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The meeting was dedicated to nonlinear elliptic and parabolic partial di�erential equa-

tions and systems with a special emphasis on:

� creation and dynamics of singularities and their asymptotics

� vortices and concentration phenomena

� Ginzburg-Landau, Allen-Cahn, Bose-Einstein models

� spike-type solutions of nonlinear elliptic equations

� classi�cation of solutions to nonlinear elliptic equations in unbounded domains, in

particular in all of space, IR

n

or in a half space, IR

n

+

� progress on a conjecture by de Giorgi about phase boundaries

� travelling waves in inhomogeneous media

The participants came from several somewhat di�erent schools of thought in nonlinear

PDE's involving variational methods, Morse theory, maximum principles, singular pertur-

bation theory and free boundary problems. This gave rise to a very intensive scienti�c

exchange between participants. Several speakers adjusted to the openness and dynamics

of the meeting and presented ongoing research, sometimes on topics which they had not

originally planned. This created a delightful and stimulating scienti�c atmosphere. Most

participants had wide mathematical interests.

Unfortunately, two participants (Chinese citizens from the US and China) who had

accepted the invitation to Oberwolfach could not come in the end as they were denied an

entrance visa.

The traditional hospitality of the sta� and the pleasant weather helped to make the

meeting a very memorable experience.

1



Abstracts

Vortex energy for rotating Bose-Einstein condensates

Amandine Aftalion

For a Bose-Einstein condensate placed in a rotating trap, we set a mathematical frame-

work of study for the Gross-Pitaevskii energy. Experimentally, when the value of the

rotation is small enough, there are no singularities, but when it reaches a critical value, a

line of singularities, or vortex line appears in the condensate and the particularity of this

line is to be bent. We de�ne a small parameter and give a simpli�ed expression of the

energy which only depends on the number and shape of the vortex lines. Then we check

that when there is one vortex line, our simpli�ed expression leads to solutions with a bent

vortex for a range of rotational velocities and trap parameters which are consistent with

the experiments.

Energy concentration for minimizers of Ginzburg-Landau functionals

Giovanni Alberti

Let u

�

be the minimizer, subject to suitable boundary constraints, of the simpli�ed

Ginzburg-Landau energy

F

�

(u) :=

Z




jruj

2

+

1

�

2

W (u) ;

where � > 0, 
 is a regular domain of IR

n

, u : 
 ! IR

2

, and W (u) is a positive potential

which vanishes on the unit circle. If we denote by �

�

the corresponding energy densities

(renormalized by the usual factor j log �j), then the Jacobians Ju

�

:= du

1

�

^ du

2

�

converge

(in a suitable sense) to an area-minimizing surface M of codimension 2, while the densities

�

�

converge (in the sense of measures) to the volume measure on M . Similar results

holds also in higher codimension (provided that F

�

is suitably modi�ed). In this lecture I

will present some elementary computations, aimed to provide a reaonable, although non-

rigorous, picture of the problem; then I will introduce some of the basic ideas which lies

behind the �rst part of the proof, and precisely the compactness of the Jacobians Ju

�

, and

a lower bound for the energies F

�

(u

�

) (a posteriori, the optimal one).

Asymptotic behaviour for a class of nonlocal problems

Michel Chipot

We propose new techniques to study the asymptotic behaviour of problems of the type:

8

<

:

u

t

� a(l(u(t)))�u+ u = f(x) in 
� IR

+

u(�; t) = 0 on @
� IR

+

u(�; 0) = u

0

in 
;

(1)

where

l(u(:; t)) =

Z




g(x) u(x; t)dx

and f , g 2 L

2

(
), a is some continuous function.
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In particular we show that �nding the associated stationary solutions to (1) reduces to

�nd the solutions of an equation in R. Using some Lyapunov functions or some direct

methods we are then able to establish various convergence results.

References

[1] M. Chipot: On the asymptotic behaviour of a class of nonlocal problems (to appear).

[2] M. Chipot & L. Molinet: Asymptotic behaviour of some nonlocal di�usion problems (to appear in

Applicable Analysis).

On a geometric Monge-Amp�ere equation

Kai-Seng Chou

In this talk we gave a geometric interpretation to the following Monge-Amp�ere equation

det(r

2

H +HI) =

f(x)

H

n+2

;(*)

where f is a given positive function on S

n

. First, consider any hypersurface in centro-

a�ne (c.a.) geometry, the Klein geometry whose isometries are elements of SL(n + 1).

