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Background

Over the last three decades mathematical research on classical Galerkin Finite Element
Methods (CGFEM), based on the use of continuous piecewise polynomial approximations,
has resulted in a coherent body of knowledge both in terms of theoretical foundations and
with respect to efficient and robust implementations. This general class of methods is
particularly well-suited for the numerical approximation of self-adjoint elliptic problems,
but exhibits instabilities when applied to problems of hyperbolic or nearly hyperbolic
character, such as transport (or transport-dominated) problems and problems of mixed
or changing type (e.g. mixed elliptic-hyperbolic problems, degenerate elliptic problems,
and the like). For such problems, Galerkin finite element methods based on the use of
discontinuous piecewise approximations are much more promising.

This family of numerical techniques, generally referred to as Discontinuous Galerkin Finite
Element Methods (DGFEM), has a long and distinguished history. Its roots can be traced
back to the work of Pian and collaborators in the early 1960s on hybrid methods for elliptic
problems (see also [?] for a historical survey); the mathematical analysis of hybrid methods
was initiated by Babuska [?]. In 1971, J. Nitsche [?] considered an alternative scheme where
to recover the optimal convergence rate. These ideas were further developed by Arnold [?],
Wheeler [?], and more recently by Oden, Babuska and Baumann [?], Riviere, Wheeler and
Girault, [?], Siili, Schwab and Houston [?], Arnold, Brezzi, Cockburn and Marini [?], and
Hansbo and Larson [?]. In a different context, and completely independently, discontinuous
Galerkin finite element methods were introduced by Reed and Hill [?], and Lesaint and
Raviart [?] (and further improved analytically by Johnson, Navert and J. Pitkdranta [?] and
Johnson and Pitkéranta [?]), in order to overcome the stability limitations of conventional
continuous finite element approximations

to first-order hyperbolic problems. Although subsequently much of the research in the field
of numerical analysis of partial differential equations concentrated on the development and
the analysis of CGFEM, in recent years there has been an upsurge of interest in discontin-
uous schemes. This paradigm shift was stimulated by several factors: the desire to handle,
within the finite element framework, nonlinear hyperbolic problems (see [?] and [?]) which
are known to exhibit discontinuous solutions even when the data are perfectly smooth; the
need to treat convection-dominated diffusion problems without excessive numerical stabi-
lization; the computational convenience of discontinuous finite element methods due to a
large degree of locality; and the necessity to accommodate high-order hp-adaptive finite
element discretizations in a flexible manner (see [?], [?]). The discontinuous Galerkin finite



element method can also be thought of as the high-order generalization of the classical cell
centre finite volume method — a popular discretization technique in the computational aero-
dynamics community. Finally, given that unlike their continuous counterparts DGFEMs
work well both for elliptic and hyperbolic problems without excessive stabilization, such
as SDFEM or the like, they lead to a unified framework of discretization methods for a
large class of partial differential equations with nonnegative characteristic form, including
(self-adjoint and non-self adjoint) elliptic problems, first-order hyperbolic problems and
various unsteady problems.

The meeting

The Oberwolfach meeting aimed to explore recent mathematical advances in the analysis
and implementation of discontinuous Galerkin finite element methods. This dual objective
is reflected by the list of participants for the meeting which includes mathematicians who
work on the analysis of these methods and engineers who use DGFEMs for large-scale
simulations. The primary goal was to bridge the gap between the (lack of) mathematical
understanding of the stability and accuracy properties of discontinuous Galerkin methods
and their successful implementation in engineering computations. The meeting was only
half-size, i.e. 25 participants were invited and a parallel meeting on dispersive wave equa-
tions also took place during this week. The meeting was successful in bridging the gap
between the elliptic and the hyperbolic communities. The techniques in the elliptic case
can be applied seamlessly also to hyperbolic problems, by merely taking into account the
proper design of the numerical fluxes for either problem. 25 Researchers from 8 coun-
tries attended the meeting and presented 21 lectures on their work. The two groups of
‘elliptic’ and ‘hyperbolic’ researchers exchanged ideas and strongly interacted. A strong
point of the meeting was the prominent presence of young researchers on the postdoctoral
and assistant professorial level. Their lively interaction and eagerness to discuss and to
tackle new problems will definitely continue beyond this Oberwolfach meeting. In addition,
lively exchanges of ideas on how to build good software based on discontinuous Galerkin
discretizations resulted as well. Highlights of the meeting included the presentation of
Professor Franco Brezzi on DGFEM for Reissner—-Mindlin plates. Professor Brezzi showed
new results (joint work with Professors Donatella Marini and Douglas Arnold) which in-
dicated that there are DG-discretizations which perform as well as the best known mixed
Finite Element Methods for the numerical solution of plate models with shear. In related
work, Professor Peter Hansbo showed compelling numerical evidence that suitable DG -
discretizations of elasticity problems are free of volume locking. In linearly elastic prob-
lems, this is also mathematically understood; Professor Hansbo’s numerical results strongly
indicated that this is also the case in problems of nonlinear elasticity at large strains.
The presentation by Professor Chi-Wang Shu on DGFEM for higher order evolution
problems showed once again the versatility of the method and in particular

