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The Arbeitsgemeinschaft was organized by Paul Seidel (IAS) and Kenji Fukaya (Kyoto).

The main theme of the meeting was homological mirror symmetry. The �rst talks in-

troduced the concept of A

1

{ algebras and A

1

{ categories, the main algebraic structure

underlying the theory. A

1

{ structures were �rst introduced by Stashe�, and subsequently

applied to homological algebra by many authors. Floer homology groups for Lagrangian

intersections carry the structure of A

1

{ category, called Fukaya category. According to

homological mirror conjecture, this structure should coincide with the similar structure

arising in the category of coherent sheaves on complex manifolds. After discussing sev-

eral special cases of this conjecture, the last part of the meeting focused on the general

homological mirror conjecture.

Inspiring talks at this meeting gave a comprehensive overview of the homological mirror

symmetry and stimulated many fruitful discussions.
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Abstracts

A

1

{ algebras

M. Markl

The aim of this introductory talk is to give a precise de�nition of an A

1

{ algebra and of

all its \materialisations" { as a co{di�erential on the tensor co{algebra as well as a degree

1 vector �eld in a formal non{associative geometry.

We discuss homotopy invariance of A

1

{ algebra and we show how these structures relate

to our chain homotopy equivalence. This all follows from the fact that A

1

{ algebras are

homotopy invariant concepts in algebra.

A

1

{ categories

Yu. Drozd

The talk covers main de�nitions: A

1

{ categories and pre - categories, A

1

{ functors, their

natural transformations, A

1

{ category of functors. We also give some examples: DG {

categories viewed as A

1

{ categories, A

1

{ (pre)category of curves on a Riemann surface

etc. Especially, representable functors (to the category of complexes) are considered, as

well as an A

1

{ analogue of Yoneda's theorem. We also consider the notions of units (strict

unit, homological and homotopy units) of quasi { isomorphisms, especially of equivalence

of A

1

{ categories, and their relations.

Morse theory 1

C.G. Liu

In this talk we give a brief introduction to the Morse homology theory and the cup product

structure of the Morse homology.

For a closed Riemann manifold M and a Morse function f de�ned on it, we de�ne the

Morse { Witten complex with the boundary @. Since @

2

= 0 we have the Morse homology

H

�

(C

�

(f); @). This Morse homology is isomorphic to the usual homology: H

�

(C

�

(f); @)

�

=

H

�

(M;Z).

Morse theory 2

S. Goette

Starting from the non-associative cup product in Morse theory introduced in the previ-

ous talk, Fukaya and Oh de�ne an A

1

-pre-category MS(M; g) on a Riemannian mani-

fold (M; g). The objects of MS(M; g) are the smooth functions on M . For transversal

pairs f

1

, f

2

, they take

�

Hom

MS

(f

1

; f

2

); m

1

�

to be the Thom-Smale complex generated by

the critical points of f

2

� f

1

. The higher compositions maps m

2

, m

3

, : : : are de�ned by

counting embeddings of ribbon trees into M such that every edge follows the gradient 
ow

of one of the functions f

j

� f

i

. Thus, m

2

is just the cup product of the previous talk. The

transversal sequences form a Baire set chosen such that the intersections at the vertices of

each tree are transversal.

Kontsevich and Soibelman noticed that the de�nition above �ts nicely together with

results of Merkulov and Harvey-Lawson. They start with an A

1

-category with objects as

above, but let

�

Hom

MS

(f

1

; f

2

); �

1

�

be the complex of smooth di�erential forms onM . The
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composition map is �

2

= ^, �

3

= �

4

= � � � = 0. Passing to currents, Harvey and Lawson

show how to project the de Rham complex homotopically onto the complex generated by

�-distribution along the stable cells of f

2

�f

1

, if f

2

�f

1

is a Morse function and rF satis�es

Smale's transversality conditions. In such a situation, Merkulov gave inductive formulas

for the de�nition of an A

1

-structure on the image of such a projection. In this special

case, one obtains precisely the A

1

-precategory of Fukaya and Oh. The remarkable fact is

that the combinatorics of Merkulov's formulas can be described by precisely those ribbon

trees that appear geometrically in the construction of Fukaya and Oh.

