi
s. In my opinion, besides

their algebrai
 origin and stru
ture, 
ubi
s and ellipti
 
urves are geometri
 obje
ts that

deserve an approa
h and 
hara
terization in the 
ontext of In
iden
e Geometry. Also, that

stru
ture is ri
h enough in order to get rid of the surrounding plane. On this 
onvi
tion, I

have de�ned a 
on
ept of GECC or Generalized Ellipti
 Cubi
 Curve. It goes along with

a 
on
ept of GEC or Generalized Ellipti
 Curve. A GEC is a set of points equipped with

a sharply transitive set of involutory transformations 
alled symmetries. Every GECC has

a 
anoni
al stru
ture of GEC. Unlike the 
lassi
al 
ase, not every GEC is isomorphi
 to

the GEC derived from a GECC. Every GEC equipped with a point-origin gives rise to a
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ommutative loop. In the latter, the presen
e of a GECC is dete
ted by a parti
ular element


alled asso
iative. A 
ommutative loop with a spe
i�ed asso
iative element determines a

GECC. A 
ommutative loop with no spe
i�ed element determines a GEC.

What is an ellipti
 
urve? As a �rst step to the answer it is a GEC whose underlying

loops are abelian. More steps remain to be made.

Re
ent results on proje
tive and aÆne full embeddings of (�; �)-geometries

F. De Cler
k

An (�; �)-geometry is a 
onne
ted partial linear spa
e S of order (s; t) (s+ 1 points on

a line, t+1 lines through a point) su
h that for any point-line anti
ag (x; L) the in
iden
e

number �(x; L), being the number of points on L and 
ollinear with x, is equal to either

� or �. If the point graph of S is a strongly regular graph, then S is 
alled a strongly

regular (�; �)-geometry. Well-known 
lasses of strongly regular (�; �)-geometries are the

partial geometries pg(s; t; �) (� = �, and espe
ially the generalized quadrangles GQ(s; t),

� = � = 1) and the semipartial geometries (� = 0, and espe
ially the partial quadrangles

PQ(s; t), � = 1). A semipartial geometry that is not a partial geometry is 
alled proper.

Partial geometries fully embedded in a proje
tive spa
e or in an aÆne spa
e are 
ompletely


lassi�ed. The 
lassi�
ation of semipartial geometries embeddable in a proje
tive spa
e is

known for � > 1 and for s > 2. The 
lassi�
ation of semipartial geometries embeddable in

an aÆne spa
e is known for the dimensions 2 and 3, but is open for higher dimensions.

We report on following re
ent results in this area.

1. On the embedding of (0; �)-geometries in aÆne spa
es (joint work with Matthew

Brown and Mario Delanote)

1. If S is the dual of a proper semipartial geometry embedded in an aÆne spa
e AG(n; q)

then � = 1.

2. Let S be an spg(q � 1; q

2

; 2; 2q(q � 1)) embedded in AG(4; q), then q = 2

h

and S is

the Hirs
hfeld{Thas model of the semipartial geometry known as TQ(4; q).

2. On the embedding of dual partial quadrangles in proje
tive spa
es (joint

work with Ni
ola Durante and Jef Thas)

Let L be a line on a nonsingular Hermitian variety H in PG(3; q

2

). The in
iden
e

stru
ture S = (P;B; I) de�ned by taking as point set P the point set of H not on L and

as line set B the set of lines of H minus all the lines 
on
urrent with L, is a dual partial

quadrangle embedded in PG(3; q

2

). It is a long standing 
onje
ture that this geometry is

the only proper dual partial quadrangle embedded in a proje
tive spa
e. We 
an prove

this 
onje
ture under some mild extra 
onditions.

3. On the embedding of (�; �)-geometries in proje
tive spa
es (joint work with

Sara Cau
hie and Ni
holas Hamilton)

Without assuming that the (�; �)-geometry is strongly regular it is still possible to prove

some 
lassi�
ation results on su
h embeddable geometries. We 
lassi�ed (�; �)-geometries

fully embedded in PG(n; q), for � > 1, q odd, under the assumption that there is at least

one plane of PG(n; q) su
h that the geometry indu
ed by S in that plane is a partial

geometry (with in
iden
e number � or �).
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Binary 
odes of odd order Buekenhout{Metz unitals

G. L. Ebert

(joint work with K. L. Wantz)

Treating the points and se
ant lines of any unital as a 2� (q

3

+ 1; q + 1; 1) design, one


an 
onstru
t the linear 
ode spanned by the 
hara
teristi
 ve
tors of the blo
ks over some

prime �eld F

p

. A well-known 
onje
ture, �rst suggested by B. R. Andriamanalimanana

in his Ph.D. thesis at Lehigh University (1979), states that in the 
ase when the unital is


lassi
al (Hermitian), the dimension of this 
ode is q

3

� q

2

+ q for any prime p that divides

q

2

�1. This 
onje
ture now has been veri�ed by ma
hine for q � 13, but the general result

remains unproven. It appears to be a diÆ
ult problem.

