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June 9th — June 15th, 2002

The workshop was organised by D. Brydges (British Columbia), H. Knérrer (ETH) and
M. Salmhofer (Leipzig). 46 scientists from 8 countries attended. Amongst these were 10
from departments of theoretical physics. There were 15 lectures given by 13 speakers, 2
organised discussion sessions and several well-attended, spontaneous, disorganised discus-
sion sessions. The workshop concluded with an after-dinner piano concert on Friday June
14.

The Renormalization Group is a set, of principles used in the analysis of problems with
many degrees of freedom associated with length scales. Such problems arise in many
contexts including probability, statistical mechanics, quantum field theory and partial dif-
ferential equations. The common theme is to classify examples into “universality classes”
with canonical representatives obtained by “scaling limits”. A beginning example is pro-
vided by the Donsker Invariance Principle. Here we start with random walk (without
drift). The standard deviation of the step distribution is the smallest length scale, while
an entire infinite trajectory has structure on all larger length scales. The scaling limit
is equivalent to viewing the walk from far away so that only long distance structure is
retained. The viewer will see the path of Brownian motion. This means that the random
walk is in the universality class whose canonical representative is Brownian motion. In a
similar way models in statistical mechanics are in universality classes labelled by quantum
field theories.

The implementation of this theme varies according to the core discipline: the context
is operators and Hilbert spaces for quantum field theory, microlocal analysis for PDE
and combinatoric expansions for statistical mechanics. The workshop allows both ideas
and scientists to migrate between these subcommunities. The whole enterprise has some
grandeur, but it is hard for the younger scientists to see the ramifications without this
type of meeting. The Oberwolfach traditions worked well and the meeting gave us all new
optimism and a sense of the gathering power to prove analytic results in the domain of
mathematical physics.



Abstracts

Operator—valued Renormalization Group Flow
V. BAcH
(joint work with Th. Chen, J. Fréhlich and .M. Sigal )

We present an improved version of the RG flow built on the Feshbach projection method.
The new RG method is based on a generalization of the Feshbach projection method called
the “Smooth Feshbach Map”. It uses smooth cutoff functions x rather than projections,
and it maps a given Hamiltonian H on a Hilbert space H to an effective Hamiltonian
F\(H) on a (smaller) Hilbert space Ran y C #. The important feature of this map is its
isospectrality: H is invertible iff F) (H) is invertible.

As a main application, we construct a convergent RG flow on a subspace W C B(H)
of operators on H C F,[L*(R")] which represent Hamiltonians in quantum field theory.
Thanks to the smoothness of the cutoff function y, the convergence proof is much simplified,
and the norm requirements defining W (as a Banach space) are weaker (and more natural)
than before, using projections.

QED on the 3—torus
J. DIMOCK

We consider quantum electrodynamics on a three dimensional torus. We start with
the lattice gauge theory and attempt to control the singularities as the lattice spacing is
taken to zero. This is accomplished by following the flow of the renormalization group
transformations. The method is similar to that of T. Balaban for scalar electrodynamics.

Interacting Fermions in 3d at finite temperature
M. DISERTORI
(joint work with J. Magnen and V. Rivasseau)

It is believed that a system of weakly interacting Fermions in 2 or 3 dimensions, with
a rotation invariant Fermi surface, is a Fermi liquid (in the sense of Salmhofer) above

the critical temperature 7, = eiﬁ, where £ is a constant and A is the strength of the
interaction.

In the 2d case we proved this behaviour (in a work with V. Rivasseau), using a Fermionic
expansion and angular analysis in momentum space. Due to the difference between 2d and
3d geometry, this proof cannot be generalized directly to the 3d case.

In a recent work with J. Magnen and V. Rivasseau we completed the first step of the
proof, namely the uniform bound on completely convergent contributions. The analysis
relies on a direct space decomposition of the propagator, on a bosonic multi-scale cluster
expansion and on a Hadamard inequality.



Local Aspects of Renormalization II: Gauge Theories
M. DUETSCH
(joint work with K. Fredenhagen and F-M. Boas)

A local formulation enables a consistent perturbative treatment of massless Yang-Mills
theories. Such a construction requires the validity of BRST-symmetry in a suitable form.
A sufficient renormalization condition is the 'Master BRST-Identity’. To find its precise
form we start with classical field theory. We formulate the most general identity which can
classically be derived from the field equation: this is the 'Master Ward Identity’. Then we
quantize by the principle that we want to maintain as much as possible of the algebraic
structure of the perturbative classical fields. In particular we require the Master Ward
Identity as a renormalization condition. Its application to the BRST-current yields the
(wanted) Master BRST-Identity.