We explained that the quantity KS

�n�1

, where K is the Gauss curvature and S support

function of the hypersurface, is invariant under SL(n + 1), and hence may be called the

c.a. curvature of the hypersurface. Now, the c.a. Minkowski problem is: Give a positive

function f(x) in S

n+1

and �nd necessary and su�cient conditions so that it is the c.a.

curvature (as a function of the c.a. normal direction) for a convex hypersurface. It turns

out this problem is equivalent to (*). Indeed, the polar body of the hypersurface whose

support function solves (*) is a solution for this Minkowski problem. Concerning the

solvability of (*) we stated : (a) An obstruction:

Z

S

n

r

�

f(x)H

�n�1

dS(x) = 0;

where � is any projective vector �eld on S

n

; and (b) some su�cient conditions when n = 1

(see [1]).

References
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Solutions of �nite Morse index for equations on R

n

and applications

E. Norman Dancer

We consider the equation

��u = f(u) on R

n

: (1)

Here f is C

1

; f(0) 6= 0 and F (u) 6= F (v) if u and v are non-negative zeros of f where

F

0

= f (though these conditions could be weakened) and n = 2 or 3.

A solution u of (1) is said to be weakly stable if E(�) =

R

R

n

(r�)

2

� f

0

(u)�

2

� 0 on

C

1

0

(R

n

).

Theorem 1. Assume that u is a non-negative bounded weakly stable solution of (1) such

that

R

B

R

jruj

2

� CR

2

for large R. Then u is constant.

This is proved by using the recent techniques used to solve the De Giorgi conjecture

in dimensions 2 and 3. Note that the integral condition always holds if n = 2. We do
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not know if the integral condition can be removed when n = 3. It can be removed if f is

non-negative on [0; kuk

1

]. This problem is of considerable interest.

A solution u of (1) is said to have �nite Morse index if there is a closed subspace T of

C

1

0

(R

n

) of �nite codimension such that E(�) � 0 if � 2 T .

Theorem 2. Assume that the conditions of Theorem 1 hold except that we require u

has �nite Morse index rather than weakly stable. Then there is a constant C such that

f(C) = 0; f

0

(C) � 0 and u(x)� C ! 0 uniformly as jxj ! 1.

In many cases, one can use sub and supersolutions to prove u converges to C from above

or below and then frequently one can use standard techniques to �nd what u's can occur.

These results can be used to study the stable positive solutions and the positive solutions

of saddle point type (or of bounded Morse index) of the equation

��

2

�u = f(u) in 
; ; u > 0 in 
 ; u = 0 on @


for small positive � (with best results for 
 � R

2

). In particular if n = 2, we can frequently

prove that such solutions consist of a �nite number of sharp peaks and we can then study

the location of the peaks by using known techniques.

L

1

connections between equilibria of a semilinear parabolic equation

Marek Fila

Consider the problem

(E)

8

<

:

u

t

= �u+ �e

u

; x 2 B

1

(0); t > 0;

u = 0; x 2 @B

1

(0); t > 0;

u(x; 0) = u

0

(jxj); x 2 B

1

(0);

where B

1

(0) = fx 2 R

N

: jxj < 1g, u

0

is a continuous function on [0; 1] vanishing at r = 1,

� is a positive parameter and

3 � N � 9:

We discuss L

1

-connections between equilibria of this problem. By an L

1

-connection from

an equilibrium �

�

(x) to an equilibrium �

+

(x) we mean a function u(�; t) which is a classical

solution on the interval (�1; T ) for some T 2 R and blows up at t = T , but continues to

exist as a weak solution on [T;1) and satis�es

u(�; t)! �

�

as t! �1

in a suitable sense.

Minimizing the entropy on a non-closed manifold

Wilfried Gangbo

(joint work with E. Carlen)

We study several constrained variational problem in the 2{Wasserstein metric for which

the set of probability densities satisfying the constraint is not closed. For example, given

a probability density F

0

on R

d

and a time{step h > 0, we seek to minimize I(F ) =

hS(F ) +W

2

2

(F

0

; F ) over all of the probability densities F that have the same mean and

variance as F

0

, where S(F ) is the entropy of F . We prove existence of minimizers. We

also analyze the induced geometry of the set of densities satisfying the constraint on the

variance and means, and we determine all of the geodesics on it. From this, we determine

a criterion for convexity of functionals in the induced geometry. It turns out, for example,
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that the entropy is uniformly strictly convex on the constrained manifold, though not

uniformly convex without the constraint. The problems solved here arose in a study of

a variational approach to constructing and studying solutions of the non{linear kinetic

Fokker{Planck equation.

Recent Progress on a Conjecture of De Giorgi

Changfeng Gui

De Giorgi formulated in 1978 the following

Conjecture: Suppose that u is an entire solution of the equation (0.1) with condition

(0.2). Then for at least n � 8 the level sets of u must be hyperplanes, i.e. there exists

g 2 C

2

(R) such that u(x) = g(a � x), for some �xed a 2 IR

n

with jaj = 1.