In this talk we 
onsider the 
ase when the unital is a non-
lassi
al Buekenhout{Metz

embedded in PG(2; q

2

) for odd q. For a given odd prime power q, there is a unique (up

to proje
tive equivalen
e) Buekenhout{Metz unital whi
h 
an be expressed as a union of q


oni
s in PG(2; q

2

), mutually tangent at some point P

1

. It is the only Buekenhout{Metz

unital, in
luding the 
lassi
al unital, whi
h 
ontains a 
oni
 of PG(2; q

2

), and the presen
e

of the above q 
oni
s makes the determination of the 2�rank (p = 2) of the asso
iated

binary linear 
ode a more tra
table problem, or at least it so appears. One easily obtains an

upper bound of q

3

� q+1 for this 2�rank, and we 
onje
ture that indeed this bound is the

2�rank. We also have a 
onje
tured basis 
onsisting of 
ertain weight-2 ve
tors asso
iated

with the above 
oni
s, thus implying that the minimum weight of this binary 
ode is two.

It should be noted that the minimum weight in the 
ase of the 
lassi
al unital is thought

to be q + 1. Finally, we 
onje
ture that for all remaining non-
lassi
al Buekenhout{Metz

unitals embedded in PG(2; q

2

) for odd q (and there are many su
h inequivalent unitals),

the 2�rank is q

3

and thus the binary 
ode is simply the 
ode of all even{weight ve
tors.

Extensions of generalized produ
t 
aps

Yves Edel

A k{
apK in PG(n; q) is a set of k points, no three of whi
h are 
ollinear. The maximum

value of k for whi
h there exists a k{
ap in PG(n; q) is denoted by m

2

(n; q). Denote by

m

a�

2

(n; q) the 
orresponding value in AG(n; q): Aside of the 
ases k = 2; 3 or q = 2 the

pre
ise values of the numbers m

2

(n; q), m

a�

2

(n; q) are known only in the following 
ases:

m

2

(4; 3) = m

a�

2

(4; 3) = 20, m

2

(5; 3) = 56, m

a�

2

(5; 3) = 45, and m

2

(4; 4) = 41. Finding the

exa
t value for m

2

(n; q) or m

a�

2

(n; q), n � 4, q > 2 seems to be a very hard problem. As

an appli
ation of our new 
onstru
tion we obtain improved lower bounds on some values

m

2

(n; 3). The smallest examples are a 1216{
ap in PG(9; 3) and a 6464{
ap in PG(11; 3).

A natural asymptoti
 problem is the determination of

�(q) = lim sup

n!1

log

q

(m

2

(n; q))

n

= lim sup

n!1

log

q

(m

a�

2

(n; q))

n

:

It is well known that

2

3

� �(q) � 1: The aÆne points of a family of 
aps in PG(6; q)

from yield the slightly better bound �(q) �

1

6

log

q

(q

4

+ q

2

� 1). No better lower bound

seems to be known for general q: Ex
eptions are the ternary and quaternary 
ases. It

follows from Calderbank and Fishburn that �(3) � 0:7218 : : : . The 120 aÆne points of the


ap in PG(5; 4) found by Glynn show that �(4) � 0:6906 : : : The 
onstru
tion given here


an be seen as a generalization of one of the 
onstru
tions of Calderbank and Fishburn.
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Although the 
onstru
tion works for general q all our appli
ations are in the ternary 
ase.

Our 
onstru
tions of 
aps in ternary aÆne spa
es lead to a better bound for �(3). We will

show that �(3) � 0:7248 : : : .

This leaves us with two resear
h problems. Firstly to improve the bound on �(3) by

�nding better 
apsets, se
ondly to �nd good 
aps to whi
h we 
an apply the 
onstru
tion

for q > 3.

More information 
an be found at www.mathi.uni-heidelberg.de/�yves

Some new results about dire
tions

Andr

�

as G

�

a
s

(joint work with Tam�as Sz}onyi)

We dis
uss some new results about the possible number of dire
tions a set of q points in

AG(2; q) 
an determine. We prove that if q is the square of an odd prime p, then besides

lines (determining one dire
tion), Baer subplanes (determining p + 1 dire
tions) and the

graph of the fun
tion x

(q+1)=2

(determining

q+3

2

dire
tions), any set determines at least

q+

1

2

p dire
tions. This is sharp, the 
onstru
tion is due to O. Polverino, T. Sz}onyi and Zs.

Weiner.

In the se
ond part of the talk we show that a partial spread of size k in PG(2; q) is

equivalent to a set of k� 1 points in AG(2; q

2

) not determining a Baer subline. Using this

we 
onstru
t maximal partial spreads of size nq + 1 for any n su
h that 3 log(q) � n � q.

The invariant graphs, tournaments and 
odes of proje
tive planes of even

order

D. G. Glynn

Starting from Rota's basis 
onje
ture about having another way of dividing n

2

points

of a matroid of rank into n bases (given one way of doing it), we saw about a year ago

a way to 
onstru
t invariants of nets of even order using digraphs 
onstru
ted from the

signs of their \von Staudt" proje
tivities. This has now been applied to proje
tive planes

of even order, and we shall summarize some of the more important results. For example,

any proje
tive plane of order q � 0 (mod 4) has an invariant tournament (or 2-graph,

de�ned up to some swit
hings), and every proje
tive plane of order q � 0 (mod 4) has an

invariant graph (2-graph, based on the points or lines). In these graphs or tournaments the

neighbourhoods of verti
es are 
odewords asso
iated with the binary 
ode of the plane. In

the 
ase of q � 2 (mod 4) quite strong things 
an be said about the kind of tournaments

that appear: for example we know the ranks of their adja
en
y matri
es: they generate

(
lose to) self-dual 
odes reminis
ent of the duadi
 
odes. This leads to strong 
onje
tures

about 
ertain 
hains of 
odes in the binary anti
ag-spa
e of the proje
tive planes.

