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This Oberwolfach workshop showed the surprisingly diverse topics currently covered
under the common theme of least-squares finite element methods. The first phase of
heavy activity in this class of methods actually dates back to the early 1980s. Sadly, one
mathematician who was among the first to embrace least-squares finite element methods,
George Fix, died before he could attend this workshop. He was deeply missed at the
workshop and mentioned almost constantly. Most of the groundwork for the recent gain
in interest in least-squares finite element method was done in the 1990’s, much of it by
participants of this workshop. After this period of intense efforts to develop new least-
squares variational formulations for different application problems, the field had reached a
mature state.

The presentations given at this workshop were devoted to a new generation of research
projects which rest upon the foundations laid in the last two decades. This includes new ap-
plications in electrical impedance tomography (Hugh McMillan), for hyperbolic equations
(Thomas Manteuffel), engineering problems (Bo-nan Jiang) and to transmission problems
in the coupling of finite elements and boundary elements (Ernst Stephan). Least-squares
methods for optimization and control were described (Pavel Bochev and Max Gunzburger)
as well as solvers especially tailored for nonlinear least-squares problems (Johannes Ko-
rsawe). A least-squares based minimal residual scheme was also presented (Ching-Lung
Chung). Moreover, the combination of the wavelet methodology with least-squares fi-
nite element methods was discussed (Angela Kunoth). The proper treatment of systems
with div-dominated or div-curl structure by the construction of appropriate finite element
spaces was the subject of a number of talks (Travis Austin, Joe Pasciak, Gerhard Starke).
Alternative approaches working with standard finite elements are the so-called discrete
least-squares (Zhigiang Cai) and FOSLL* (Jens Georg Schmidt) methods. The viewpoints
about the relationship of these two approaches ranged from “the same” to “completely
different”. The truth lies somewhere in the middle.

Most importantly, due to the rather small schedule there was plenty of time for individ-
ual discussions during the week of the meeting. Also, the Friday was held completely free
of talks in order to have a “round-table” discussion future trends and developments in this
field. This discussions showed that the following two trends dominate current research on
least-squares finite element methods. First, the least-squares finite element methodology
seems to be well-suited to complicated systems, in particular, arising from coupled prob-
lems. This opens new application areas for these methods. The second focus is currently
on the development of re-usable software for least-squares finite element computations.



Abstracts

An approximation technique for div-curl systems
JOE PASCIAK
(joint work with James H. Bramble)

In this talk, I will describe an approximation technique for div-curl systems based in
(L*(D))® where D is a domain in R®. Div-curl systems arise, for example, in electromag-
netic applications. These systems are troublesome as they appear to be not elliptic and a
crude counting indicates that there are more equations than unknowns. We formulate this
problem as a general variational problem with different test and trial spaces. The analysis
requires the verification of an appropriate inf-sup condition. This results is a very weak
formulation where the solution space is (L?(D))? and the data resides in various negative
norm spaces. The advantages of setting up the problem in such a weak space will be
discussed.

Subsequently, we consider finite element approximations based on this weak formulation.
We present two possible approaches. The first involves the development of ”stable pairs”
of discrete test and trial spaces. With this approach, we enlarge the test space so that the
discrete inf-sup condition holds and use a least-squares formulation to reduce to a uniquely
solvable linear system. The second approach uses a smaller test space and adds terms to the
form to stabilize the method. Both methods lead to optimal order estimates for problems
with minimal regularity. This is important as it is easy to construct magnetostatic field
applications whose solutions have low Sobolev regularity (e.g., (H*(D))? with 0 < s <

1/2).

Least-Squares Methods for Transmission Problem with FEM and BEM
ERNST P. STEPHAN
(joint work with Matthias Maischak)

We analyze a least squares formulation for the numerical solution of second order linear
transmission problems in two and three dimensions, which allow jumps on the interface.
The second order partial differential equation is rewritten as a first order system in a
bounded domain, and the unbounded exterior domain is treated by means of boundary
integral equations. The least squares functional is given in terms of negative order as well
as half integer Sobolev norms, which are computed by using multilevel preconditioners for
second order elliptic problems and for Symm’s integral equation. As preconditioners we
use both multigrid and BPX algorithms. The flux variable is discretized by using piecewise
constant elements, continuous and piecewise linear elements, or Raviart-Thomas elements.
The preconditioned system has bounded condition number. Numerical experiments for
various combinations of different elements and preconditioners confirm our theoretical re-
sults.



FOSLL* for Irregular Boundaries
JENS G. SCHMIDT

The standard FOSLS approach reformulates an elliptic PDE as a first order system LU =
F', which is solved in a least-square sense. From both the theoretical and the practical point
of view it is of great advantage to use the L?-norm and the standard H' finite element
spaces. If the solution of the PDE is not smooth enough (i.e. U ¢ H') these goals can not
be met.

For a certain class of non smooth solutions, namely the ones arising from discontinuous
coefficients, it is known that solving the dual problem L*W = U can overcome the above
mentioned problems, mainly since W € H! holds. This approach is called the FOSLL*
method.