The equation arises in the study of phase transition and relates to the stationay Allen-

Cahn and Cahn-Hilliard equations. The conjecture is also closely related to the Bernstein

problem in geometry on the complete minimal graph surfaces in the entire space. Recently

the conjecture is completely proven for dimensions 2 and 3 and for some important cases

in higher dimensions. However, the conjecture is still open for dimensions larger than 3. In

this talk, I will explain the connection of the conjecture with phase transition and minimal

surfaces, discuss in details the recent progresses, and in particular some new results on

the conjecture for dimensions 4 and 5 under certain anti-symmetry conditions. I will also

outline a strategy for the �nal resolution of the conjecture in high dimensions, in particular

for dimensions 4 and 5.

Propagation of fronts in periodic and more general domains, and estimates

for their speeds

Franc�ois Hamel

(joint work with H. Berestycki, N. Nadirashvili)

We are concerned with some propagation phenomena for reaction-di�usion equations

in periodic domains. In a periodic structure, there may exist pulsating travelling fronts

connecting two given rest states. Such fronts move in a given direction with an unknown

e�ective speed. The notion of pulsating travelling fronts generalizes that of travelling

fronts for planar or shear ows. Some existence, uniqueness and monotonicity results are

mentionned for two classes of nonlinear reaction terms. For one of them, there exists a

semi-in�nite set, bounded from below, of possible speeds of propagation. Such propagation

phenomena can take place in in�nite cylinders with periodic advection, periodic di�usion

or periodic reaction, in cylinders with oscillating boundaries, and in more general periodic

domains with a periodic array of holes and periodic coe�cients. Lastly, various variational

formulas and bounds for the minimal speed of propagation are given, and some possible

extensions of the notion of speed of propagation in non-periodic domains are mentioned.
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Reaction-Di�usion Enhancement by Convection

Steffen Heinze

In the �rst part we consider a convection di�usion equation with an incompressible,

periodic, cellular ow �eld. In the rapid oscillation limit (homogenization) we provide

explicit upper and lower estimates for the e�ective di�usivity. The rapid transport leads

to enhancement of the e�ective di�usivity. For all values of the di�usivity the estimates

are qualitatively correct. Especially for small values of the di�usivity or equivalently large

Peclet numbers the estimates have the correct scaling behavior. We demonstrate that

all allowed scaling laws can occur. The upper estimates also answer a problem posed by

Kozlov, i.e. if it is possible to have a nonzero limit for the e�ective di�usivity as the

original di�usivity tends to zero. This is called residual or turbulent di�usion. Our bounds

exclude this possibility for H�older continuous ow �elds. The proof relies on the use of

appropriate test functions which give automatically the correct size of the boundary layer

and the scaling of the e�ective di�usivity. Since the bounds involve explicit constants we

have an estimate for the range of validity of the scaling behavior for large Peclet numbers.

In the second part a di�usion convection equation with a non negative reaction term

is treated (KPP type or combustion type). The time asymptotic behavior is governed by

travelling wave solutions. For a shear ow convection explicit bounds for the speed of

such fronts are derived. The estimates show the correct scaling for di�erent asymptotic

regimes: small di�usivity, large Peclet numbers, and rapidly oscillating ows. In particular

the front speed grows linear with the Peclet number, proving a conjecture posed by Audoly,

Berestycki, Pomeau. For cellular ows the enhancement was conjectured to be of order

Peclet

1=4

. From the �rst part of the talk this scaling can be con�rmed in the homogenization

limit.

Singular limits of an inhomogeneous reaction-di�usion equation

Danielle Hilhorst

(joint work with H. Matano, R. Sch�atzle)

It is well-known that some classes of nonlinear di�usion equations give rise to sharp

internal layers (or interfaces) when the di�usion coe�cient is small enough or the reaction

coe�cient is very large; the motion of such interfaces is often driven by their curvature.

We consider here the inhomogeneous reaction-di�usion equation

u

t

= div(k(x)ru) +

h(x)

�

2

u(1� u

2

) in 
� (0; T );

under homogeneous Neumann boundary conditions, where 
 is a smooth bounded domain

in IR

N

, � is a small parameter and the coe�cients h and k are smooth and strictly positive.

Our results are the following:

(1) generation of interface: we show, under some mild conditions on the initial data,

that solutions develop an internal layer near the zeros of the initial data within a very short

time; furthermore, the width of the internal layer is of order �; this estimate is optimal and

has not been known in higher space dimensions even for the homogeneous case;

(2) propagation of interface: once the layer is formed, it is expected to propagate

roughly by the same motion law as the limiting interface equation; we show that this is

indeed the case and that the Hausdor� distance between the limiting interface and the real

internal layer remains of order � as t ranges in a �nite interval.
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On a limiting motion and self-intersections for a geometric evolution equation

Kazuo Ito

(joint work with J. Escher, Y. Giga)

We study the following nonlocal geometric evolution equation called the intermediate

surface di�usion ow:

V (t) = �

�(t)

�

1

D

�

1

M

�

�(t)

�

�1

H(t) on �(t) for t > 0 (�)

with an initial condition �(0) = �

0

. Here �(t) is an unknown, with respect to time t > 0

evolving closed compact oriented hypersurface in R

n

. We write �

�(t)

for the Laplace-

Beltrami operator on �(t) with respect to the Euclidean metric. The mean curvature of

�(t) is denoted by H(t) and V (t) stands for the normal velocity of the family f�(t) ; t > 0g.

