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The meeting was organized by Eberhard Becker (Dortmund), Christian Berg (Kgbenhavn)
and Alexander Prestel (Konstanz). The abstracts of the talks are listed below. The list
begins with Becker’s introductory talk and continues in alphabetical order according to
the speakers’ last names.

The concept of the meeting
EBERHARD BECKER

The meeting brings together researchers from various areas in mathematics to discuss re-
cent results and future directions in the study of positive polynomials. More precisely,
the theory of moments in functional analysis, real algebraic geometry, optimization the-
ory, applications in engineering as well as symbolic algorithms and complexity issues in
computational real algebraic geometry formed the topics of this meeting. K. Schmiidgen’s
solution of the moment problem for compact semialgebraic sets in 1990 and the subsequent
refinements by Putinar et al., the algebraic approaches by Wérmann, Prestel/Jacobi were
the topic of many talks. On the other hand, modern optimization and its application to
minimizing polynomials on semialgebraic sets, where the former methods are applied, took
a great part in the meeting. All was supplemented by applications to control theory and
algorithmic issues.



Abstracts

Representation of positive functions by analytic or smooth functions
FRANCESCA ACQUISTAPACE
(joint work with Carlos Andradas and Fabrizio Broglia)

For a not bounded basic closed set X = {t; > 0,...,¢, > 0} and a polynomial p verifying
p >0 on X we find a representation

p=oy+ o1ty + -+ 0,1,

where 0¢, 01, ...,0, are analytic functions strictly positive on R", hence squares.

This is a consequence of a strict positivstellensatz for the ring O(R"™) of global analytic
functions. A similar result can be proved also for the ring C¥(R"), 0 < k < co and for the
ring D*(R"), 0 < k < oo of definable functions on a o(rder)-minimal structure expanding
(R, exp).

Barrier functions for positive matrices and polynomials
ANDREAS BERNIG
(joint work with Eberhard Becker and Antonio Diaz Cano)

After the definition of barrier functions, I study a simple example (the cone of positive
definite symmetric matrices) from the differential-geometric viewpoint. This yields to
a very well-known symmetric Riemannian manifold of rank n. Concerning the cone of
positive polynomials, I propose a good candidate for a barrier function, satisfying at least
3% of 4 required properties.

Algebraic Varieties Arising in Truncated Complex Moment Problems
RAUL E. CURTO

Given complex numbers

Y= 7(4) > Y00, Y015 Y105 Y025 V11, Y20, Y03, Y12, V21, V30, Y045 V13, V22, V31, V40,

with v;; = 7ji, the quartic complex moment problem for « entails finding conditions for
the existence of a positive Borel measure y, supported in C, such that

Vi = /Eizjdu (0<i+j<A4).

In joint work with Lawrence A. Fialkow we have recently obtained a complete solution
to the quartic moment problem in the case when the associated moment matrix M (2)(y)
is singular. Each representing measure satisfies card supp p > rank M(2), and we have
developed concrete necessary and sufficient conditions for the existence and uniqueness of
representing measures, particularly minimal ones.

We show that rank A (2)-atomic minimal representing measures exist in the case the
moment problem is subordinated to an ellipse, parabola, a non—degenerate hyperbola.
If the quartic moment problem is subordinated to a pair of intersecting lines, minimal
representing measures sometimes require more than rank M (2) atoms, and those problems
subordinated to a general intersection of two conics may not have any representing measure



at all. As an application, we describe in detail the minimal quadrature rules of degree 4
for arclength on a parabolic arc.

We then extend our results to solve the so—called parabolic MP, that is, one in which
the columns of the associated real moment matrix Mg(n) (for arbitrary n > 1) satisfy
Y = X2 We do this by appealing to a crucial estimate linking the rank of Mg (n) and the
cardinality of the associated algebraic variety. Many of the results extend to other general
quartic MP, associated to the prototypical column relations Y X =1 and Y X = 0.

Truncated Multivariable Moment Problems
LAWRENCE FIALKOW

For complex numbers v = v = {7ij}o<i+j<on and K C C (closed), the moment problem
entails finding a positive Borel measure yu, supp p C K so that v;; = [Z'27dp (0 <
i+ 7 < 2n). In collaboration with R. E. Curto, we study conditions for the existence
of (finitely atomic) representing measures in terms of positivity and extension properties
of the moment matrix M (n)(y) associated to . Necessary conditions are that M(n) is
positive, recursively generated, and that card V' (y) > rank M (n), where V() is the variety
associated to y. We study polynomials p(z,%), degp < n, such that ") has a measure
whenever the above conditions are satisfied and there is a dependence relation p(z,z) =0
in the column space of M(n). Exactly which polynomials have this property is an open
question; examples include: any analytic polynomial p(z); y = 2%; Zz = a+ bz +cz+dz* +
€zZz.

