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The conference on quadratic forms and algebraic groups at the Mathematisches For-

schungsinstitut Oberwolfach was organized by Detlev W. Ho�mann, Alexander S. Merku-

rjev and Jean-Pierre Tignol. There were 22 talks, grouped by theme in the schedule,

each of 45 minutes in length. The program was designed to o�er a sample of the latest

techniques, with a special emphasis on geometric methods, and of the cross-breeding which

has been developing lately between various aspects of the theory of quadratic forms, linear

algebraic groups and Galois cohomology. The organizers took care to give especially to the

many young participants the opportunity to present their results. The strict limitation in

the number of talks was e�ective in allowing fruitful interactions to develop between the

participants.
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Abstracts

Triangular Witt groups

Paul Balmer

Let X be a regular noetherian separated integral scheme such that

1

2

2 �(X;O

X

) and let

K be its �eld of fractions. Assume that X has �nite Krull dimension d. Then the kernel

of the natural map W (X)! W (K) is nilpotent and more precisely

( ker(W (X)!W (K)) )

[

d

4

]+1

= 0;

at least when W (O

X;x

) ,! W (K) for all x 2 X (e.g. when X is de�ned over a �eld, by

Ojanguren{Panin).

Milnor K-groups and �nite �eld extensions

Karim Johannes Becher

Let E=F be a �nite separable �eld extension and let m denote the integral part of

log

2

[E : F ]. David Leep has shown that, in the case where char(F ) 6= 2, the n-th power

of the fundamental ideal in the Witt ring of E satis�es the equality I

n

E = I

n�m

F � I

m

E

(n � m). Using the same elementary techniques, I prove an analogous equality for the

n-th Milnor K-group of E, that is K

n

E = K

n�m

F �K

m

E (n � m). An example indicates

that m may not be replaced by (m+ 1) in this formula.

Cohomological invariants and R-triviality of adjoint classical groups

Gr

�

egory Berhuy

(joint work with Marina Monsurr�o and Jean-Pierre Tignol)

Let F be a �eld of characteristic di�erent from 2. For G a linear algebraic group de�ned

over F , it is a natural problem to know whether or not G is stably rational.

The aim of this work is to give families of absolutely simple adjoint classical groups of

type A

n�1

; C

n

; D

n

(n even) which are not stably rational. In fact, our examples satisfy

a stronger property: they are not R-trivial, i.e. there is a �eld extension E=F such that

G(E)=R is nontrivial.

To construct these groups, we de�ne a homomorphism � : G(F ) ! H

�

(F; �

2

), using

cohomological invariants, and show then that it induces a map

�

� : G(F )=R ! H

�

(F; �

2

),

using Merkurjev's computation of G(F )=R for G absolutely simple of classical type.

Finally we give examples of groups G for which � is not identically zero. To do all this,

we use extensively the fact that G ' PSim

+

(A; �), the connected component of the group

of projective similitudes associated to an algebra with involution (A; �).
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Essential dimensions and Killing forms

Vladimir Chernousov

The essential dimension of a linear algebraic group G, denoted by ed(G) is a numerical

invariant of G and it is interesting to compute it. For groups of type G

2

(resp. F

4

) it is

equal to 3 (resp. to 5). For groups of type E

6

; E

7

; E

8

the answer is unknown.

In the talk we discuss the relation between the essential dimensions of cocycles in a split

group and the essential dimensions of the corresponding Killing forms. In the case when

the Weyl group of G contains �1 we compute the essential dimensions of all Killing forms

coming from elementary abelian subgroups of G of type Z=2� � � � � Z=2. This allows us

to give lower bounds for the essential dimensions of groups of type E

7

; E

8

de�ned over an

arbitrary algebraically closed �eld of characteristic di�erent from 2.

Indice et exposant en dimension deux, d'apr�es de Jong

Jean-Louis Colliot-Th

�

el

�

ene

Soit K le corps des fonctions d'une surface d�e�nie sur un corps alg�ebriquement clos.