Moreover, D > 0 is a large parameter such that D!1, and M > 0 is a �xed constant.

The purpose of this talk is to show that the problem (�) admits a unique local solution

�

D

:= f�

D

(t) ; t 2 [0; T ]g of class C

1;2+�

on a common existence interval [0; T ] (i.e. [0; T ]

is independent of D � 1), and that this solution �

D

converges for D !1 in C

1;2+�

to the

unique solution of the averaged mean curvature ow. Moreover, we show that the ow (�)

can drive an embedded hypersurface into self-intersections for every D > 0.

On a Nonlinear Di�usion Equation with Singular Coe�cient

Shoshana Kamin

We study some special self-similar solutions of the equation

1

jxj

�

u

t

= (u

m

)

xx

; x 2 IR; t > 0(1)

and use them for the description of the behaviour of the solutions for some other problems.

I. (Joint work with V.A. Galaktionov, R. Kersner and J.-L. Vazquez) Consider the following

problem

�(x)u

t

= (u

m

)

xx

; u(x; 0) = u

0

(x) :(2)

Suppose that u

0

2 L

1

(IR), lim

jxj!1

u

0

(x) = 0 and �(x) behaves like

1

jxj

�

for large jxj. Let

� 2 (1; 2). It is proved that as t!1 the solution of the Cauchy problem (2) approaches

the self-similar solution U(x; t) of the singular \limit" equation (1),

u(x; t)! U(x; t) = f

�

x

t

1=2��

�

:

II. (Joint work with P. Rosenau) Dipole self-similar solution of equation (1) is used for the

study of the convergence to a travelling wave for the problem

u

t

= (u

2

)

xx

+ u� u

2

; u(x; 0) = u

0

(x) :(3)
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The polar cone of the set of convex functions and applications to the

regularity of solutions for variational problems subject to a convexity

constraint

T. Lachand-Robert

(joint work with G. Carlier)

We �rst study the minimizers, in the class of convex functions, of an elliptic functional

with nonhomogeneous Dirichlet boundary conditions. We prove C

1

regularity of the min-

imizers under the assumption that the upper envelope of admissible functions is C

1

(see

CPAM 2001).

Another way to study this sort of problem is to consider the polar cone of the set

K = fru; u convexg, for the L

2

scalar product. This polar cone is K

�

= IR

+

co(S � id),

where S is the set of measure-preserving maps. We prove that any L

2

vector �eld can be

written as ru+p, with u convex, p 2 K

�

, and < ru; p >= 0. This implies new expression

of the Euler-Lagrange equation asociated with minimization problems in the set of convex

functions, as well as new regularity results for these.

Travelling waves in quasiperiodic media and their associated ow on a torus

Hiroshi Matano

Travelling waves in heterogeneous media are gaining more and more attention in various

�elds of science such as ecology, physiology and combustion theory. They have also become

an important subject of mathematical studies in the past decade. However, most of those

theoretical studies have been focused on spatially periodic cases, and little is known about

the nature of traveling waves in aperiodically varying media.

In this lecture I introduced the precise notion of travelling waves in spatially quasi-

periodic (or almost periodic) di�usive media and discussed basic properties of such travel-

ling waves, mainly for bistable type di�usion equations of the form

u

t

= u

xx

+ b(x)f(u) (x 2 R; t > 0);

or their higher dimensional versions.

More precisely, I have shown that each travelling wave de�nes a ow on a torus and that

the behavior of this associate ow characterizes the nature of the travelling wave.

Let me also point out that in Fisher-KPP type di�usion equations, a certain eigenvalue

problem on a torus may play a crucial role in the estimate of the speed of travelling waves

as well as in the existence proof. This part is an ongoing joint work with H. Berestycki

and F. Hamel.
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Blow-up solutions for L

2

critical KdV

Franck Merle

We consider the problem

u

t

+ (u

xx

+ u

5

)

x

= 0 x 2 IR; t > 0;

with initial data u

0

2 H

1

(IR).

We prove existence of blow-up solutions for negative energy and describe the speed and

the shape of blow-up for E

0

< 0,

Z

u

2

0

�

Z

Q

2

+ �

0

, where Q is the soliton of speed 1.