Construction of a 2—d Fermi Liquid
J. FELDMAN
(joint work with H. Knérrer and E. Trubowitz)

I discuss the main ideas behind a proof that the temperature zero renormalized perturba-
tion expansions of a class of interacting many—fermion models in two space dimensions have
nonzero radius of convergence. The models have “asymmetric” Fermi surfaces and short
range interactions. One consequence of the convergence of the perturbation expansions is
the existence of a discontinuity in the particle number density at the Fermi surface.

The proof uses a multiscale analysis, discrete renormalization group flow and renor-
malization of the Fermi surface. Generalized particle—particle and particle-hole ladder
diagrams require special treatment. Particle-particle ladders have improved power count-
ing due to the assumed asymmetry of the Fermi surface, suppressing the Cooper channel.
A sign cancellation between scales is used to control particle-hole ladders.

Local Aspects of Renormalization I: Renormalization of Quantum Field
Theory on curved Spacetime

K. FREDENHAGEN
(joint work with R. Brunetti, M. Diitsch, R. Verch)

In contrast to classical field theory, the standard formulation of quantum field theory
contains many nonlocal elements which have no obvious generalization to curved spacetime.
Among them are the use of the Fouriertransform which relies on translation invariance,
the concept of a vacuum state and of particles, the choice of a distinguished Hilbert space
of states and of a Feynman propagator. Also the Euclidean formulation of quantum field
theory makes not much sense on a curved spacetime since the generic spacetime with a
Lorentzian metric has no analytic continuation containing a Riemannian space. Neverthe-
less, the ultraviolet problem of quantum field theory admits, at least at a local level, a
satisfactory treatment, in agreement with the equivalence principle. The infrared problem,
on the other hand, whose general treatment on curved spacetime seems to be hopeless, can
be completely separated. The technique used is the algebraic formulation of field theory
combined with methods from microlocal analysis. One first enlarges the algebra of the free
field such that it also contains Wick products. One then analyses the Dyson series for a



Lagrangian with a spacetime cutoff described by a test function with compact support.
The problem is then reduced to the definition of time ordered products as operator valued
distributions. In terms of them the observables of the interacting theory can be defined
such that they are, up to unitary equivalence, independent of the spacetime cutoff. The
work described was published in Comm. Math. Phys. 2000-2002.

Interacting stochastic systems:
Longtime behaviour and its renormalization analysis

A. GREVEN

We describe typical phenomena arising in the longtime behaviour of interacting spatial
stochastic systems and explain how they can be analyzed using the technique of renormal-
ization by multiple space-time scales. We shall focus on models which arise in population
genetics, in particular interacting Feller diffusions and Fisher-Wright diffusions.

The main mathematical point is to give an approximate picture of the spatial stochastic
system by passing to a large space-time scale view. This will lead to a simpler stochastic
process called the interaction chain. The analysis of this object reduces mainly to the
study of the orbit of iterations of a certain nonlinear map in function space. Properties of
this orbit can be derived by finding fixed points or fixed shapes of the nonlinear map and
by showing convergence properties of general orbits to the special ones generated by fixed
points or fixed shapes.

An important point is that this analysis allows to explain the special role of certain
specific stochastic models, which correspond to the fixed points and fixed shapes and
which characterize a universality class of longtime behaviour in a larger class of models.

Finally we outline the possible applications of the multi-scale analysis in mathematical
biology, in particular evolution theory.

Triviality of Hierarchical Ising model in Four Dimensions
T. HARA
(joint work with T. Hattori and H. Watanabe)

We consider the Renormalization Group (RG) transformation for a so-called Hierarchical
Ising model. This is a version of Ising models with specially arranged hierarchical spin
interactions. Thanks to the special fractal structure of the interactions between spins, the
Renormalization Group transformation (RGT) R takes on the following very simple form:

o x

(1) (Rh)(z) =N exp(ng) /_ h(% +y) h(% —y)dy

o0

where h(x) roughly denotes the Gibbs factor (or a single site measure; = corresponds to a

1
spin variable), A/ is a normalization constant, and ¢ = 212l and g = - — 3 are parameters
c

which depend on d. (d itself is a parameter which mimics lattice dimension.)
It is easy to see that

(2) h(z) = e @/



is a fixed point of the above transformation R (called the gaussian fized point). A natural
question would be to investigate local and global structure of the RGT flows (not necessarily
in the vicinity of the gaussian fixed point).