its applicability to dispersive wave equations. We also mention the survey lecture by Pro-
fessor Klainerman to participants of both meetings on recent developments in the mathe-
matical analysis of the Einstein equations.



Evening discussion

On Tuesday, 23rd April, in the evening, a plenary discussion was held. The focus of
the discussion were adaptive DGFEM for hyperbolic and convection-dominated problems.
During the discussion, two approaches were identified: (a) residual-based a-posteriori error
estimation (e.g. L'-norm based) without reference to the dual problem, and (b) “dual
problem”-based approach to error estimation and algorithm steering. Some contributions
to the discussion are summarized below.

Professor Brezzi asked, regarding the duality-based approach for a-posteriori error estima-
tion, if there is a systematic way to identify “admissible” target functionals with respect
to which one should adapt meshes and/or orders. It was agreed that the “residual” based
approach gives in general less precisely tailored, adapted meshes than the approach based
on the numerical solution of the dual problem. It was commented that the main problem
with the duality-based approach is the specification of appropriate functionals. For exam-
ple, maximum pointwise errors are at present too difficult to control with the goal-oriented,
duality-based approach, since the maximum may either not exist (e.g maximum pointwise
stresses) or one might not be able to specify it.

Another important issue identified in the discussion concerns the error control for target
functionals in time-dependent, transient problems. The need to store numerical solutions
over all time levels in the duality-based approach was considered too expensive in 3-d.
Professor Rolf Rannacher suggested to borrow techniques from computational optimal
control theory in order to avoid the storage of numerical solutions over a large number
of time levels. Professor Joe Flaherty commented that in 3-d transient problems memory
is a major issue. His group overcame this difficulty by transporting their DG algorithms
scalably to massively parallel hardware.

Professor Rannacher criticized the discussion as being overly narrow, i.e., centered on CFD
and aircraft design problems only. He insisted that goal-oriented adaptivity for DGFEM
should also be investigated for general elliptic/hyperbolic problems, time-dependent or
not. It was remarked by several participants that the highly structured meshes with goal-
oriented adaptivity will in general only yield a good approximation for a single objective.
Professor M. Feistauer insisted that engineers usually look for a number of quantities in
any simulation - the topic of goal-oriented adaptivity with respect to a group of target
functionals was addressed as an open issue. Professor Rannacher replied that the savings
in goal-oriented adaptive calculations are so large that there one could even afford parallel
numerical adaptivity with respect to several goals. Another open problem was the issue
of the quality of the computed dual solution. If the dual solution is available explicitly,
the duality based approach to adaptivity is rigorous and, in a sense, the best possible one.
Usually the dual solution can only be computed on the mesh optimized on the primal
calculation, i.e. the mesh which is geared towards the objective functional in the primal
problem. Several people mentioned that it is practically impossible to construct an example
for which the dual solution is so bad that adaptivity in the primal variable runs off a near
optimal refinement trajectory. The problem of making this apparent robustness of the
duality-based approach mathematically rigorous is at present open.

All participants greatly regretted that one of the organizers, Endre Siili, was absent due
to the death of a close member of his family just prior to the meeting.
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Abstracts

Kinetic Entropies, Hyperbolic Systems and the Discontinuous Galerkin
Method

Tim BArTH, NASA AMES R.C., USA

Hyperbolic moment systems derived from the kinetic Boltzmann equation with Levermore
closure are considered within the framework of the discontinuous Galerkin method. In-
cluded in these moment systems are the familiar Euler equations of gas dynamics. A
striking attribute of the Boltzmann moment viewpoint is the simplicity by which certain
otherwise tedious theoretical results are obtained. Using Levermore’s exponential conju-
gate entropy, a new class of computable monotone flux functions for systems are shown
to be globally energy-stable when combined with Gauf-Lobatto state space integration.
Numerical results are presented to verify the theory.