On the Singularities for the Obstacle Problem

R

�

egis Monneau

The obstacle problem has been extensively studied in the literature. A simple example

is the minimisation of the convex functional

Z




jruj

2

+ 2u

over the convex set of functions

K =

�

u 2 H

1

(
); u = g on @
; u � 0 on 


	

where 
 is a smooth bounded open set in R

n

, and g is a smooth positive function. The

free boundary is the set

@ fu = 0g

Quite recently the problem was revitalized by a work of Ca�arelli where it is in particular

proved that the singular set of the free boundary can be contained in a smooth hypersurface

of 
. Based on a beautiful work of Weiss , we have recently proved a new monotonicity

formula for singular points, providing generalizations to more general obstacle problems.

Using this monotonicity formula we have proved in dimension n = 2 a conjecture of Scha-

e�er (1974) which claims that the free boundary is generically smooth. This conjecture

stays open in dimensions n � 3.

Symmetry and other qualitative properties of solutions of semilinear elliptic

equations

Filomena Pacella

We study the symmetry properties of the solutions of the semilinear elliptic problem

��u = f(x; u) in 


u = g(x) on @
;

where 
 is a bounded symmetric domain in IR

N

, N � 2, and f : 
 � IR ! IR is a

continuous function of class C

1

in the second variable, g is continuous and f and g are

somehow symmetric in x.

We show that all solutions of the above problem of index one are axially symmetric when


 is an annulus or a ball, g � 0 and f is strictly convex in the second variable.

Moreover we are able to prove that if the solution of index one is not radially symmetric

then all critical points are located on the simmetry axis.
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To do this we prove that the nonnegativity of the �rst eigenvalue of the linearized

operator in the caps determined by the symmetry of 
, is a su�cient condition for the

symmetry of the solution, when f is a convex function.

This condition is stable under "small perturbation" in the sense that it allows to prove

that the symmetry of the solutions is preserved under a small symmetric perturbation of

the domain.
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Continuity of the blow-up time and a priori bounds for solutions in

superlinear parabolic problems

Pavol Quittner

We consider parabolic problems of the form

8

>

<

>

:

u

t

��u = f(u); x 2 
; t > 0;

u = 0; x 2 @
; t > 0;

u(x; 0) = u

0

(x); x 2 
;

(1)

where 
 is a domain in IR

n

with a smooth compact boundary @
 and f is a locally

Lipschitz continuous function which is superlinear at in�nity. Problem (1) is well posed in

a suitable Banach space X (X = L

1

(
), for example). Denote by u(t; u

0

) the solution of

(1) at time t and by T

max

(u

0

) the maximal existence time of this solution. We show that

for a large class of functions f with subcritical growth, the function T

max

: X ! (0;1] is

continuous (this need not be true in the supercritical case). The result is based on a priori

estimates of the form ku(t; u

0

)k

X

� C(ku

0

k

X

; �) for any t 2 [0; T

max

(u

0

) � �). We also

discuss other applications of these estimates: blow-up rates for blowing-up solutions and

existence of positive periodic solutions if f = f(t; u) is periodic in t.

A sharp Sobolev inequality on Riemannian manifolds

Tonia Ricciardi

(joint work with YanYan Li)

For n � 3 and 2

�

= 2n=(n� 2), let

K

�1

= inf

�

kruk

L

2

(IR

n

)

kuk

L

2

�

(IR

n

)

: u 2 L

2

�

(IR

n

) n f0g; jruj 2 L

2

(IR

n

)

�

:(1)

We prove the following sharp Sobolev inequality:

Theorem 1 Let (M; g) be a smooth compact Riemannian manifold without boundary of

dimension n � 6. There exists a constant A > 0, depending on (M; g) only, such that for

all u 2 H

1

(M) there holds:

kuk

2

L

2

�

(M;g)

� K

2

Z

M

�

jr

g

uj

2

+ c(n)R

g

u

2

	

dv

g

+ Akuk

2

L

�r

(M;g)

;(2)
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where 2

�

and K are de�ned above, c(n) = (n � 2)=[4(n� 1)], �r = 2n=(n + 2) = 2

�

0

, R

g

is

the scalar curvature of g.

Remark

Theorem 1 is sharp, in the sense that one can neither replace K by any smaller number,

nor replace R

g

by any R

g

+ f with f 2 C

0

negative somewhere. Moreover, if (M; g) is not

locally conformally at, one cannot replace �r by any smaller number.

For locally conformally at manifolds we have:

Theorem 2

Let (M; g) be a smooth compact locally conformally at Riemannian manifold without

boundary of dimension n � 3. There exists a constant A > 0, depending on (M; g) only,

such that for all u 2 H

1

(M) there holds:

kuk

2

L

2

�

(M;g)

� K

2

Z

M

�

jr

g

uj

2

+ c(n)R

g

u

2

	

dv

g

+ Akuk

2

L

1

(M;g)

:(3)

Nonlinear Schr�odinger equations with Hardy potential and critical

nonlinearities

Didier Smets

We study a time independent nonlinear Schr�odinger equation with an attractive inverse

square potential and a non autonomous nonlinearity whose power is the critical Sobolev

exponent, the domain being the whole R

N

. A particular attention is paid to the blow-up

possibilities, i.e. the critical points at in�nity of the corresponding variational problem.