Hyperbolic Polynomials: theory and applications
OsMAN GULER

These polynomials originated in partial differential equations. Such a polynomial p(x) has
a convex cone associated with it, called the hyperbolicity cone. We show that — log p(x) is
a self-concordant barrier, with striking properties which are useful for designing long—step
interior point methods. Many practical problem classes in convex programming can be
looked at from this point of view, such as linear programming, semi—definite programming,
etc. There are also potentially useful problem classes that need future development such
as programming over some symmetric functions. Also, we discuss the roots of such poly-
nomials: they satisfy many inequalities similar to the ones satisfied by the eigenvalues of
symmetric matrices. We end the talk with a speculation that something like the Horn
conjecture (recently solved) might be true for the roots of hyperbolic polynomials.

Barrier Functions for Symmetric Cones
RAPHAEL HAUSER

Self-scaled barrier functions are fundamental objects in the theory of interior-point meth-
ods for linear optimization over symmetric cones, a special class of cones of positive poly-
nomials.

Symmetric cones can be classified in terms of a decomposition into irreducible compo-
nents. We show that self-scaled barriers allow a similar classification: Any self-scaled
barrier on a symmetric cone K can be decomposed into irreducible components that are
affine transformations of the universal barrier on the irreducible components of K.



Solving some global optimization problems via positive polynomials
JEAN B. LASSERE

We consider the global minimization problem P of minimizing a polynomial f over the set
K :={x e R" | gi(r) > 0,i =1,...,m} where the g;’s are all real-valued polynomials.
We define a sequence {Q;} of positive semi-definite relaxations of P. Then under the
condition that the Jacobi—Prestel-Putinar “linear” representation holds for polynomials f
strictly positive on K, we prove that infQ; 1 infP as i — oo. In many cases, the global
optimal value is obtained at a particular relaxation (when the representation holds for
f —infP). Several other issues are discussed.

Optimization of polynomials using partial moment sequences
MURRAY MARSHALL

Let R[z] denote the polynomial ring R[z1, ..., z,]|. Fix a finite set S = {g1,...,¢s} in R[z],
let Ks ={peR"|gi(p) >0,i=1,...,s} and let Mg denote the quadratic module in Rz]
generated by S. Fix f =3" f(v)2? € Rlz] and assume f attains a finite minimum value
f*on Kg. Let A(d) denote the set of n—tuples a = (v, ..., q,), «; integers, > «; < d and
let Myy = {y € R*?9 | 3 = 1}. Define f; to be the minimum value of A = S fMyy y
running through Moy, (with 2d > deg(f)) subject to the constraints:

(1) For each i = 0,..., s the symmetric matrix ((g; *y)a+s), @, 8 € A(d— %) is PSD where
v; = deg(g;) and gy := 1.

Then {f4}  and f*° < limg,o fa < fY < f* where f*° = sup{\ | f — X € Mg},
fY =sup{\ | f — A € Mg}, where Mg is the closure of Mg. The exact relationship
between f5°5, limy_, . fq4, and fV is not well-understood. In the special case where Ky is
compact and Ir € R such that r — ||z||* € Mg, Lasserre used a result of Jacobi-Putinar to
prove that f5°° = limg_,o fq = f¥ = f*. If the moment problem fails for Mg then f¥ < f*
in general. B
Now define f; to be the minimum value of A such that Jy € My, satisfying:

(2) For each e € {0,1}", the symmetric matrix ((¢° * y)atg), o, 3 € A(d — %) is PSD and
(3) For each e € {0,1}", the symmetric matrix ((¢°(A — f) *y)ats), @, € A(d— %5 — de—ng)
is PSD.

Here, ¢¢ := g{" --- g5, v, := deg(g°). The sequence {f4} is increasing. Using the Posi-
tivstellensatz, f; = f* holds for any d sufficiently large (but depending only on the degrees
of f and the g;).

Positive Polynomials and Optimization
Y URII NESTEROV

We consider some questions related to convex representation of positive polynomials of
one and two variables. We show that in one dimension the condition number of Hankel
matrix grows exponentially with dimension. For polynomials of two variables we show that
some simple techniques (passing to polar coordinates, fixing the signs of variables) strictly
increase the set of positive polynomials representable as a sum of squares.