In the 
ase of any k-net of even order q, there is a basi
ally unique (up to 
omplements)

graph or tournament with k verti
es asso
iated with it. Quite often these graphs are

non-trivial and show a great deal of stru
ture, but a 
onje
ture is that the graph of any

translation or dual translation plane net 
oming from any point or line is trivial. This says

something quite strong about the Latin squares of order q that 
an be 
onstru
ted from

any three 
on
urrent lines or 
ollinear points in su
h a plane of order q.

9



Even though the graph at any point or line of a 
y
li
 proje
tive plane is trivial, the

graph of the whole plane is de�nitely not, and this 
ould turn out to be a useful new

dire
tion for this un�nished (perhaps \never-ending"?) 
hapter in �nite geometry.

Restri
tions on the size of partial ovoids in �nite 
lassi
al polar spa
es and in

the split Cayley hexagon

P. Govaerts

(joint work with L. Storme and H. Van Maldeghem)

A partial ovoid O of a �nite 
lassi
al polar spa
e P is a set of points of P su
h that no

generator of P 
ontains two points of O. If every generator of P 
ontains one element of

O, then O is 
alled an ovoid. A partial ovoid O of the split Cayley hexagon H(q) is a set

of mutually opposite points of H(q). If it has size q

3

+1 then it is 
alled an ovoid. In both


ases, the de�
ien
y of a partial ovoid is the number of points it la
ks to be an ovoid.

An extendability result for partial t-spreads of �nite 
lassi
al polar spa
es 
an be used to

ex
lude the existen
e of maximal partial ovoids of 
ertain sizes of the generalised hexagon

H(q): for large maximal partial ovoids of H(q), the de�
ien
y is even. It also yields an

extendability result for partial ovoids of H(3; q

2

), whi
h 
an be used to prove an upper

bound for the size of partial ovoids of H(4; q

2

). This upper bound 
an, with a te
hnique

that works for any �nite 
lassi
al polar spa
e, be lifted to an upper bound for partial ovoids

of H(2n; q

2

), n � 2.

Theorem . Let O be a partial ovoid of H(2n; q

2

), n � 2. Then

jOj < q

2n+1

+ 1� 2=3(q

2

� 1)

n�2

(2q + 1):

New 
onstru
tions of maximal ar
s in Desarguesian proje
tive planes

Ni
holas Hamilton

A maximal fq(n�1)+n;ng-ar
 in a proje
tive plane of order q is a subset of q(n�1)+n

points su
h that every line meets the set in 0 or n points for some 2 � n � q. For su
h

a maximal ar
 n is 
alled the degree. If K is a maximal fq(n� 1) + n;ng�ar
, the set of

lines external to K is a maximal fq(q � n + 1)=n; q=ng�ar
 in the dual plane 
alled the

dual of K.

In 1997, Ball, Blokhuis and Mazzo

a proved using polynomial te
hniques that no odd

order Desarguesian proje
tive plane 
ontains a non-trivial maximal ar
. For even order

Desarguesian proje
tive planes there are several 
onstru
tions known. There are the hy-

perovals (degree 2) and their duals, a 
onstru
tion from 1969 by R.H.F. Denniston, and

one from 1974 by J.A. Thas.

Sin
e it had been over 25 years sin
e new maximal ar
s, apart from hyperovals, had

been found in Desarguesian proje
tive planes it was beginning to look like there might

not be others to �nd. Then earlier this year R. Mathon announ
ed a new method of


onstru
tion. The idea was to take a 
ertain set of 
oni
s on a 
ommon nu
leus and to

de�ne an addition on this set. A subset of 
oni
s is then 
losed if the sum of any two

elements is in the set. Mathon then showed that any 
losed set of 
oni
s gives rise to a

maximal ar
. In parti
ular, Denniston maximal ar
s may be thought of as 
losed sets of


oni
s. In the paper Mathon gave a very large number of 
onstru
tions of 
losed sets of


oni
s in PG(2; 32) and PG(2; 64), as well as in�nite families of examples. The examples
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have many interesting and surprising properties. Many of the maximal ar
s so 
onstru
ted

have trivial 
ollineation stabiliser, and the Lunelli{S
e hyperoval in PG(2; 16) as well as the

Cherowitzo hyperoval in PG(2; 32) may be thought of as duals of maximal ar
s arising from


losed sets of 
oni
s. In a subsequent paper Mathon and myself 
onstru
ted more 
lasses of


losed sets of 
oni
s as well as obtaining results on the geometri
 stru
ture of the maximal

ar
s and their 
ollineation stabilisers. In a further paper I gave methods for testing when

a 
losed set of 
oni
s what not of type Denniston, and gave another 
onstru
tion of 
losed

sets of 
oni
s and so maximal ar
s.

In this talk I will give a survey of the re
ent 
onstru
tions of maximal ar
s and their

stru
ture.

Designing the IEEE 802.12 transmission 
ode

Jonathan Jedwab

In 1995 the Institute of Ele
tri
al and Ele
troni
 Engineers (IEEE) approved a new in-

ternational standard for the transmission of data at 100Mbit/s. This standard spe
i�ed

a binary 
ode mapping that was designed to satisfy multiple 
onstraints simultaneously.

Eight years after sele
ting this 
ode and presenting its properties to the IEEE I have per-

mission to explain the prin
iples underlying its design, whi
h in
lude geometri
al insight,


ombinatorial reasoning and 
omputer sear
h.