Due to the strong singularity in the potential, these are of two kinds. A complete existence

result is obtained in dimension 4, after a detailed analysis of the gradient ow lines in the

spirit of the work of A. Bahri.

Some recent results on viscous Hamilton-Jacobi equations

Philippe Souplet

We report on various questions concerning Hamilton-Jacobi equations with viscosity

u

t

��u = ajruj

p

; t > 0; x 2 IR

N

(p > 0; a 6= 0)

u(0; x) = u

0

(x); x 2 IR

N

:

(1)

1. Singular initial data (joint with M. Ben-Artzi and F. Weissler, to appear in J. Math

Pures et Appl. 81 (2002)).

We address the question of local existence for singular initial data u

0

2 L

q

(1 � q <1)

or u

0

measure, for p � 1. We obtain an almost complete classi�cation regarding local (non-

)existence and (non-)uniqueness, introducing the critical exponent q

c

= N(p � 1)=(2� p)

(q

c

= 1 if p � 2) and distinguishing the repulsive (a > 0, u

0

� 0) and attractive (a < 0,

u

0

� 0) cases.

2. Growth of mass (joint with Ph. Lauren�cot, to appear in J. d'Analyse Math.).

We consider �nite mass solutions of (1) with a > 0 and p � 1. When u

0

2 L

1

, u

0

� 0 (and

u

0

2 W

1;1

, say), it is known that (1) has a global, nonnegative solution, which remains in

L

1

for all t > 0. Moreover, it is easy to see that the mass I(t) = ku(t)k

1

is a nondecreasing

function. A natural question is then to determine whether I

1

= lim

t!1

I(t) is �nite or

not. The answer is as follows: if p � p

N

, then I

1

= 1 for all u

0

( 6� 0); if p

N

< p < 2,
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then I

1

< 1 if u

0

is suitably small, but I

1

= 1 also occurs for some u

0

; if p � 2, then

I

1

<1 for all u

0

.

3. Finite-time extinction (joint with S. Benachour, Ph. Lauren�cot and D. Schmitt, to

appear in Asympt. Anal.).

It is well-known that for p 2 (0; 1), all positive solutions of

(2) u

t

��u+ u

p

= 0; t > 0; x 2 IR

N

(u

0

2 L

1

);

extinct in �nite time (i.e., u(T; :) � 0 for some T > 0). We study the same question for

positive solutions of (1) with a < 0 and p 2 (0; 1). In contrast with (2), the extinction

property for (1) depends crucially on the order of decay of u

0

.

Variational Principles for Propagation Speeds in Inhomogeneous Media

Angela Stevens

(joint work with Ste�en Heinze, George Papanicolaou)

An important problem in reactive ows is how to estimate the speed of front propa-

gation, especially when inhomogeneities are present. A variational characterization of the

front speed for reaction-di�usion-advection equations in periodically varying heterogeneous

media is proved. This formulation makes it possible to calculate sharp estimates for the

speed explicitly. The method can be applied to any problem obeying a maximum princi-

ple. Three examples are analyzed in detail: a shear ow problem, a problem with rapidly

oscillating coe�cients and a discretized di�usion problem. In all cases the e�ects of the

inhomogeneous medium on the speed are discussed in comparison to the homogeneous

problem. For the shear ow problem, enhancement of the speed results.

Green function estimates and their consequences

Guido Sweers

Probably the most famous singularity for elliptic problems is the one of the fundamental

solution for the laplace operator: c

n

jx� yj

2�n

if n � 3: If one is looking for solution

operator for ��u = f in 
 with u = 0 on @
 then one has to combine this singularity

with the zero Dirichlet bounday condition. How does the singularity survive?

Writing the solution of this Dirichlet Laplacian by u (x) =

R




G (x; y) f (y) dy; with G

the Green function, and knowing that the maximum principle implies that G is positive,

one should be able to derive an optimal two-sided estimate by a positive function. Indeed

such has been done:

Theorem 1.

Let 
 be a bounded domain in R

n

with a smooth boundary @
; then

G (x; y) � jx� yj

2�n

min

�

1;

d(x)d(y)

jx�yj

2

�

if n � 3;

G (x; y) � log

�

1 +

d(x)d(y)

jx�yj

2

�

if n = 2;

G (x; y) �

p

d (x) d (y) min

�

1;

d(x)d(y)

jx�yj

2

�

1

2

if n = 1;

where a (x; y) � b (x; y) means 0 < c




�

a(x;y)

b(x;y)

� C




< 1 for all x; y 2 
; and d (x)

denotes the distance to the boundary: d (x) = inf fjx� x

�

j ; x

�

2 @
g :

12



Remark

For n � 3 the estimate from above is due to Widman, [3]. The estimates from below are

essentially due to Zhao, [4] and [5]. See also [2].