Obstructions

T. Kuessner

We consider weak A

1

-algebras, i.e., families of maps fm

n

: V


n

! V g

n�0

of degree 2� n

such that

^

d (v

1


 : : :
 v

n

) :=

P

k�0

P

n�k+1

l=1

(�1)

jx

1

j+:::jx

l

j+l�1

x

1


 : : :
 x

l�1


m

k

(x

l


 : : :
 x

l+k�1

)
m

l+k


 : : :
 x

n

satis�es

^

d

2

= 0. In particular, we have m

2

1

(v) = (�1)

jvj

m

2

(v;m

0

(1)) � m

2

(m

0

(1) ; v),

that is, m

0

is an obstruction to the existence of H

�

(V;m

1

).

However, for any b of degree 1 satisfying the Maurer-Cartan equation

P

k�0

m

k

(b
 : : :
 b) = 0 we get that the deformed m

1

-operator m

b

1

(v) :=

P

k;l�0

m

k+l+1

�

b


k


 v 
 b


l

�

satis�es

�

m

b

1

�

2

= 0. Thus we get a collection of 'linearised

cohomology groups' H

�

�

V;m

b

1

�

indexed by solutions of the Maurer-Cartan equation.

We illustrate the use of linearised cohomology groups with the following example. Chekanov

constructed invariants of Legendrian knots which are stronger than the classical ones and

which are actually a toy example of the Fukaya category. The invariant is a di�erential alge-

bra, associated to a knot diagram by a combinatorial construction such that the Legendrian

Reidemeister moves change the di�erential algebra only up to stable tame isomorphisms,

in particular let its cohomology una�ected. However, to get computable invariants one has

to consider a collection of linearised cohomology groups (which are indeed strong enough to

distinguish Legendrian knots with the same Maslov- and Thurston-Bennequin-numbers).

Introduction to Floer Theory

H. V. Le

With the name of Floer there are 3 homology theories: instanton Floer homology, Floer

homology of periodic Hamiltonian systems and Lagrangian Floer homology. All of three

Floer homology theories are generalizations of the Morse theory for the in�nite dimensional

spaces. Our introduction is devoted to the Lagrangian Floer homology. We consider the

Floer homology the the exact case, i.e. �

2

(M) = 0, where the Floer homology of a pair of

Hamiltonian deformation equivalent Lagrangian submanifolds can be computed. We also

recall the Oh extension of Floer homology for the monotone case, i.e. �

2

(M;L) = 0 and

the introduction by Seidel of Floer homology for graded Lagrangian submanifolds. Several

applications of Floer homologies are considered.
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Fukaya category for exact symplectic manifolds

B. Siebert

The topic of this talk was a discussion of the Fukaya category under the (restrictive)

assumption that all involved Lagrangian submanifolds L are exact. This means ! = d�

and �j

L

= dK. In this case the technical problems of the general case are absent. In the

talk I gave the heuristic de�nition of the higher products and mentioned the problems and

the possible solutions of making it precise in the general case. Then I explained the use of

the assumption \exact". Finally I discussed the case of cotangent bundles. In particular, I

sketched the proof of Fukaya and Oh, which provides an equivalence with A

1

pre-category

de�ned by gradient 
ow of Morse function as introduced in previous talk.

Derived categories

B. Keller

We �rst de�ne the derived category of an abelian category following Grothendieck-Verdier.

Then we give Beilinson's description of the derived category of coherent sheaves on pro-

jective n-space following his two-page paper from 1978. Finally, we construct the (perfect)

derived category of an A-in�nity category using twisted objects following Kontsevich's talk

at the 1994 ICM in Zurich.