Extremal problems under dimension 
onstraints

L.H. Kha
hatrian

(joint work with R. Ahlswede and H. Aydinian)

Let [n℄ , f1; : : : ; ng, 2

[n℄

,

�

A : A � [n℄

	

, and

�

[n℄

w

�

, fA 2 2

[n℄

: jAj = wg. We

asso
iate with ea
h subset A its 
hara
teristi
 (0; 1){ve
tor in R

n

. The 
orresponding

notation for (0; 1){ve
tors is the following: E(n) , f0; 1g

n

and E(n; w) ,

�

x

n

2 E(n) : x

n

has w ones

	

. The set{theoreti
al notions like interse
tion, union, anti
hain, et
. are

extended to (0; 1){ve
tors in a natural way. The dimension of S � R

n

is de�ned by

dim(S) , dim span(S).

A generi
 extremal problem under dimension 
onstraint is the following. Let A � E(n)

satisfy some set{theoreti
al properties (say anti
hain, pairwise non{empty interse
tions,

et
.). In addition we require A to have dim(A) = k (k � n) and ask for the A with

maximum or minimum size and with the given properties.

In this talk we 
onsider several problems, results and 
onje
tures in this dire
tion.

Our �rst result is the determination of the fun
tion

M(n; k; w) , max

�

jU \ E(n; w)j : U is a k{dimensional subspa
e of R

n

	

:

We proved that (i) M(n; k; w) = M(n; k; n � w); (ii) M(n; k; w) =

�

n

w

�

, if 2w � k;

(iii)M(n; k; w) =

�

2k�2w

k�w

�

2

2w�k

, if k � 2w � 2k� 2; (iv) M(n; k; w) = 2

k�1

, if k� 1 � w �

n=2.

The anti
hain problem under dimension 
onstraint is to determine

A

k

(n) , max

�

jFj : F � E(n); dim(F) � k;F is an anti
hain

	

:

Our 
onje
ture, that A

k

(n) =M

�

n; k;

�

n

2

��

, is proved for n � 2k � 2 or k = n� 1.
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The interse
tion problems are to determine J

k

(n; t) , max

�

jAj : A � E(n), A is t{

interse
ting, dim(A) = k

	

and J

k

(n; w; t) (the same fun
tion when A � E(n; w)). Let

K(n; t) � 2

[n℄

denote the Katona set.

We 
onje
ture that, for t > n� k + 1,

J

k

(n; t) = jK(k � 1; t� (n� k + 1))j+ jK(k � 1; t+ (n� k + 1))j;

if 2j(n+ t) and

J

k

(n; t) = 2jK(k � 2; t� (n� k + 1))j+ 2jK(k � 2; t+ (n� k + 1))j;

if 2 - (n + t).

We show that (i) J

k

(n; t) = 2

k�1

, for t � n� k + 1; (ii) J

k

(n; t) = 2

k�2

for n �

3

2

k � 1,

t = n�k+2; (iii) the 
onje
ture holds for the 
ases (a) t � 2(n�k)�1, (b) k � n � k+3,

(
) n � k

p

k=

p

2.

For J

k

(n; w; 1) with w � n=2 we 
onje
ture that J

k

(n; w; 1) = M(n � 1; k; w � 1) and

prove this when k � w or k < 2w � 2k � 2.

Transitive ovoids of the Hermitian surfa
e

G

�

abor Kor
hm

�

aros

(joint work with Antonello Cossidente)

Let H(3; q

2

) be the (non{degenerate) Hermitian surfa
e in PG(3; q

2

), and let G

�

=

PGU(4; q

2

) be the linear 
ollineation group preserving H(3; q

2

). An ovoid of H(3; q

2

)

is a set of point on H(3; q

2

) whi
h has exa
tly one 
ommon point with every generator of

H(3; q

2

). Every ovoid 
onsists of q

3

+1 pairwise non{
onjugate points ofH(3; q

2

). An ovoid

O is 
alled transitive if the subgroup H of G preserving O a
ts transitively on the point{set

of O. A known example of a transitive ovoid is the 
lassi
al ovoid 
onsisting of all points in

the interse
tion of H(3; q

2

) with a non-tangent plane. The existen
e of many non{
lassi
al

ovoids was pointed out by Payne and Thas. Nevertheless, transitive non{
lassi
al ovoids

are known to exist only for q even. The following 
lassi�
ation theorem was announ
ed on

the o

asion of the 18

th

British Combinatorial Conferen
e held at the University of Sussex,

1 to 6 July, 2001:

Theorem . For q even, there are exa
tly two proje
tively non{equivalent transitive ovoids

of H(3; q

2

).

The theorem depends on both 
ombinatorial results from �nite geometry and deep the-

orems from �nite group theory. The aim of the present talk is to outline of the proof.

Distan
e-regular geometries

Elisabeth Kuijken

(joint work with F. De Cler
k)

A distan
e-regular geometry is a partial linear spa
e of order (s; t) satisfying the following

axioms, where d is the diameter of the point graph.

� There exist 
onstants �

2i�1

, 1 � i � d, su
h that for any point-line pair (p; L) at

mutual distan
e 2i � 1 in the in
iden
e graph there are exa
tly �

2i�1

points on L

whi
h are at distan
e 2i� 2 from p.
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� There exist 
onstants t

2i

, 1 � i � d, su
h that for any two points p and q at mutual

distan
e 2i in the in
iden
e graph there are exa
tly t

2i

+ 1 lines through p whi
h are

at distan
e 2i� 1 from q.