The Positivstellensatz and Semidefinite Programming
PABLO A. PARRILO

We discuss the application of semidefinite programming techniques to problems in semial-
gebraic geometry. In particular, we presented a methodology for finding a priori bounded
certificates to the Positivstellensatz equation to prove emptiness of semialgebraic sets. A
partial comparison with alternative representations of non-negativity is made. Addition-
ally, a simple constructive solution to the problem of finding linear representations of
nonnegative polynomials over finite varieties was presented.

Representations of Real Rings and Positive Polynomials
ALEXANDER PRESTEL

Let A be a commutative ring with 1. A subset P of A is called a preordering of A if
P+PCP,P-PCP,PA>C P,—1¢ P. Pis called archimedean if to every a € A there
exists n € Ns.t. n—a € P. If P is a maximal preordering, it also satisfies PU —P = A
and PN —P is a prime ideal of A. Denote by X}** the set of maximal preorderings of A
containing a given archimedean preordering 7" of A. For P € X*** the homomorphism
op: A — A:= A/(PN —P) maps into R with pp(P) C R*. ¢p is continuous in the
canonical topology of X,

Real Representation Theorem: The map defined by ®7(a) = a with a(P) = pp(a)
is a homomorphism @7 : A — C(X»** R) such that &7 (A) is dense in C(X*** R) and

a>0on X7 <= na+1€T forallneN.

We explained the history of the theorem, its proof, and applications to the representa-
tion of positive polynomials, strictly positive on a compact semi—-algebraic subset of R"
(Schmiidgen’s Theorem).

Quadrature domains and some of their applications
MIHATI PUTINAR

The L—problem of moments studied by A. A. Markov leads, when extended to several
variables, to extremal solutions of the form

d:u = X{p<0} de’,

where p is a polynomial and dz is Lebesgue measure. It was shown by M. Krein that these
solutions, i.e. semi—algebraic sets, are characterized by finitely many moments.

[t remains an open question to understand the algebraic/differential mechanism which
explains this finite determination.

In the case of 2 real variables an exponential transform of the generating function of
moments “linearizes” and explains via some positive definite kernel, this finite determina-
tion phenomenon. The resulting planar domains are the quadrature domains introduced
by D. Aharonov and H. S. Shapiro in 1971 in connection with some conformal mapping
problems.

These domains naturally appear in fluid mechanics, potential theory and operator the-
ory.



A View of Interior—Point Methods for Convex Optimization
JAMES RENEGAR

The principal mathematical ideas underlying interior—point methods for general convex
optimization problems are presented. The ideas are developed from the perspective of
Riemannian geometry, the local inner product being induced by the Hessians of a barrier
functional whose domain is the feasible region of the optimization problem to be solved.

Cones of positive semidefinite and sums of squares of forms and duality
BRUCE REzZNICK

Let P, ,, and X, ,, denote the cones of forms of degree m in n variables which are positive
semidefinite and a sum of squares respectively. A great unsolved mystery is why P, ,,2%,
for sufficiently large (n,m), while a psd form is a sum of squares of rational functions. To
understand the differences between these cones, we use the venerable inner product familiar
from 19th c. apolarity and 20th ¢. harmonic analysis. Under this inner product, P}, is the
cone of sums of mth powers of linear forms and X} | is the cone of forms whose associated
generalized Hankel matrix is psd. The inner product has many algebraic properties, and
these should be exploited too.

Computational problems related to positive polynomials
FABRICE ROUILLIER

Deciding if a semi-algebraic set is empty or not is critical for the study of problems related
to positive polynomials. Only few implemented algorithms exist for this purpose : the
Cylindrical Algebraic Decomposition (CAD) is the main one. Unfortunately, only small
problems (with few variables and low degrees) can be solved using such methods.

On the other hand, many algorithms with a good asymptotic complexity are proposed
in the literature. Most of them are based on the so called Critical Points Method, for
computing at least one point on each semi-algebraically connected component of a real
algebraic set, used as a black box for deciding if a semi-algebraic set is empty or not.
Unfortunately, due to the use of various tricks for keeping a good theoretical complexity
(sum of squares, infinitesimal deformations, etc.), straightforward implementations of these
algorithms are inefficient.

We propose a new version of the Critical Points Method using the distance function to
one (well chosen) point. Given any algebraic set V', we define an algebraic set C(V, A) that
contains these critical points and a sub-algebraic variety of V. Our main result consists in
proving that a good point A may be chosen so that C(V, A) is the disjoint union of a finite
set of points and a sub-algebraic variety W of V' with smaller dimension than V', without
any restriction neither on the variety (does not need to be smooth or compact) nor on
the set of polynomials used in the computations for the definition of V' (for example, the
generated ideal does not need to be prime).