DG Methods for Reissner-Mindlin Plates
F. BREZz1, PAVIA - JOINT WORK WITH D.N. ARNOLD AND L.D. MARINI

We considered three families of discontinuous F.E. approximations of RM plate equations;
each family could be seen as a generalisation of the Arnold-Falk element. For each family of
polynomial spaces, we considered several options, related to various continuity requirements
(on ¥ and on w), to the presence of a consistency term for w, and to the choice of the
weight in the penalty/super penalty term. We found in particular that using a continuous
¥ requires the addition of a certain number of suitable bubble-functions to the space 6}, of
discrete rotations, while this is not necessary when we use totally discontinuous rotations.

Discontinuous Galerkin Methods for Incompressible Navier-Stokes Equations
B. COCKBURN

It is shown that a rewriting of the Navier-Stokes equations is necessary in order to obtain
a system to which the discontinuous Galerkin method can be applied successfully. In
particular, it is shown that the pressure “p” has to be replaced by “p — 2@ - @ 7, where @

2
is the velocity.

Discontinuous Galerkin Methods for Porous Media Flow and Shallow Water
Equations

CLINT DAWSON, TEXAS UNIVERSITY AT AUSTIN

In the first part of the talk, we discuss a new local discontinuous Galerkin Method for
elliptic flow problems which allows for piecewise constant approximations. Theoretical and
numerical results are given, extensions to higher order are also discussed. In the second
part, we discuss DG methods for shallow water flow. These include fully DG formulations
and combined DG - continuous Galerkin methods.



On Some Aspects of the DGFEM for the Solution of Nonlinear Conservation
Laws and Compressible Flow)

MILOSLAV FEISTAUER, CHARLES UNIVERSITY PRAGUE - JOINT WORK WITH VIT
DoLEJSI, CHARLES UNIVERSITY AND CHRISTOPH SCHWAB, ETH ZURICH

The subject of the paper is the numerical solution of compressible low. The goal is to
develop a sufficiently accurate and robust method. We present the application of the
DGFEM combined with finite volume techniques. This method is theoretically analysed
on a model nonlinear scalar conservation law equation with a diffusion term. Namely, error
estimates are investigated for one version of the DGFEM combined with a finite volume
approach to the discretization of convection terms. Attention is also paid to the choice
of a new limiting of the order of the method in the vicinity of discontinuities in order to
avoid spatial oscillations. The approximation of a curved boundary is also discussed. Some
results of numerical simulation of compressible flows are presented.

Adaptive and Parallel Discontinuous Galerkin Methods for Hyperbolic
Systems

J. E. FLAHERTY, RENSSELAER POLYTECHNIC INSTITUTE, NY

We address solution techniques for hyperbolic systems using a discontinuous Galerkin strat-
egy. We present several aspects of the method including (i) local time stepping, (ii) flux
evaluation, (iii) solution limiting, (iv) parallel strategies, (v) and a posteriori error esti-
mation. We show that DG methods with piecewise-polynomials of degree p exhibit su-
perconvergence at Radau points of degree p + 1. The solution at the downwind ends of
elements exhibits a strong superconvergence and converges as O(h**1). These results hold
in multiple dimensions relative to a set of orthogonal polynomials that may be considered
as extension of the Radau polynomials.

Discontinuous Galerkin Methods for Plasticity Problems Related to Granular
Flows

PIERRE GREMAUD, NORTH CAROLINA STATE UNIVERSITY

Several computational challenges related to the modelling of granular flows are described.
The general structure is that of PDAEs (Partial Differential Algebraic Equations), the
algebraic constraint corresponding to the yield condition being satisfied. DG results are
presented.

In the second part of the talk, other aspects are discussed, in particular, the appearance
of secondary circulation.



Nonconforming Elements and the Discontinuous Galerkin Method

PETER HANSBO, CHALMERS UNIVERSITY OF TECHNOLOGY, GOTEBORG, SWEDEN -
JOINT WORK WITH M.G. LARSON

Three different problem classes - incompressible elasticity, Kirchoff plates, and Reissner-
Mindlin plates were considered. We showed how to construct low order, non-locking,
optimally convergent discontinuous Galerkin elements for these problems. Furthermore,
we showed how some classical non-conforming elements (Crouzeix-Raviart and Morley)
naturally come out of the framework if one desires to obtain independence of the penalty
parameters. In this context, a stable version of the Crouzeix-Raviart element for elasticity
was obtained.