Distan
e-regular geometries are generalizations of both (semi)partial geometries (d = 2)

and regular near-polygons (�

2i�1

= 1 for all i, 1 � i � d), and their point graphs are

distan
e-regular. We dis
uss some in�nite 
lasses of proper distan
e-regular geometries,

whi
h are neither (semi)partial geometries nor regular near-polygons. Chara
terizations of

these geometries follow from 
hara
terizations of their point graphs. Finally it is proved

that the dual of a semipartial geometry spg(s; t; �; �) with t > s and � = �

2

is a distan
e-

regular geometry with d = 3. As the only known examples of semipartial geometries with

a distan
e-regular dual have � = �

2

, it is 
onje
tured that this is a ne
essary 
ondition as

well.

On ar
s in proje
tive Hjelmslev planes over �nite 
hain rings

Ivan N. Landjev

Let � be a proje
tive Hjelmslev plane over a 
hain ring R of 
ardinality q

2

and nilpoten
y

index 2, that is, a ring with R > RadR > (0) and R=RadR ' F

q

. A (k; 2)-ar
 in � is

a set of points no three of whi
h are 
ollinear. Denote by m

2

(�) the maximum possible


ardinality of su
h ar
s. It is known that

m

2

(�) �

�

q

2

+ q + 1 for q even;

q

2

for q odd .

We prove, using Witt ve
tors, that (4

`

+ 2

`

+ 1; 2)-ar
s do exist in proje
tive Hjelmslev

planes over Galois rings of order 4

l

and 
hara
teristi
 4. Further, we prove that su
h ar
s

do not exist for 
hain rings of 
hara
teristi
 2.

RWPRI and (2T )

1


ag-transitive linear spa
es

Dimitri Leemans

(joint work with Fran
is Buekenhout and Paul-Olivier Dehaye)

The 
lassi�
ation of �nite 
ag-transitive linear spa
es is almost 
omplete. For the thi
k


ase, this result was announ
ed by Buekenhout, Delandtsheer, Doyen, Kleidman, Liebe
k

and Saxl, and in the thin 
ase (where the lines have 2 points), it amounts to the 
lassi�
a-

tion of 2-transitive groups, whi
h is generally 
onsidered to follow from the 
lassi�
ation

of �nite simple groups. These two 
lassi�
ations a
tually leave an open 
ase, whi
h is

the so-
alled 1-dimensional 
ase. In this talk, we work with two additional assumptions.

These two 
onditions, namely (2T )

1

and Rwpri, are taken from another �eld of study in

In
iden
e Geometry and allow us to obtain a 
omplete 
lassi�
ation. In parti
ular, for the

1-dimensional 
ase, we show that the only (2T )

1


ag-transitive linear spa
es are AG(2; 2)

and AG(2; 4), with A�L(1; 4) and A�L(1; 16) as respe
tive automorphism groups.
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Spreads in H(q) and 1�systems of Q(6; q)

G. Lunardon

(joint work with I. Cardinali, O. Polverino and R. Trombetti)

In this paper we prove that the proje
tions along reguli of a translation spread of the


lassi
al generalized hexagonH(q) are translation ovoids ofQ(4; q): As translation ovoids of

Q(4; q); q = 2

r

; are ellipti
 quadri
s, this for
es that all translation spreads of H(q); q = 2

r

;

are semi-
lassi
al. By representing H(q) as a 
oset geometry, we obtain a 
hara
terization

of a translation spread in terms of a set of points of PG(3; q) whi
h belong to imaginary


hords of a twisted 
ubi
 and we 
onstru
t a new example of semi-
lassi
al spread of

H(q); q = 2

r

: Finally, we give a 
anoni
al 
onstru
tion of semi-
lassi
al lo
ally Hermitian

1�systems of Q(6; q) whi
h are spreads of Q

�

(5; q), proving that there exist semi-
lassi
al

non-Hermitian lo
ally Hermitian spreads of Q

�

(5; q):

On 1-systems of Q(6; q), q even

Deirdre Luy
kx

(joint work with J. A. Thas)

A 1-system M of the paraboli
 quadri
 Q(6; q) in PG(6; q) is a set fL

0

; L

1

; : : : ; L

q

3

g


onsisting of q

3

+ 1 lines on Q(6; q) having the property that the tangent spa
e of Q(6; q)

at L

i

has no point in 
ommon with (L

0

[ L

1

[ : : : [ L

q

3

) n L

i

, i = 0; 1; : : : ; q

3

. We will

dis
uss a method to 
onstru
t new lo
ally hermitian 1-systems of Q(6; q), q even; for q odd,

this was already done in previous work. One of these 1-systems is the spread S

[Æ℄

of the

hexagon H(q), q = 2

2e

, whi
h was dis
overed independently by A. O�er and G. Lunardon

and our method yields a geometri
 way to 
onstru
t S

[Æ℄

. Also, we 
an 
lassify these new

1-systems as the only ones on Q(6; q) whi
h are lo
ally hermitian and semi
lassi
al, but

not 
ontained in a 5-dimensional subspa
e.