J. A. de Jong vient de montrer que pour toute alg�ebre simple centrale A sur K, d'exposant

premier �a la caract�eristique, l'indice de A co��ncide avec l'exposant de la classe de A dans

le groupe de Brauer de K. On a donn�e les grandes lignes de sa d�emonstration. (Expos�e

pr�epar�e avec Ojanguren, Parimala et Sridharan)

An invariant of simple algebraic groups

Skip Garibaldi

The Rost invariant is a fantastically useful tool for studying G-torsors for G a simply

connected algebraic group. But if one wants to classify simple algebraic groups, it would

be preferable to have an invariant of Aut(G)-torsors (equivalently, forms of G). Such

a thing can be deduced from the Rost invariant, and in some special cases one obtains

invariants which had previously been constructed by ad hoc means. With this invariant at

hand, standard restriction/corestriction arguments give analogues of Springer's Theorem

for forms of G whenever the Rost invariant has central kernel.

Steenrod operations in the Chow theory of quadrics

Nikita Karpenko

A proof of the following conjecture, due to D. Ho�mann, is given in the talk:

if ' is a quadratic form over a �eld of characteristic di�erent from 2 and if we write

dim' = 1+ 2

n

1

+ � � �+ 2

n

r

with 0 � n

1

< n

2

< � � � < n

r

, then the �rst Witt index i

1

(') is

of the form i

1

(') = 1 + 2

n

1

+ � � �+ 2

n

s

with some 0 � s < r.

The proof uses the Steenrod operations in the modulo 2 Chow theory.
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Generic splitting of quadratic forms in characteristic 2

Manfred Knebusch

A generic splitting theory with properties as in characteristic di�erent from 2 is possible

over a �eld k of characteristic 2 for forms ' with anisotropic quasilinear part QL(') of any

dimension, as long as one only admits "'-conservative" �eld extensions L=k. This means

that QL(')


k

L remains anisotropic.

If � : K ! L [ f1g is a place with associated valuation domain O = O

�

, and M is a

quadratic O-module, M = (M; q), we call M nondegenerate if

1) M is a free O-module of �nite rank,

2) the bilinear form

�

B

q

on M=QL(M) induced by B

q

is nondegenerate,

3) every primitive vector x 2 QL(M) has unit value q(x) 2 O

�

.

A quadratic space (E; q) over the quotient �eld K of O has "good reduction" under �, if

E

�

=

K 


O

M with M a quadratic O-module which is nondegenerate. In this case, we put

�

�

(E) = L 


O;�

M , the tensor product taken with respect to �j

O

: O ! L. The generic

splitting theory is based on this notion of specialisation.

Twisted compositions and cohomological invariants

Max-Albert Knus

Let L be a cubic �etale algebra over a �eld F of characteristic di�erent from 2 and 3. For

any l 2 L, let l

#

2 L be such that l � l

#

= N

L=F

(l). A twisted composition, as de�ned by

Rost, is a nonsingular quadratic space (V;Q) over L such that for all v 2 V and l 2 L

1) Q(�(v)) = Q(v)

#

,

2) �(lv) = l

#

�(v),

3) b

Q

(v; �(v)) 2 F ,

where b

Q

is the polar of the quadratic form Q and � is a quadratic map V ! V . Twisted

compositions are classi�ed by H

1

(F; Spin

8

oS

3

). They occur in connection with Albert

algebras (central simple exceptional Jordan algebras): if J is an Albert algebra ond L � J

is a cubic �etale subalgebra, then V = L

?

for the trace form is a twisted composition.

In this report we present results of our student R. Engelberger, extending results of

Springer{Veldkamp (2000). We describe constructions of twisted compositions which cor-

respond to the Tits construction for Albert algebras. We also discuss cohomological in-

variants which correspond to the known invariants for Albert algebras. As an application

we show that if the invariant f

3

is zero, then the twisted composition is related to a type

of composition algebras �rst described by Okubo.
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Ho�mann's theorem in characteristic 2

Ahmed Laghribi

(joint work with D. W. Ho�mann)

In 1995, D. W. Ho�mann proved for any �eld F of characteristic di�erent from 2 that if

' and '

0

are anisotropic quadratic forms over F such that dim' � 2

n

< dim'

0

for some

integer n � 0 then ' stays anisotropic over F ('

0

), the function �eld of the quadric given

by '

0

= 0 over F .

A partial generalization of this result to characteristic 2 had been obtained by me and P.