For irregular boundaries (e.g. reentrant corners) or irregular boundary conditions (e.g.
some types of mixed Dirichlet and Neumann conditions) a straightforward application of
FOSLL* may yield a solution W of the dual problem, which is not in H' as desired.

In this paper we describe an approach that overcomes this difficulty and therefore allows
the use of standard finite element spaces in the discretization process. The efficiency of
the improved FOSLL* method is illustrated by several numerical examples.

Robust Iterative Methods for Least-Squares Neutron Transport and Related
Applications

TRAVIS AUSTIN

In this talk, we consider a second-order partial differential equation that is dominated by
the grad-div operator. A variational form of this equation arises in the context of a for-
mulation of the neutron transport equation using a scaled least-squares formulation. We
present a discretization of the variational problem using a cubic-quadratic finite element
space which leads to optimal error estimates and a setting for which an optimal multilevel
preconditioner can be created. We then present numerical results for the multilevel algo-
rithm. Lastly, we explain the relationship of this second-order equation to the displacement
formulation of linear elasticity. Discretization results and multilevel convergence results
are presented for linear elasticity using the same cubic-quadratic finite element space.

The Gauss-Newton Multilevel Method for Nonlinear Least-Squares Problems
JOHANNES KORSAWE

This talk is about the solution of a first-order system least-squares ansatz for a nonlinear
partial differential equation of second order. A standard way to solve such formulations
is the discretization of the solution space H and the application of multilevel methods to
the linear systems which arise from Newton-like approaches for the discretized nonlinear
problems. In this talk, possibilities are studied to deduce exactness bounds in the solution
of the finite-dimensional systems as well as refinement strategies for the discretization in
order to ensure convergence at optimal cost. To this end, an overall convergence theory
for the minimization of the nonlinear least-squares functional in H is deduced from the
extension of inexact Newton methods in R™ (Eisenstat/Walker) to the infinite-dimensional
case, which makes use of two decrease conditions to control the overall convergence. These
conditions can be fulfilled by suitably damped descent directions, which can be calculated
via the Gauss-Newton method applied to the least-squares functional. The errors from
discretization and the only approximate solution of the linear systems then both contribute



to the inexactness of the method. As a consequence of the surrounding convergence theory,
exactness conditions for the control of the algebraical error and refinement conditions for
the transition to the next level can be easily obtained. The application of this method to a
realistic water infiltration problem shows the competitiveness of this approach to standard
(heuristic) truncation settings.

Discrete First Order System Least-Squares: Second-Order Elliptic Boundary
Value Problems

ZHIQIANG CAI

An L?-norm version of first-order system least squares (FOSLS) was developed by Cai,
Manteuffel, and McCormick for scalar second-order elliptic partial differential equations in
d = 2 or 3 dimensions. It was shown that the homogeneous FOSLS functional is equivalent
toa Vx HY(Q) norm with V = H(div; Q)N H (curl A; Q) under general assumptions, where
A is the diffusion coefficient and €2 is the domain of the underlying problem. Moreover,
such a norm was shown to be in fact an H'(Q)%*! norm under the assumption that the
original problem is H2-regular. This product H' equivalence means that the minimization
process amounts to solving a loosely coupled system of Poisson-like scalar equations. This
in turn implies that standard finite element discretization and standard multigrid solution
methods admit optimal H'-like performance.

The limitation of this L?-norm FOSLS is the requirement of sufficient smoothness of
the underlying problem. Such smoothness guarantees the equivalence of norms between V'
and H*(Q)? so that it can be approximated by standard continuous finite element spaces.
In general, when the domain €2 is not smooth or not convex or the coefficient A is not
continuous, these two spaces are not equivalent. In fact, V is equal to H'(Q2)? plus a
finite dimensional space which consists of singular functions associated with corners of the
boundary and interfaces. Therefore, standard continuous finite element spaces are not
good approximation to V' in general. In this paper, we will construct an appropriate ap-
proximation space for V' based on the Helmholtz decomposition. Since our approximation
space is discontinuous and is not contained in V', we then modify the FOSLS functional
to accommodate such discontinuity and nonconformity of finite element spaces. Under
general assumptions, we establish error estimates in the L? and H' norms for the vector
and scalar variables, respectively. Such error estimates are optimal with respect to the
required regularity of the solution. Preconditioner for the algebraic system arising from
this approach is also considered.

A Direct Minimal Residual Method for the Numerical Solution of Differential
Equations

CHING LuNG CHANG

Since the early 90’s, research in numerical solution of partial differential equations yielded
many excellent algorithms and error analysis studies for the linear and nonlinear equations
by using the least-squares finite element methods. As a result, many problems can be solved
much more effectively than before. However, currently it is still very time consuming to
solve applied problems with large-scale, nonlinear partial differential equations. During the
1998 STAM Annual Meeting in Toronto, Canada, several people in their talks estimated
that it still requires a modern computer to run continuously for 20 to 60 years in order to



solve the large-scale nonlinear Navier-Stokes equations by the least-squares finite element
approach. Therefore we have to find a way to reduce the computer time we spend.