Introduction to homological mirror symmetry 1

J. Stienstra

The hypergeometric systems of di�erential equations of Gelfand { Kapranov { Zelevinsky,

for appropriate choice of the parameters, are highly relevant in Mirror Symmetry. Solutions

to this system in the form of period integrals correspond to looking from that side of the

mirror which corresponds to variation of complex structure on Y . Solutions in series form

following the classical Frobenius method correspond to the other side of the mirror dealing

with variations of symplectic structure on X. The actual solutions on this side correspond

to elements in the �

p

H

p;p

(X) part of the cohomology, or rather to elements of Chow ring


Q or K

0

(X)
Q. In the spirit of homological mirror symmetry one should \lift" these

elements to objects in the bounded derived category of coherent sheaves on X, and then

study the monodromy representation in Aut(D

b

(cohX)). For some loops the monodromy

action consists of tensoring with a line bundle.

Not mentioned in the talk was the fact that the talk focused in fact just to one \phase"

(in physics terminology) and that understanding of the monodromy representations in

Aut(D

b

(cohX)) requires also understanding phase transitions.
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Introduction to homological mirror symmetry 2

K. Fukaya

This is a survey talk on homological mirror symmetry. Following Kontsevich's paper in

ICM Z�urich, homological mirror symmetry is explained as an isomorphism of two derived

categories D

b

(coh(M

c

)) and D

b

(F (M

s

)). D

b

(coh(M

c

)) is a derived category of coherent

sheaves on complex manifold M

c

and D

b

(F (M

s

)) is a derived category of A

1

category

F (M

s

), whose objects are roughly Lagrangian submanifolds of a symplectic manifold M

s

.

One of the consequences Aut(D

b

(coh(M

c

)))

�

=

Aut(D

b

(F (M

s

))) is discussed, according to

the results of P. Seidel, R. Thomas etc. Namely, the symplectic di�eomorphism M

s

!M

s

gives a Dehn twist along a Lagrangian sphere S

n

� M

s

, which corresponds to a Fourier {

Mukai transform F ! [Ext(E ;F)
 E ! F ], where E is a mirror of S

n

, which is called a

spherical object.

Floer homology in general case

Y.-G. Oh

In this talk, I will explain Fukaya-Oh-Ohta-Ono's construction of Lagrangian intersection

Floer homology in the framework of deformation theory of �ltered A-in�nity algebras and

their bi-modules. First I will explain how to associate a �ltered A-in�nity algebra (with m

0

term) to each (oriented spin) Lagrangian submanifold which is a quantum deformation of an

A-in�nity algebra over a countably generated singular cochain complex of the Lagrangian

submanifold and then explain an obstruction theory for killing the m

0

-term of the �ltered

A-in�nity algebra. This then will be used to de�ne the Floer cohomology for the pairs of

un-obstructed Lagrangiain submanifolds.

Virtual fundamental chains and Kuranishi structure

U. Frauenfelder, K. Wehrheim

The moduli spaces of pseudo-holomorphic curves that are used to de�ne the di�erential

and higher products in Floer homology are in general not smooth manifolds. This is due to

the occurrence of multiply covered holomorphic discs or spheres. These have a nontrivial

isotropy group, and it may not be possible to perturb the equation such that the linearized

operators become surjective, and at the same time preserve this symmetry. So in general,

the moduli spaces are locally homeomorphic to s

�1

(0)=�, where � is a �nite group and s

is an equivariant section of a �nite dimensional vector bundle E ! V . Now a Kuranishi

structure on a space X assigns to each point a germ of such a local description with some

compatibility conditions. In particular, dimV � rankE is constant, but rankE itself can

vary { it is closely related to the cokernel of the linearized operator. For a compact space

with a Kuranishi structure, one can de�ne a virtual Euler class on the union (modulo

transition maps) of all V=�. By a strongly continuous map f : X ! Y (that extends

to V locally), this cycle can be pushed forward to a rational homology class on Y of the

expected dimension.