Our 
lass of new 1-systems has beautiful appli
ations in a wide range of �elds. By

proje
tion from the nu
leus of Q(6; q) onto a PG(5; q) not 
ontaining the nu
leus, every

1-system of Q(6; q), q even, yields a 1-system of W

5

(q). Thus we have found a new 
lass of

1-systems of W

5

(q). It is known that the set of points on the lines of a 1-system of W

5

(q)

has two interse
tion numbers with respe
t to hyperplanes and 
onsequently every su
h

1-system de�nes a two-weight 
ode and a strongly regular graph. It has also been shown

that every 1-system of W

5

(q) is an SPG-regulus and hen
e yields a semipartial geometry.

So our 
lass of 1-systems provides us with examples of two-weight 
odes, strongly regular

graphs and semipartial geometries. Con
erning the semipartial geometries, we 
an show

that some of them are new, but for the two-weight 
odes and the strongly regular graphs,

this question has to be investigated further.

Group algebras and expanders

R. Meshulam

(joint work with A. Wigderson)

Expander graphs are essential tools in a variety of 
ombinatorial, algorithmi
 and 
oding

theoreti
 problems. We dis
uss 
onstru
tions of expanders whi
h utilize 
ertain group

algebras over �nite �elds.
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Let G be a �nite group and let p be a prime su
h that (p; jGj) = 1. A subset A of the

group algebra F

p

[G℄ is Æ�balan
ed if all non-trivial Fourier 
oeÆ
ients of A are bounded

by 1� Æ.

We give a (nearly sharp) representation theoreti
 
ondition whi
h guarantees that F

p

[G℄

has a few G-orbits whose union A is Æ-balan
ed. Let r

d

(G; F) denote the number of

irredu
ible representations of G over F of dimension at most d and let

m(G; F) = max

d�1

(log

2

r

d

(G; F))=d :

Theorem 1. For any Æ <

1

2

; there exist s = O(

1

(1�2Æ)

2

(m(G; F

p

)+ log p)) elements h

1

; : : : ;

h

s

2 F

p

[G℄ su
h that the multiset A = [

s

i=1

Gh

i

� F

p

[G℄ is Æ-balan
ed.

One 
onsequen
e of Theorem 1 is a simple 
onstru
tion of asymptoti
ally good 
odes

whi
h uses relatively few randomized bits. For other appli
ations we need an exponential

bound on the number of d�dimensional representations in terms of the Kazhdan Constant

� of a generating set S � G.

Theorem 2. If G is an M

`

-group, that is, any 
omplex irredu
ible representation of G is

indu
ed from a representation of dimension at most ` of some subgroup of G; then

r

d

(G; C ) �

�

1

�

�

O(`jSjd)

:

Our main appli
ation of Theorems 1 and 2 is a new iterative 
onstru
tion of expanding

Cayley graphs of nearly 
onstant degree.

Large 
aps of the Klein quadri


Klaus Mets
h

A 
ap of a point line in
iden
e stru
ture I is a set of points no three of whi
h are 
ollinear

in I. The talk dis
usses large 
aps of the Klein quadri
 Q

+

(5; q). If one 
onsiders Q

+

(5; q)

embedded in PG(5; q), then a 
ap of Q

+

(5; q) is also a 
ap of PG(5; q), sin
e the lines of

PG(5; q) that do not belong to Q

+

(5; q) meet Q

+

(5; q) in at most two points.

An easy 
ounting argument shows that every 
ap of Q

+

(5; q) satis�es jCj � (q

2

+1)(q+1)

for odd q, and jCj � (q

2

+ 1)(q + 2) for even q.

Glynn 
onstru
ted in 1988 
aps of size (q

2

+ 1)(q + 1) of Q

+

(5; q) for all q. While this

answers the question of the 
ardinality of a largest 
ap for odd q, it is not known whether

Q

+

(5; q), q even, has a 
ap of size (q

2

+ 1)(q + 1). Ebert, Sz}onyi and Mets
h 
onstru
ted


aps of size (q

2

+1)(q+2)� q� 1 of Q

+

(5; q) for even q. They also showed for even q that

every 
ap of C of Q

+

(5; q) with jCj > (q

2

+ 1)(q + 2)� q � 1 is 
ontained in a 
ap of size

(q

2

+ 1)(q + 2).

The talk presents these examples and results as well as the following new results for 
aps

of Q

+

(5; q) for odd q: Every 
ap C with jCj > q

3

+ q

2

+ 2 is 
ontained in a 
ap of size

(q

2

+ 1)(q + 1). Also, there exists 
aps of size q

3

+ q

2

+ 1 that are not 
ontained in larger


aps. The existen
e of a 
ap of size q

3

+ q

2

+ 2 of Q

+

(5; q), q odd, that is not 
ontained in

a larger 
ap of Q

+

(5; q) is an open problem.
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Cy
lotomy, geometry, and perfe
t sequen
es

Alexander Pott

(joint work with Gohar Kyureghyan)

Let

a = (a

i

)

N�1

i=0

be a �1-ve
tor. We de�ne the 
orrelation 
oeÆ
ients

C

t

(a) :=

N�1

X

i=0

a

i

a

i+t

where the indi
es are taken moduloN . We 
onsider the problem to 
onstru
t ve
tors where

max

t2f1;::: ;N�1g

jC

t

(a)j (�)

is small. It is well known that the 
orrelation 
oeÆ
ients translate into interse
tion prop-

erties of the sets

D := fi : a

i

= 1g

and

D + t := fi+ t : i 2 Dg:

More pre
isely,

C

t

(a) = N � 4(jDj � jD \ (D + t)j):

In the talk, we will dis
uss sequen
es where the maximum in (�) is � 4 (perfe
t sequen
es).