Adaptive Discontinuous Galerkin FE Methods for the 2D Compressible Euler
Equations

RALF HARTMANN, HEIDELBERG UNIVERSITY - JOINT WORK WITH PAUL HOUSTON,
LEICESTER

Based on the DG FEM we develop an adaptive algorithm for the efficient computation
of physically relevant quantities J(-) like drag and lift coefficients of airfoils immersed
in an inviscid fluid. In particular, by employing a duality argument we derive the error
representation formula

(1) J(w) = J(up) = ) Tk

HET]—L

where 7, on each element k of the triangulation consists of the FE residuals multiplied by
local weighting terms involving the solution z of a certain dual problem. We shall show in
a variety of numerical examples that the approximate error representation

n:Zﬁn

KE€T

originating from (1) by replacing the exact dual solution z by a numerical approximation
is very close to the true error in the target quantity J(-). Furthermore, we show that any
bounding of (1) from above, like applying triangle inequality and further bounding in order
to derive so-called Type II error estimates will result in possibly very large overestimation
of the true error.

Finally, we employ the computed local indicators 7, also referred to as ‘weighted indi-
cators’, for adaptive mesh refinement resulting in meshes that are specifically tailored to
the cost-efficient computation of the quantity of interest. We compare the efficiency of
these meshes with meshes produced by so called ‘ad hoc indicators’ that simply rely on the
residual or smoothness information of the solution. Furthermore, we compare with meshes
that are designed by hand for the efficient computation of the quantity of interest.

We illustrate this approach by several different problems in combination with various differ-
ent target quantities, including density or pressure point values or drag and lift coefficients
of airfoils in subsonic, transonic and supersonic flows.



Adaptivity for High-Order/Spectral Finite Element Methods for
Second-Order PDEs with Nonnegative Characteristic Form

PAuL HOUSTON, LEICESTER UNIVERSITY - JOINT WORK WITH ENDRE SULI AND
KATHRYN HARRIMAN, OXFORD, AND BILL SENIOR, LEICESTER

The aim of this talk is to consider the a-posteriori error analysis of the hp-version of the
discontinuous Galerkin finite element method for approximating second-order PDEs with
nonnegative characteristic form. In particular, we consider the derivation of computable
error bounds for certain target functionals of the solution of practical interest; relevant
examples include the mean value of field or its flux through the outflow boundary of the
computational domain.

By employing a duality argument we derive so-called weighted or Type I a posteriori
estimates which bound the error between the true value of the prescribed functional, and
the actual computed value. In these error estimates, the element residuals of the computed
numerical solution are multiplied by local weights making the solution of a certain dual
or adjoint problem. On the basis of the resulting a posteriori error bound, we design and
implement an adaptive, finite element algorithm which incorporates both local h- and p-
refinement. The performance of the proposed hp-refinement algorithm is demonstrated
through a series of numerical experiments.

Preconditioning Discontinuous Galerkin Methods for Elliptic Problems
GuiDO KANSCHAT, HEIDELBERG UNIVERSITY

The analysis of a multi-level preconditioner for the interior penalty method is presented.
We investigate its performance with respect to the penalty parameter. It is shown to
be robust with respect to the polynomial degree, if a block-smoother is used, while point
smoothers deteriorate fast. Then, it is shown that downwind ordered Gauf3-Seidel yields an
optimal preconditioner for advection-diffusion problems, independent of the Peclet number.
The same preconditioner is then applied successfully to the Schur complement of the LDG
method. Finally, this preconditioner will be used to construct a block preconditioner for
the saddle point problems arising when discretizing Poisson and Stokes equations with the
LDG method.

Comparison of Finite Volume and Discontinuous Galerkin Methods for MHD
DIETMAR KRONER, UNIVERSITY OF FREIBURG

The main disadvantage of finite volume schemes of higher order is that the stencil for the
discretization will strongly increase with the order of the scheme and the scheme becomes
very expensive. For discontinuous Galerkin methods one can use locally higher order
polynomials and the discretization is very local. Nevertheless it is not clear if discontinuous
Galerkin methods are more efficient. We have studied several numerical experiments for
the Euler and MHD equations with smooth as well as discontinuous solutions. It turned
out that the DG methods are of higher accuracy but for discontinuous solutions they need
more CPU time.