As an example and application, we indicate how the space of stable maps to a symplectic

manifold M can be equipped with a Kuranishi structure, which leads to the de�nition of

Gromov-Witten invariants with rational coe�cients for general symplectic manifolds.
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SYZ conjecture

M. Schwarz

This talk gave an introduction to the Strominger { Yau { Zaslow approach to mirror

symmetry. The main objects are special Lagrangian submanifolds of a given Calabi { Yau

manifold together with their moduli spaces of 
at U(1) { connections.

After the de�nition of special Lagrangian submanifolds as calibrated submanifolds with

respect to the calibration by Re
, where 
 is a covariantly constant holomorphic (n; 0)

{ form, it was shown that the deformation space M

SL

of a given special Lagrangian

submanifold is unobstructed and is a smooth �nite dimensional manifold with harmonic

1 { forms � 2 H

1

(L) corresponding to �rst order deformations. This is a result due to

McLean.

If L is a 3 { torus in a Calabi { Yau 3 { fold, then dim(M

SL

) = 3 and together with

the dual 3 { torus of 
at U(1) { connections this forms a 6 { dimensional manifold with

canonical K�ahler metric.

Tori

B. Kreu�ler

The homological mirror symmetry conjecture, as formulated in the previous talks, is up to

now only partially shown and this only in very special cases. The major achievements are

available in the case of tori, especially of real dimension two.

Let E

�

be the real two torus R

2

=Z

2

equipped with complexi�ed K�ahler form �dx ^ dy,

where � is in the upper half plane H = R � R

>0

. Its mirror complex manifold is the

elliptic curve E

�

= C =(Z � �Z). There is an explicit description of the pre-A

1

-category

F(E

�

), Fukaya's category. Its objects are triples (�; �;M), where � � E

�

is the image

of a line with rational slope in the universal cover R

2

of E

�

, i.e. a special Lagrangian

submanifold with respect to the standard complex structure on E

�

. The grading of � is

given by a real number �, such that i�� is a logarithm of the slope of a line representing

�. Finally, M denotes a local system on � whose monodromy has eigenvalues of modulus

one. The morphisms and compositions m

k

are de�ned for transversal collections of special

Lagrangians in the usual way.

Passing to cohomologyH

0

(F(E

�

)) allows us to construct a category (and not only a pre-

category), by using cohomology of local systems in the non-transversal case. By FK

0

(E

�

)

we denote the formal closure under �nite direct sums of H

0

(F(E

�

)). The theorem of

Polishchuk, Zaslow and the speaker gives an equivalence of categories �

�

: D

b

(Coh(E

�

))!

FK

0

(E

�

) which is compatible with shift functors and �nite direct sums.

In the higher dimensional case, a similar result is available. Work of C. van Enckevort

and K. Fukaya constructs a bijection on the level of objects and morphisms (which is

in general not known to be functorial) between subcategories of the relevant categories.

These subcategories consist of semi-homogeneous vector bundles on the holomorphic side

and linear special Lagrangian submanifolds, being the graph over a horizontal section of

the torus �bration on the symplectic side.
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Picard { Lefschetz theory

J. Ayoub

This talk deals with Lefschetz �brations in symplectic geometry. Such a �bration � : X !

S can only have �nitely many singular points, and all of them are non { degenerate.

We �rst de�ne the canonical parallel transport in \horisontal" direction, and use it to

construct Lagrangian sphere in smooth �bers. These are the vanishing cycles.

We then show how we express the monodromy maps around critical values using the

Dehn twist associated to these vanishing cycles.

Finally we associate to a Lefschetz �bration a directed Fukaya category. The derived

category of this A

1

category will be an invariant of the Lefschetz �bration.

Fukaya category in general case

P. Seidel

This talk explained the framework of general Fukaya categories, as developed by Fukaya-

Oh-Ohta-Ono. A particularly important point is the rather complicated relation between

Lagrangian submanifolds and objects of the category. This is due to the "obstruction"

coming from holomorphic discs ("instanton e�ects"). The main applications are of course

to homological mirror symmetry.

Edited by Darko Milinkovi�c
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