In parti
ular, we dis
uss new 
onstru
tions using 
y
lotomy and 
onstru
tions related to


lassi
al di�eren
e sets, hen
e 
lassi
al geometry.

Asymptoti
 nonexisten
e of dihedral di�eren
e sets

Bernhard S
hmidt

(joint work with Ka Hin Leung)

Di�eren
e sets in 
y
li
 groups exist in abundan
e, for instan
e, Singer, quadrati
 residue,

and twin prime di�eren
e sets. Remarkably, the situation 
hanges dramati
ally if the group

stru
ture is 
hanged a little: It is 
onje
tured that no nontrivial di�eren
e sets exist in

dihedral groups. In this talk, the following asymptoti
 result will be explained.

For any primes p

1

; :::; p

s

there are only �nitely many produ
ts of powers of the p

i

whi
h


an be orders of dihedral di�eren
e sets.

The main diÆ
ulty of the proof is that it has to work for all possible parameters of

dihedral di�eren
e sets. At the end, it boils down to making an apparently 
ompletely

intra
table number{theoreti
 
ondition made tra
table by 
omplementary 
ombinatorial

arguments.

On multiple blo
king sets in Galois planes

L. Storme

(joint work with A. Blokhuis and T. Sz}onyi)

A t-fold blo
king set B in PG(2; q) is a set of points su
h that every line of PG(2; q)

interse
ts B in at least t points.
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In PG(2; q), q square, the Baer subplanes are the smallest 1-fold blo
king sets not 
on-

taining a line, and in PG(2; q), q a 
ube (but not a square) power, the two smallest 1-fold

blo
king sets, not 
ontaining a line, are proje
ted subgeometries PG(3; q

1=3

).

In 1999, the authors studied t-fold blo
king sets in PG(2; q), q square, of 
ardinality

t(q + 1) + 
, where t < q

1=4

=2 and where 
 < q

2=3

. It was proved that su
h t-fold blo
king

sets 
ontain t pairwise disjoint Baer subplanes.

In 1997, Lov�asz and Sz}onyi proved that minimal t-fold blo
king sets in PG(2; q), q = p

h

,

p prime, of size t(q + 1) + 
 with t and 
 satisfying some 
onditions, interse
t every line in

t (mod p) points.

Using this latter result, for t-fold blo
king sets in PG(2; q), q square, whose 
ardinal-

ity satis�es a 
ertain upper bound, we prove that they 
ontain t pairwise disjoint Baer

subplanes, or t � 1 pairwise disjoint Baer subplanes and one proje
ted PG(3; q

1=3

). For

t-fold blo
king sets whose 
ardinality satis�es a larger upper bound, we prove that they

are the disjoint union of a number t

0

of Baer subplanes and a (t � t

0

)-fold blo
king set,

with 0 � t

0

< t.

Small multiple blo
king sets in PG(4; q

2

) with respe
t to planes

Peter Sziklai

(joint work with S. Ferret, L. Storme and Zs. Weiner)

The smallest 1-fold blo
king sets in PG(4; q

2

), with respe
t to planes, are well-known

already: planes; 
ones with a Baer-subplane as a base and a point as vertex, 
ontained

in a 3-subspa
e; subgeometries PG(4,q). Our result extends this 
lassi�
ation for t-fold

blo
king sets (t small), whi
h, under some bound, happen to be disjoint unions of the

previous examples. To a
hieving this we had to generalize previous theorems on planar

blo
king sets (in the general form multiple points are allowed as well) and also to extend

the result about � 1 (mod p) -interse
tions of 1-fold blo
king sets (with respe
t to k-

dimensional subspa
es in PG(n; q)), by T. Sz}onyi and Zs. Weiner.

A Lenz{Barlotti 
lassi�
ation for �nite generalized quadrangles

Koen Thas

In Finite Geometries, P. Dembowski wrote that an alternative approa
h to the study

of proje
tive planes began with the paper Homogeneity of proje
tive planes by R. Baer

(1942), in whi
h the 
lose relationship between Desargues' theorem and the existen
e of


entral 
ollineations was pointed out. Baer's notion of (p; L)-transitivity, 
orresponding

to this relationship, proved to be extremely fruitful; it provided a better understanding

of 
oordinate stru
tures and it led eventually to the only 
oordinate-free 
lassi�
ation of

proje
tive planes existing today, namely the 
lassi�
ation by H. Lenz in Kleiner Desar-

guess
her Satz und Dualit�at in projektiven Ebenen (1954) and A. Barlotti in Sulle possibili


on�gurazioni del sistema delle 
oppie punto-retta (A; a) per 
ui un piano gra�
o risulta

(A; a)-transitivo (1958). Due to deep dis
overies in �nite group theory, the analysis of this


lassi�
ation has been parti
ularly penetrating for �nite proje
tive planes in re
ent years.

For generalized quadrangles (GQ's), J.A. Thas and H. Van Maldeghem gave a (�rst)

de�nition of Desargues 
on�gurations and proved a result analogous to the theorem of

Baer for proje
tive planes. Then H. Van Maldeghem, J.A. Thas and S.E. Payne gave a

se
ond approa
h to the problem by introdu
ing the notion of (p; L)-transitivity (with pIL)
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for GQ's. They then proved that a GQ is Moufang if and only if it is (p; L)-transitive

for all 
ags (p; L). As a geometri
al 
ounterpart to (p; L)-transitivity, they introdu
ed

the notion of a (p; L)-Desarguesian generalized quadrangle, and they proved that a �nite

generalized quadrangle is (p; L)-Desarguesian if and only if it is (p; L)-transitive. Also, by

a 
elebrated theorem of J.A. Thas, S.E. Payne and H. Van Maldeghem, every half Moufang

GQ is automati
ally Moufang, and hen
e 
lassi
al by the deep group-theoreti
al result(s)

of P. Fong and G.M. Seitz.