To partially answer this question, we studied RGT flows starting from the Ising initial
data:

(3) h(z) = §(2* — K?), K >0,
for d = 4. (In the above, K is roughly proportional to the inverse temperature.)

Our result can be summarized as follows:

Theorem. Ford =4, there is K. > 0, such that the RGT flow starting from the initial
condition (3) with K = K, converges to the gaussian fized point, (2).

The above result, supplemented by a more detailed estimate derived in the proof, shows
that the continuum limit of this model is gaussian (i.e. triviality).

A word on the proof: The proof uses characteristic functions and correlation inequalities
(which are nice), but is partly computer-supported (which is a bit disappointing, but still
is rigorous).

Reference: T. Hara, T. Hattori, and H. Watanabe: Commun. Math. Phys. 220 (2001)
13-40

Renormalization Group and Ward Identities in d = 2 Grassmann Integrals
V. MASTROPIETRO
(joint work with G. Benfatto)

We present a detailed study of the correlation functions of the XY Z Heisenberg spin
chain and of models of classical Ising systems in d = 2 like the eight vertex model or the
Aschkin—Teller model. The correlations can be written in terms of Grassmann integrals
which can be evaluated by a multiscale analysis and Ward identities can be implemented
in order to prove cancellations. The critical indices are written as a convergent power
series and non—universality is found. Convergence is proved by bounding the determinants
appearing in the Fermi expectations by the Gram—-Hadamard inequality. Such results
can be found in Benfatto, Mastropietro RMP (2001) and CMP (2002), and Mastropietro,
Preprint (2002)

Flow Equations for Hamiltonians: Applications to dissipative quantum
Systems

A. MIELKE

The aim of this talk is to show how flow equations can be used to diagonalize dissipative
quantum systems. Applying a continuous unitary transformation to the spin-boson model,
one obtains flow equations for the Hamiltonian and for observables. Depending on the
parameters, different representations of the Hamiltonian are suitable. For the super-Ohmic
case the flow equations are solved approximately, yielding very accurate results. The model
with an Ohmic bath and a coupling o« = % can be solved exactly using flow equations. This
approach can be used to construct controllable approximation schemes for a # %



Diffusive Dynamics in pattern forming systems
G. SCHNEIDER

We use renormalization theory to prove diffusive behaviour in pattern forming systems.
Examples are the nonlinear stability of spatially periodic equilibria, as Taylor vortices
of spatially periodic Bénard rolls, the nonlinear stability of modulated fronts connecting
stable Taylor vortices with the Couette flow, etc. The proof uses renormalization theory,
Bloch wave analysis and a fixed point argument.

Multichannel Nonlinear Scattering
A. SOFFER

The Nonlinear Schrodinger equation, which appears in the Hartree Fock approximation
and in nonlinear optics, is an example of a dispersive wave equation which has many
different asymptotic states depending on the initial data. Such time dependent equations
play a central role in many recent scientific advances,such as Bose-Einstein condensates
and optical devices. T will discuss the solutions of such equations,including the large time
behaviour. Rigorous results have shown, for the first time, the phenomena of ground
state selection, asymptotic instability of the excited states and more. These results are
obtained by deriving a novel Nonlinear Master equation and multitime scale analysis of its
properties. The talk will be general for Physics and Mathematics audience.

Continuous Diagonalization of Hamiltonians
F. WEGNER

A method to diagonalize/block-diagonalize Hamiltonians by means of a continuous uni-
tary transformation is presented (F.W., Flow Equations for Hamiltonians, Annalen der
Physik (Leipzig) 3 (1994) 77). Applications are given to the problem of the elimination
of the electron-phonon interaction (P. Lenz, F.W., Flow Equations for Electron-Phonon
Interactions, Nucl. Phys. B482 (1996) 693) and to symmetry breaking in the Hubbard
model (I. Grote, E. Krding, F.W., Stability Analysis of the Hubbard Model, J. Low Temp.
Phys. 126 (2002) 1385). Problems concerning the asymptotic behaviour are indicated.

Edited by Horst Knorrer
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