We are thus led to compute the isolated points of C(V, A) and to study, in the same way,
the sub-variety W. We therefore obtain an algorithm without any infinitesimal deformation
whose proof is simply based on the fact that the dimension of the studied varieties strictly
decreases at each step.

The limitations of such an algorithm are pointed out and solved (number of determi-
nants) : we show how to use the theory of polynomial triangular sets to optimize the



computations. We finally present some practical experiments which illustrate the practical
behavior of our algorithm. It shows the interest of our approach and justifies our choices.

Degree bounds for Positivstellensatz
MARIE-FRANCOISE ROY

Stengle’s positivstellensatz (1976) is the following statement:
Let F', G, H be 3 families of polynomials. Let M(F') be the monoid generated by F,
C(F U @) the cone generated by F'U G, Z(H) the ideal generated by H. Then

{reR"|VfeF f(x) >0, Vge G g(x) >0, Vh € H h(z) =0} =
= ImeM3IceCHel m+c+i=0
It can be seen as a way of providing algebraic certificates for emptiness.
The first proof is based on Zorn’s lemma.
Explicit bounds were given by H. Lombardi in 1993, they are not elementary recursive.

Elementary recursive bounds for the degree (a tower of 3 exponents) can be obtained by
a method for constructing identities through case by case reasoning using

e algebraic identities for Hankel matrices (1 level of exponents)
e cylindrical decomposition method (2 levels of exponents).

Stable preorders and the non—compact moment problem
CLAUS SCHEIDERER

A preorder P C R[xy,...,x,], generated by g1,. .., g, is said to be stable if for every d € N
there is N = N(d) € N such that every f € P with deg(f) < d has a representation

f: Z sy-glul...g;j’”
ve{0,1}r
with sums of squares s, of degree < N. A theorem obtained in joint work with V. Powers
says that under certain natural algebro—geometric conditions on the set

K:{glzoa"'agT‘ZO}a

the preorder is stable and closed. This implies a large class of non—compact sets K for
which the K—moment problem is not finitely solvable. On the other hand, we discuss
compact sets K. If dim K > 3, P is never stable. The question is considered in dimensions
< 2. We illustrate it by applying the following local-global principle: If K is compact (of
any dimension) and f > 0 on K, with only finitely many zeros My,..., M,, on K, then
fePiff fe ]31\2 forv = 1,...,m, where ]3]; is the preorder generated by P in the

completed local ring 6]\; = R[z]m,, - A variety of concrete examples is discussed, and the
question is raised whether P is stable in these cases. After the talk was given, Prestel gave
an argument which shows that the answer to this question is negative in many cases.

Positive Polynomials and Moment Problems
KONRAD SCHMUDGEN

In the last decade a close interaction between semi-algebraic geometry and the moment
problem emerged. In the first part of the talk the operator-theoretic approach to the
moment problem is developed. Let A be the complex unital x—algebra generated by k real



functions hy,...,hy on a set. Let L be a linear functional on A such that L(ff) > 0 for
all f € A. The generators hy, ..., h; act as pairwise commuting symmetric operators on
the Hilbert space H obtained from L by the GNS—construction. If the operators hq, ..., h;
are bounded, then

L(p(h)) = / L PVIEILY,

p € Clz|] = Clxy,...,zt], where E()) is the joint spectral resolution and o(h) is the joint
spectrum of the tuple h = (hy,...,h;). In the general case there exists a positive Borel
measure 1 on R¥ such that

L(p(h)) = / p(\)dp(N),

p € Clz], if and only if there is a tuple H = (Hy, ..., Hy) of strongly commuting self-
adjoint operators on a Hilbert space H O H such that Hy D hq,..., Hy O hy. It is shown
that the latter is true if the operators ho, ..., h; are bounded.

In the second part of the talk the moment problem and a possible generalization of
the strict positivstellensatz for non—compact semi—algebraic sets are discussed. Among
others we obtain the following result: Let C' be a compact semi-algebraic subset of R?
and let K be a semi-algebraic set in R¥*! with preorder P. Let L be a linear functional
on Clzy,...,x4:1] such that L(P) > 0. If K C C' x R, then there exists a positive Borel
measure 1 on R such that

L(p(z)) = /p()\)du()\) for all p € Clzy, ..., z411)

If K =C x R, then the measure p can be chosen such that supp u C K.
Some interesting recent results by S. Kuhlmann / M. Marshall and by V. Powers / C.
Scheiderer are also discussed.