Also for iterated Dirichlet Laplacian such estimates are known. For example for the

biharmonic operator with Navier boundary conditions, �

2

u = f in 
 with u = �u = 0 on

@
 the Green function G

2

(x; y) sati�es the following estimates:

Theorem 2. [1]

Let 
 be a bounded domain in R

n

with a smooth boundary @
; then

G

2

(x; y) � jx� yj

4�n

min

�

1;

d(x)d(y)

jx�yj

2

�

if n � 5;

G

2

(x; y) � log

�

1 +

d(x)d(y)

jx�yj

2

�

if n = 4;

G

2

(x; y) �

p

d (x) d (y) min

�

1;

d(x)d(y)

jx�yj

2

�

1

2

if n = 3;

G

2

(x; y) � d (x) d (y) log

�

1 +

1

jx�yj

2

+d(x)d(y)

�

if n = 2;

G

2

(x; y) � d (x) d (y) if n = 1:

Remark For higher iterates no new estimating functions appear; only the numbers n shift.
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Approaching a partial di�erential equation of mixed elliptic-hyperbolic type

Giorio Talenti

Suppose an isotropic, non-conducting, non-dissipative medium and a monochromatic

electromagnetic �eld interact in absence of electric charges. Let n and � denote the refrac-

tive index and the wave number, respectively. Here n is a scalar real-valued �eld, whose

reciprocal is proportional to the relevant velocity of propagation through the medium, and

� is a large positive parameter, whose reciprocal is proportional to the length of waves

involved. The following Helmholtz equation

�U + �

2

n

2

U = 0(1)

is an archetype of those partial di�erential equations that ensue from Maxwell's system and

model the subject matter mathematically. A distinctive feature of (1) is sti�ness | the

order of magnitude of � is signi�cantly greater than that of the other coe�cients involved.
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An expansion, which represents solutions to (1) asymptotically as � ! +1; originates

from WKBJ method and reads thus

U ' exp(i�S)

1

X

k=0

A

k

� (i�)

�k

:(2)

Here S and A

k

are scalar �elds, independent on �: The former, named eikonal, is real-valued

and governed by

jrSj

2

= n

2

;

the latter is complex-valued and governed by the so-called transport equations.

Inference built upon expansion (2) amounts to geometrical optics.

Though successful in describing both the propagation of light and the concurrence of

caustics via the mechanism of rays, geometrical optics is inherently unable to account for

those phenomena, such as the development of evanescent waves, that take place beyond a

caustic.

A more powerful asymptotic expansion, which is apt to represent solutions to (1) on both

sides of a caustic, simultaneously in the region covered by geometric optical rays and in the

opposite region where geometrical optics breaks down, is provided by a theory of Kravtsov

and Ludwig. In case the caustic involved is smooth and convex, such an expansion reads

U ' e

i�v

n

Ai(�

2=3

u)

1

X

k=0

A

k

�(i�)

�k

+ i�

�1=3

Ai

0

(�

2=3

u)

1

X

k=0

B

k

�(i�)

�k

o

:(3)

Here u; v; A

k

; B

k

are scalar �elds, independent on �; u and v are real-valued, A

k

and B

k

are complex-valued; Ai denotes the Airy function.

Properties of Ai inform us that the right-hand side of (3) oscillates rapidly where u is

negative, approaches smoothly a limit if u approaches 0; quenches fast where u is positive.

Therefore (3) matches geometrical optics in the region where u is negative and predicts

the occurrence of damped waves in the region where u is positive; a caustic take place on

the level surface where u = 0:

Assembling (1) and (3) results in

u jruj

2

� jrvj

2

+ n

2

= 0

ru � rv = 0

(4)

| a fully nonlinear, �rst-order partial di�erential system governing u and v:

In the present paper we sketch some lineaments of (4) in the case where the space

dimension equals 2; i.e. we let x and y denote rectangular coordinates in the Euclidean

plane and investigate the following system

u (u

2

x

+ u

2

y

)� v

2

x

� v

2

y

+ n

2

(x; y) = 0

u

x

v

x

+ u

y

v

y

= 0:

(5)
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An Inverse Problem in Neurology

Alfred Wagner

(joint work with Steve Cox)

We consider a one dimensional nerve �bre [0; a] of �xed length a. At an initial time we

apply a known stimulus v

x

(0; a) where v(x; t) is the potential drop across the �bre at place

x and time t. After Hodgkin and Huxley the evolution of v(x; t) is given by

v

t

= v

xx

+ f(v)� w in Q

T

:= (0; a)� (0; T )(1)

w

t

= �v � w in Q

T

(2)

where a and T are positive real numbers. We �x the boundary conditions

v

x

(0; t) = g

1

(t) 0 � t � T(3)

v

x

(a; t) = 0 0 � t � T(4)

and initial conditions

v(x; 0) = g

2

(x) 0 � x � a(5)

w(x; 0) = 0 0 � x � a:(6)