However, despite these promising results, a `good' 
lassi�
ation based on sub
on�gu-

rations of 
ags (p; L), respe
tively panels (p; L; q), for whi
h the generalized quadrangle

is (p; L)-transitive, respe
tively (p; L; q)-transitive (whi
h is de�ned in a similar way as

(p; L)-transitivity), seems (quite) far away and would yield many open 
lasses very hard

to deal with. We present the following alternative.

A line L of a generalized quadrangle S is an axis of symmetry if it is regular, and if there

is a pair of distin
t points (p; q) both in
ident with L for whi
h the generalized quadrangle

is (p; L; q)-transitive. In our talk, we dis
uss a 
lassi�
ation of generalized quadrangles

based on the possible sub
on�gurations of axes of symmetry.

As an appli
ation of the 
lassi�
ation presented here, we were able to solve a re
ent


onje
ture of W.M. Kantor.

Formulas for the number of Steiner triple and quadruple systems of low

2-rank

Vladimir D. Ton
hev

Doyen, Hubaut, and Vandensavel used methods from �nite geometry to derive a lower

bound on the 2-rank of a Steiner triple system and proved that the 
lassi
al Steiner triple

system of the lines in binary proje
tive spa
e is the unique (up to isomorphism) system of

minimum 2-rank. Teirlin
k proved a similar bound for Steiner quadruple systems, in whi
h


ase the 
lassi
al system of the planes in a binary aÆne spa
e is the only one of minimum 2-

rank. The results of Doyen, Hubaut, Vandensavel and Teirlin
k were extended by Assmus,

who proved that all Steiner triple or quadruple systems with the same number of points

and the same 2-rank span equivalent binary 
odes. In addition, Assmus gave an expli
it

des
ription of the 
ode for any given rank, and determined its automorphism group. Using

these results, the author found re
ently an expli
it formula for the total number of distin
t

Steiner triple systems on 2

n

� 1 whose 2-rank is greater by one than the the minimum

2

n

�n� 1, as well as a formula for the number of distin
t Steiner quadruple systems on 2

n

points of 2-rank 2

n

� n. Namely, the number of distin
t Steiner triple systems on 2

n

� 1

points of 2-rank 2

n

� n is given by the formula

(2

n

� 1)!(2

(2

n�1

�1)(2

n�2

�1)

3

� 2

2

n�1

�n

)

2

2

n�1

�1

(2

n�1

� 1)(2

n�1

� 2) : : : (2

n�1

� 2

n�2

)

;

while the total number of Steiner quadruple systems on 2

n

points of 2-rank 2

n

�n is given

by the formula

(2

n

)!(2

2

n�3

(2

n�1

�1)(2

n�2

�1)

3

� 2

2

n�1

�n

)

2

2

n�1

+

n(n�1)

2

(2

n�1

� 1)(2

n�2

� 1) : : : (2

2

� 1)

:

Apart from the 
lassi
al Steiner triple and quadruple systems of minimum 2-rank and

their 
ounterparts at the other end of geometri
 dimension, namely the designs of the

hyperplanes in a binary proje
tive or aÆne spa
e, where the designs are known to be
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unique, this appears to be the �rst o

asion where a formula for the exa
t number of all

designs belonging to an in�nite family is known. These formulas resemble the formula

for the number of all k-dimensional subspa
es of a given n-dimensional spa
e over a �nite

�eld, or the number of isotropi
 subspa
es of given dimension. The latter formula has

been widely used for the 
lassi�
ation of self-dual 
odes in 
oding theory. The formulas

for the number of Steiner triple and quadruple systems 
an be used for the 
lassi�
ation

of Steiner systems up to isomorphism. As an illustration, the 
lassi�
ation of Steiner

quadruple systems on 16 points and 2-rank 12 will be given. The formulas 
an be used

also for deriving bounds on the number of isomorphism 
lasses of Steiner systems of the

given rank. In parti
ular, it is shown that the number of non-isomorphi
 Steiner triple or

quadruple systems of 2-rank 2

n

� n grows exponentially.

Some remarks on Steiner systems

Hendrik Van Maldeghem

I will make three remarks on Steiner systems, based on Table A5.1 in Beth, Jungni
kel

and Lenz, Design Theory, Volume 2, se
ond edition (1999). First, I will extend and re�ne

the 
lass KW, also bringing automorphisms into play; then I will embed the 
lassi
al

hexagons of order (q; q) into new Steiner systems and show that for one 
lass of these,

the automorphism group is pre
isely the group AutG

2

(q) (I will mention an appli
ation

of this). I also dis
uss the question whether it is possible to embed the dual split Cayley

hexagons into Steiner systems su
h that the blo
ks of the systems are all tra
es of points in

the hexagon (this gives rise to nontrivial geometri
 questions in Galois spa
es). Finally, I

will state a general 
onstru
tion method for Steiner systems out of old ones and give some

examples.

Edited by J.W. P. Hirs
hfeld
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