A new approach to Schmiidgen’s theorem and complexity
MARKUS SCHWEIGHOFER

We prove the following bound for Schmiidgen’s Positivstellensatz: Suppose ¢1,...,¢m €
R[X7,. .., X,] are polynomials defining a non-empty semialgebraic set

contained in the open ball around 0 of radius r. Suppose € > 0. Then there exists ¢ € N
such that all f € R[X,...,X,] of degree d € N strictly positive on S can be written

F= Y wgl-ar
S0}

where, for all 6 € {0,1}™, g5 is a sum of squares of polynomials such that the degree of
D ... gdm does not exceed

4591 )
(et ) 1),

Here || f|| the maximum of the absolute values of the coefficients of f. The proof com-
bines a “tame” version version of the speaker’s “algorithmic approach to Schmiidgen’s
Positivstellensatz” (Journal of Pure and Applied Algebra 166 (2002) 307-319) based on
Pélya’s theorem on positive forms with a complexity bound for Pélya’s theorem as given




by Loera and Santos and improved by Powers and Reznick, and a Lojasiewicz inequal-
ity. The result can be used to make statements about the duality gap in optimization of
polynomials using partial moment sequences and Positivstellensatze.

Applications of Positive Polynomials in Control Theory
BERND TIBKEN

In the design of control systems the main issue is to ensure asymptotic stability of the closed
loop system, i.e. the state z(t) of the system has to be bounded and lim;_,, (t) = 0 has
to hold for all xz(¢) with initial condition x(0) near the origin 0 of the state space. The
basic tool to investigate asymptotic stability and to estimate the region of attraction

Q= {a"| tllglo z(t) = 0,2(0) = 2°}

are Lyapunov functions. These functions are assumed to be positive definite near 0 and
the time derivative along the flow of the control system has to be negative definite near 0
in order to ensure asymptotic stability. An estimate of the region of attraction is given by

S={z|V(z)<c} with c¢=min{V(z)|V(z) =0,z #0}

where V (z) is the Lyapunov function used and V' (z) is the time derivative. For polynomial
dynamical systems and polynomial Lyapunov functions this is a polynomial optimization
problem. In order to solve the problem globally optimal the representation of positive poly-
nomials on compact semialgebraic sets introduced by Jacobi and Prestel is used. Namely,
we have _
—V(z) = q(z) + q(2)(¢ = V(z))

with ¢y and ¢; sums of squares and ¢ < ¢, respectively. This condition is reformulated
as an LMI-problem using a simple ansatz of bounded degree for ¢; and solving for ¢g by
comparison of coefficients. The gramian matrices of ¢y and ¢; define the LMI constraints
and ¢ (which has to be optimized) enters as generalized eigenvalue. Thus, ¢ is computed by
a LMI constrained generalized eigenvalue problem. Some examples show the effectiveness
of this approach. In principle only lower bounds for ¢ are computed but these lower bounds
increase strictly with the degree of the ansatz for ¢;. In most of the practical cases degree
two or four are sufficient. The method has been tested for several benchmark examples
from literature and performed very well.

Functional Analysis Methods in the Study of Positive Polynomials
FLORIAN-HORIA VASILESCU

The description of positive polynomials is a subject of interest in both algebraic geometry
and functional analysis, involving these two domains in a rather intricate manner. In
spite of various difficulties related to the structure of positive polynomials, in some cases
one can solve moment problems using results of algebraic geometry. Conversely, solving
appropriate moment problems turns out to be an efficient method leading to description
of some classes of positive polynomials.

Using functional analysis methods, more precisely methods related to the theory of
commuting self-adjoint operators, M. Putinar and myself proved the following result:

Theorem: Let p,pq,...,p, be polynomials in n variables, having real coefficients and
even degrees. Let also

Ot)= (L +t3+---+t3) " t=(t,...,1,) € R"



We denote by P, Py, ..., P, the homogenizations of p, py, ..., p, respectively, and assume
that P(z) > 0 whenever z € (,—, P, ' (R"), # # 0. Then there exists an integer v > 0
and a finite collection of real polynomials {q;, qx;}, I € L, k = 1,...,m, such that

p(t) = O(t)* (Z a(t)’ +) Zpk(t)qkl(w) . teR"

leL k=1 leL
The proof is based on an integral representation formula as well as a separation lemma.

Edited by Markus Schweighofer
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