Second Order Central Schemes on General Adaptive Unstructured Grids
MARIO OHLBERGER, UNIVERSITY OF FREIBURG - JOINT WORK WITH MARC KUTHER

We give a reinterpretation of first order staggered schemes as a finite volume scheme with
upwind flux on the intersection grid followed by an averaging step. Within this framework
a posteriori and a priori error estimates are derived in the L!'-norm for scalar nonlinear
hyperbolic conservation laws in arbitrary space dimension.

In a second step we then derive a second order central scheme based on piecewise linear
reconstruction operators.

We use the rigorous error estimate for the first order method to derive local error indica-
tors for an adaptive algorithm which is based on an equal distribution strategy. Finally
numerical experiments demonstrate the efficiency of the adaptive second order scheme.

Discontinuous Galerkin Methods for Time-Harmonic Maxwell’s equations
ILARIA PERUGIA, UNIVERSITY OF PAVIA

We present discontinuous Galerkin methods for time-harmonic Maxwell’s equations in low
and high-frequency regimes.

The operators involved are discretized in discontinuous finite element spaces using suitable
variants of IP and LDG techniques. Heterogeneous materials will be considered, in the
low-frequency case, by incorporating a divergence free constraint either by a regularization
approach or by Lagrange multiplier techniques. These approaches will then be extended
to the high-frequency case.

A Discontinuous Galerkin Method with Non-Overlapping Domain

BEATRICE RIVIERE - JOINT WORK WITH V. GIRAULT AND M.F. WHEELER,
UNIVERSITY OF TEXAS

We formulate and analyze a family of discontinuous Galerkin finite element methods for
Stokes and Navier-Stokes problems. In each triangle the finite elements discretizing the
velocity are polynomials of degree k& with no continuity requirement between triangles and
the finite elements discretizing the pressure are polynomials of degree k — 1, also totally
discontinuous. An inf-sup condition is established as well as optimal energy estimates for
the velocity and L? estimates for the pressure. In addition, it is shown that the method can
treat a finite number of non-overlapping domains with non matching grids at interfaces.

The Local Discontinuous Galerkin Method for the Oseen Equations
DOMINIK SCHOTZAU, UNIVERSITY OF BASEL

We introduce and analyze LDG methods for the Oseen equations of incompressible fluid
flow. We derive optimal a-priori estimates for the errors in the velocity and the pressure.
Numerical experiments are presented that show that the methods perform well for a wide
range of Reynolds numbers.



Local Discontinuous Galerkin Method for Higher Order PDEs
CHI-WANG SHU, BROWN UNIVERSITY, USA

We discuss local discontinuous Galerkin method for solving KdV-type equations involving
3 spatial derivations; time-dependent biharmonic equations involving 4 spatial derivatives
and PDEs involving 5th derivatives. Suitable numerical fluxes are defined so that the meth-
ods can be proven Ly stable for quite general nonlinear cases. Numerical results are shown
to demonstrate the accuracy and efficiency of the method especially for the “convection
dominated” case, namely when the higher order derivatives have small coefficients.

A Finite Element Method for Domain Decomposition with Non-Matching
Grid
RoLF STENBERG, HELSINKI UNIVERSITY OF TECHNOLOGY

We review joint work with P. Hansbo (Chalmers) and R. Becker (Heidelberg) where we
prepare the use of Nitsche’s method in domain decomposition. It allows the use of different
finite element grids on different subdomains. A-priori and a-posteriori error estimators are
given together with numerical results. Finally, we show how Nitsche’s method should be
applied to Robin boundary conditions.

Discontinuous Galerkin for Flow Problems
ANDREA TosELLI, ETH ZURICH

We present an hp-finite-element approximation on some matching grids for a scalar advection-
diffusion-reaction problem. A-priori

error estimates are obtained which are optimal in & and slightly suboptimal in p. In the
second part of our talk, we present a

discontinuous Galerkin method for the Stokes problem. It presents better stability prop-
erties than the corresponding hp

conforming method employing pressure spaces of the same degree.

The Symmetric and Antisymmetric Formulation of the DGFEM for Diffusion
Problems

THOMAS P. WIHLER, SEMINAR FOR APPLIED MATHEMATICS, ETH ZURICH

It is well known from regularity theory that the exact solution of a diffusion problem
may exhibit singularities in polygons. In this talk it is shown how these singularities
may be resolved. Optimal order convergence results for the h-version DG are proved and
experimental convergence results for the hAp-version DG are presented.

Edited by Dietmar Kroner,
Endre Siili, Christoph Schwab
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