Mammone. In the talk I presented a complete generalization to the case of characteristic 2.

Quadratic forms and Sq

2

Fabien Morel

In the talk I explained a connection between the "functorial" extensions

(e

n

) : 0 �! I

n+1

=I

n+2

(F ) �! I

n

=I

n+2

(F ) �! I

n

=I

n+1

(F ) �! 0 (n � 0);

associated to a �eld F of characteristic di�erent from 2, and the Steenrod operation Sq

2

.

For any n � 1, let �

n

be the homotopy �bre of Sq

2

: K(Z=2; n) ! K(Z=2; n+ 2) and

let BGal(F ) be the classifying space of the pro�nite group Gal(F ).

By the Milnor Conjecture, proved by Voevodsky, one has k

n

(F ) = H

n

(Gal(F );Z=2).

Theorem: If �1 is a square in F then

Sq

2

: H

n

(Gal(F );Z=2) = H

n

(BGal(F );Z=2) �! H

n+2

(BGal(F );Z=2)

vanishes and (e

n

) is functorially isomorphic to the extension

0 �! H

n+1

(BGal(F );Z=2) �! �(BGal(F );�

n

) �! H

n

(Gal(F );Z=2)�! 0

coming from the �bration sequence K(Z=2; n+ 1) �! �

n

�! K(Z=2; n).

Purity for algebraic groups without transfers

Ivan Panin

(joint work with M. Ojanguren)

Let A be a regular rocal ring containing a �eld k, let m � A be the maximal ideal, let G

be a reductive algebraic group and let T be a torus. Let � : G! T be a group morphism

which is surjective locally for the �etale topology (on the big �etale site over k). Consider

the functor

R 7�! T (R)=�(G(R))

on the category of commutative k-algebras. This functor satis�es purity, i.e.:

Theorem: Let K be the quotient �eld of the ring A. Let a 2 T (K). Suppose that for every

height one prime ideal } in A there exist elements a

}

2 T (A

}

); b

}

2 �(G(K)) such that

a = b

}

� a

}

. Then there exist elements a

m

2 T (A), b

m

2 �(G(K)) such that a = a

m

� b

m

.

This result generalizes previous results in this direction proved by Sridharan{Parimala{

Colliot-Th�el�ene, Rost{Colliot-Th�el�ene{Ojanguren, Suslin{Panin and Zainoulline.
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Classi�cation theorems for hermitian forms and the Hasse principle

over function �elds of curves over number �elds

Raman Preeti

(joint work with R. Parimala)

We discuss a conjecture due to J.-L. Colliot-Th�el�ene. Let K be a function �eld in one

variable over a number �eld with �eld of constants k. Let G be a semi-simple simply

connected linear algebraic group de�ned over K. Let 


k

denote the set of places of k. The

conjecture states that the natural map H

1

(K;G) �!

Q

v2


k

H

1

(K

v

; G) has trivial kernel.

This conjecture is true if G is of type

1

A

�

, i.e. isomorphic to SL

1

(A) for a central simple

algebra A over K of square-free index, as a consequence of theorems of Merkurjev{Suslin

and Kato. P. Gille has proved the conjecture in the case where G is de�ned over k and

K = k(t), the rational function �eld in one variable over k.

We show that the conjecture is true for groups G de�ned over k of type

2

A

�

(i.e. iso-

morphic to SU(B; �), where B is a central simple algebra over a quadratic extension k

0

of

k with unitary k

0

=k-involution �), B

n

, C

n

, D

n

(non-trialtarian in case of D

4

), G

2

or F

4

. A

sketch of the proof in the case of Spin groups is given in the talk.

Levels of octonion algebras

Susanne Pumpl

�

un

To investigate sums of squares is a classical problem in number theory. Traditionally,

sums of squares are studied over �elds, more recently over commutative as well as over

noncommutative rings. Many results on sums of squares and levels can also be extended

to nonassociative rings, such as octonion algebras. Moreover, given an octonion algebra C

over a ring and an arbitrary involution � on this algebra, the hermitian level (and sums

of hermitian squares �(x)x (x 2 C)) can be investigated. (The results on hermitian levels

are joint work with T. Unger.)