We are interested in the following problem:

Find the nonlinearity f as the unique solution of the overdetermined boundary value prob-

lem (1) - (6) and

v(0; t) = h(t):(7)

We will prove the following theorem:

Theorem: Suppose g

1

2 C

2+�

([0; T ]), g

2

2 C

3+�

([0; a]) and h 2 C

2+�

([0; T ]) for � 2 (0;

1

2

)

and h and g

1

su�ciently large in norm. Assume also that they satisfy all necessary com-

patibility conditions, and that g

2xx

� 0 for 0 � x � a holds. Then for any T > 0 there

exists a unique solution

(v; w; f) 2 X

�

�X

�

� C

1+�

(IR)

to the inverse problem (1) - (7). Here

X

�

:= fu 2 C

2+�;1+�

(Q

T

) : u

x

; u

t

2 C

2+�;1+�

(Q

T

)g

where Q

T

:= (0; a)� (0; T ).

Existence and Stability Of Spiky Pattern For Reaction-Di�usion Systems

Juncheng Wei

We consider the following reaction-di�usion system in R

n

, n = 1; 2;

8

>

>

>

>

>

<

>

>

>

>

>

:

A

t

= �

2

�A� A +

A

2

H

; x 2 


�H

t

= D�H �H + A

2

; x 2 


A > 0; H > 0

@A

@�

=

@H

@�

= 0 on @


(8)
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In particular we are interested in the role of D on the existence and stability of peaked

solutions. It is known that when D is +1 (shadow system case), there are many boundary

and interior peaked solutions, but only one of them is stable. The main issue of this talk

is to study the situation when we move D from +1 to O(1). We present two interesting

results: �rst there exist a sequence of critical values

D

K

=

8

>

>

>

<

>

>

>

:

1

K

2

(log

p

3)

2

if n = 1;

j
j log

1

�

2�K

if n = 2;

such that when D < D

K

, K�peaked solutions are stable and when D > D

K

, K-peaked

solution is unstable.

Our second result concerns the existence and stability of asymmetric patterns: we

show that there exists multiple asymmetric patterns. They are generated by exactly two

types-type A and type B.

We also discussed the existence of clusters.

Blow-up phenomena in degenerate parabolic equations

Michael Winkler

We consider positive solution to

u

t

= u

p

u

xx

+ u

q

in (�L=2; L=2)� (0; T )

u

j@


= 0

u

jt=0

= u

0

;

(1)

where p; q � 1. We show that blow-up in �nite time occurs if q = p + 1 and L > �, or

if q > p + 1 and u

0

is su�ciently large. At t = T , the \apparent mass"

u(t)

maxu

of such

a solution concentrates on a subset S of 
 with measure: greater than or equal to � if

q = p+ 1, or zero if q > p+ 1.

We also study the e�ect of a further source term of gradient type, leading to the equation

u

t

= u

p

u

xx

+ u

q

+ u

r

u

2

x

;

p; q � 1, r � 0,  > 0.

Some inequalities related to isoperimetric inequalities with partial free

boundary

Meijun Zhu

The main purpose of this paper is to prove a sharp Sobolev inequality in the exterior of

a convex bounded domain. There are two ingredients in the proof: One is the observation

of some new isoperimetric inequalities with partial free boundary, and the other is an inte-

gral inequality (due to Du�) for any nonnegative function under Schwarz equimeasurable

rearrangement. These ingredients also allow us to establish some Moser-Trudinger type

inequalities, and obtain some estimates on the principal frequency of a membrane with

partial free boundary, which extend early results of Nehari and Bandle for two dimensional

domains to the one for any dimensional domains (dimension � 2).
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On a simpli�ed 1D model of uid-solid interaction

Enrique Zuazua

(joint work with J.L. V�azquez)

In this lecture we present some recent joint work with J. L. V�azquez on a simple model

in one space dimension for the interaction between a uid and a solid mass. The uid is

governed by the viscous Burgers equation and the solid mass, which shares the velocity

of the uid, is accelerated by the di�erence of pressure at both sides of it. We describe

the asymptotic behavior of solutions for integrable data using energy estimates and scaling

techniques. We prove that the asymptotic pro�le of the uid is a self-similar solution of

the Burgers equation with an appropriate mass and we describe the parabolic trajectory

of the solid mass. We also prove that, asymptotically, the di�erence of pressure to both

sides of the mass vanishes. Finally, we consider the case of a �nite number of masses. We

show that they may not collide in �nite time.

Edited by J. Busca
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