P�ster involutions

Anne Qu

�

eguiner-Mathieu

In a recent paper, E. Bayer and R. Parimala raised the following question: could one

consider tensor products of quaternion algebras with involution as a generalization of the

classical P�ster quadratic forms? According to a conjecture of D. Shapiro, such a tensor

product should give rise to a P�ster form as soon as the algebra is split. This is proved only

in the case where the number of quaternion algebras in the product is less or equal to �ve.

Cohomological invariants are a useful tool to treat this question, at least when the degree

is small. But one may prove that the e

3

-invariant in the theory of quadratic forms cannot be

extended to orthogonal involutions. This enables us to produce elements in the unrami�ed

cohomology of the function �eld of some Severi{Brauer varieties which do not come from

the base �eld.
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Trace forms of Galois �eld extensions in the presence of roots of unity

Zinovy Reichstein

(joint work with D.-S. Kang)

My talk centered around the following question: given a �nite group G and a �eld K,

which quadratic forms over K are (up to Witt equivalence) trace forms of G-Galois �eld

extensions L=K? This is a rather delicate question in general, however, if on assumes that

K contains certain roots of unity, the situation simpli�es considerably.

The main result I presented says that under this assumption the trace form is split

(i.e. hyperbolic) whenever the Sylow 2-group G

2

of G is non-abelian. I also discussed the

(simpler) case where G

2

is abelian; in this case trace forms are P�ster forms.

Self-dual normal bases and unitary groups in characteristic 2

Jean-Pierre Serre

Let k be a �eld of characteristic 2 and let L=k be an �etale Galois G-algebra (i.e. a G-torsor

over k). Denote by ' : Gal(

�

k=k)! G the corresponding homomorphism.

Theorem 1: The following are equivalent:

a) L=k has a self-dual normal basis (�a la Bayer{Lenstra),

b) the image of ' is contained in the subgroup of G generated by the elements of order

2 and by the elements of odd order.

The proof relies on the following result, applied to R = k[G]:

Theorem 2: Assume k is perfect. Let R be a k-algebra with involution, of �nite rank;

let U

R

be the corresponding unitary group and U

�

R

its connected component. Then

H

1

(k; U

�

R

) = 0.

Variations on a theme of Lazard

Ramadorai Sujatha

A result of Lazard in the theory of p-adic analytic groups is applied to two di�erent

contexts: (1) Congruence subgroup problem, (2) Vanishing of arithmetic p-adic local

representations and description of image of local Galois groups (for representations coming

from abelian varieties or smooth projective varieties with good reduction). The result of

Lazard that is applied is the following: Let G be a compact p-adic Lie group, and let L(G)

be the Lie algebra of G. Let V be a continuous p-adic representation (�nite dimensional) of

G. Then H

i

(G; V ) � H

i

(L(G); V ) for all i � 0. This result can be used to prove �niteness

of congruence kernel in certain cases very simply.
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A local{global principle for hermitian forms

Thomas Unger

(joint work with David W. Lewis)

P�ster's well-known local{global principle states that a nonsingular quadratic form q

over a �eld k (assumed to be of characteristic di�erent from 2) is a torsion element in

the Witt ring W (k) of k if and only if the signature of q is zero for all orderings of k.

Furthermore, every torsion element of W (k) has 2-power order.

If W (A; �) is the Witt group of hermitian forms over some central simple k-algebra A

with involution � (of any kind), then W. Scharlau showed in 1970 that the torsion elements

of W (A; �) have 2-power order.

We complement Scharlau's result by showing that h 2 W (A; �) is a torsion element if

and only if h has signature zero for all orderings of the ground �eld k, thus obtaining an

analogue of P�ster's local{global principle for hermitian forms. In fact, this follows from

our main theorem which states that if (A; �) is a central simple k-algebra with involution

(of any kind), then the signature of � is zero for all orderings of k if and only if (A; �) is

weakly hyperbolic.

Discrete invariants of quadrics

Alexander Vishik

We introduce the following so-called generic discrete invariant of a quadric, which con-

tains such well-known discrete invariants as splitting type and motivic decomposition type

as particular cases.

De�nition: DGI(j; Q) := image(CH

�

(G(j; Q))=2 ! CH

�

(G(j; Q)j

k

)=2), where 0 � j �

[dim(Q)=2] and G(j; Q) is the Grassmannian of j-dimensional projective subspaces on Q.

Most of the results obtained concern the case j = [dim(Q)=2]. Without loss of generality

we can assume that dim(Q) = 2n � 1 is odd. Then, due to the results of Hiller-Boe,

Stembridge and Pragacz-Ratajski, the Chow ring of the Grassmannian has the following

description: CH

�

(G(n�1; Q)j

k

)=2 = 


odd d�n

Z=2[z

(d)

]=(z

2

m

d

(d)

), where m

d

= [log

2

(n=2)]+1,

and z

(l)

is a cycle of j = (n � 1)-dimensional projective planes on Q, intersecting a given

(n� l)-dimensional plane.

Our main result is the following:

Theorem 1: Let Q be smooth projective quadric of dimension 2n�1. Then GDI(n�1; Q)

as a subring of CH

�

(G(n� 1; Q)j

k

) is generated by the set of elementary cycles z

(l)

which

are de�ned over the base �eld (mod 2).

In particular, GDI(n � 1; Q) carries the same information as JDI(Q) � f1; 2; : : : ; ng,

the subset of the natural numbers l for which the cycle z

(l)

(mod 2) is de�ned over the base

�eld.

The severe restrictions on the possible values of JDI(Q) comes from the action of the

Steenrod algebra on the Chow groups (constructed by Voevodsky in the general context

of motivic cohomology, and by Brosnan in the classical context of Chow groups).

Theorem 2: S

�

(z

(i)

) =

P

min(2i;n)

m=i

�

i

m�i

�

z

(m)

.

In particular, if i 2 JDI(Q) and if

�

i

m�i

�

is odd (i � m � n) then m 2 JDI(Q).
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Question: Do we have other restrictions on the set JDI(Q)?

Applying the above results to the question about the possible values for the dimension

of anisotropic forms in I

n

, we get:

Theorem 3: Let q 2 I

n

be anisotropic form. Suppose that dim(q) > 2

n

+ 2

n�1

. Then

dim(q) is either divisible by 4 or is � 2

n

+ 2

n�1

+ 2

n�2

.

I remind, that currently it is known that dim(q) is either 0 or 2

n

or � 2

n

+ 2

n�1

, and

it is conjectured that the possible values are: 2

n+1

� 2

i+1

( 0 � i � n) or even � 2

n+1

(examples for all these values are constructed). In particular, our Theorem 3 implies that

for anisotropic forms q in I

4

one has dim(q) 6= 26, which together with the results of

Arason{P�ster and Ho�mann gives the complete list of possible dimensions for I

4

(for I

3

the problem was solved long ago by P�ster).

Grothendieck{Witt and Witt groups of projective bundles

Charles Walter

If X is a scheme, F an algebraic vector bundle of rank r+1 on X, and P := P(F )! X

the associated projective bundle, then it is well known that K

0

(P )

�

=

K

0

(X)

�(r+1)

. Many

"oriented cohomology theories" satisfy this formula. In the work that I am reporting on I

show that Grothendieck { Witt and Witt groups do not. Namely, under certain technical

hypotheses one has

GW

tot

(P )

�

=

GW

tot

(X)

f0g

�

r

Y

i=1

K

tot

0

(X)

fig

�GW

tot�r

(X; detF

_

)

fr+1g

;

W

tot

(P )

�

=

W

tot

(X)

f0g

�W

tot�r

(X; detF

_

)

fr+1g

:

The Purity for algebraic groups with Norm Principle

Kirill Zainoulline

Let G be a group over a local regular ring R and let T be a torus over R. Let � : G! T be

a surjective morphism of group schemes over R. We prove that if the Norm Principle holds

for �, i.e. N

S=R

(�(G(S))) � �(G(R)) where N

S=R

is the norm map for a �nite projective

extension S=R, then the Purity holds for �, i.e. the sequence

1 �!

T (R)

�(G(R))

�!

T (K)

�(G(K))

�!

M

ht p=1

T (K)

�(G(K))T (R

p

)

is exact. We give examples of G, T and � for which the Norm Principle holds.

Edited by Karim Johannes Becher
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