The main objective of this research is to study a class of residual-based minimization
schemes, called the minimal residual methods, for the numerical solution of some kinds
differential equations.

The idea is from the Least-squares FEM, which minimized the norm of ||Lu — f|| if
Lu = f has unique solution associate with some boundary or initial conditions. After we
generate the grid for the domain then we can define a set with finite element to approximate
the solution with the characteristic h. If we also set the step of the coefficients £k = A\h and
set the upper and lower bounds for the solution, then we have a finite number of numerical
solution >}, Cr¢y. By such idea, to solve a linear or non-linear ODE or PDE have no
essential difference of computer time consuming. A preliminary work has been done. we
solve the ODE with the form f(%,u,t) = 0. Also we solve Laplace PDE in a simple
domain as well.

Least-Squares Finite Element Methods for Linear Hyperbolic PDEs
THOMAS A. MANTEUFFEL
(joint work with Luke Olson)

In this talk we will present a least-squares formulation of scalar, first-order, linear, hyper-
bolic equations. A least-squares functional will be presented and coercivity and continuity
of the functional will be discussed. The functional includes a weak form of the boundary
conditions. Then, a nonconforming functional will be described that involves terms penal-
izing jumps across cell edges not aligned with the flow. A uniform Poincaré inequality is
established for the non-conforming functional. Numerical results on a simple test case with
a discontinuous solution will be presented using elements from bi-linear through bi-quartic
on quadrilateral grids and triangular grids. The results imply that higher-order elements
produced faster convergence per degree of freedom. It will also be shown that the least
squares solutions have minimal smearing of the discontinuity and minimal overshoot and
oscillations. The nonconforming elements display similar behaviour, and thus, present no
apparent advantage over conforming elements. Finally, solution techniques for the result-
ing linear systems will be discussed. Algebraic multilevel methods show great promise on
this class of problems.

First Order System Least-Squares for Electrical Impedance Tomography
HucH MACMILLAN
(joint work with Thomas A. Manteuffel)

Electrical impedance tomography (EIT) belongs to a family of imaging techniques that
attempt to distinguish spatial variations in an internal electromagnetic parameter. The
standard approach to EIT is output least squares (OLS). Given a set of applied normal
boundary currents, one minimizes the defect between the measured and computed bound-
ary voltages associated, respectively, with the exact impedance and its approximation. In
minimizing a boundary functional, OLS implicitly imposes the governing Poisson equa-
tion as an optimization constraint. We introduce a new first-order system least squares
(FOSLS) formulation that incorporates the elliptic PDE as an interior functional in a global
minimization scheme. We then establish equivalence of our functional to OLS and to an



existing least-squares interior functional due to Kohn and Vogelius. That the latter may
be viewed as a FOSLL* formulation suggests FOSLS as a unifying framework for EIT.

The limited capacity for resolution in EIT, due to the necessarily finite set of inexact
boundary data and the diffusive nature of current flow into the interior, traditionally leads
to the conclusion that reconstructing the interior impedance is an ill-posed problem. EIT
inherits this difficulty from the simplified inverse problem of reconstructing the electrical
conductivity. Since quantifying the limited capacity is the focus of our theory, we begin
with the static assumption and consider the reconstruction of conductivity, leaving that
of the impedance as future work. We show that each functional in the FOSLS framework
is equivalent to a natural norm on the error of the approximate conductivity. We analyze
the topology induced by this norm to reveal the qualities of the exact conductivity that
we should, in practise, expect to recover. Finally, we present preliminary numerical results
for the FOSLS formulation and observe that they are faithful to our theory.

Our approach represents a significant departure from convention in that we do not
rely on a generic regularization term. Rather, we accept and incorporate the underlying
physics, albeit inhibiting. Problem-specific information, which otherwise might be used to
“regularize” the “ill-posed” problem, can be included by either introducing an additional
term to the functional or supplementing the space of admissible conductivity.

Wavelet Least-Squares Methods for Boundary Value Problems
ANGELA KUNOTH
(joint work with Wolfgang Dahmen, Reinhold Schneider)

For the numerical solution of stationary operator equations, least squares methods will
be considered. The primary focus is the combination of the following conceptual issues: the
selection of appropriate least square functionals, their numerical evaluation in the context
of wavelet methods and a natural way of preconditioning the resulting systems of linear
equations.

First the problem is formulated in a general setting to bring out the essential driving
mechanisms. Special cases that fit into this framework are a transmission problem that
involves differential and integral operators, and saddle point problems where an elliptic
partial differential equations is to be solved subject to side conditions.

One primary motivation has been the well-known fact that a major obstacle in the
context of least squares methods based on finite element discretizations is the evaluation
of certain norms such as the H~'-norm. In this regard the fact that weighted sequence
norms of wavelet coefficients are equivalent to relevant function norms arising in the least
squares context are exploited. Truncating the (infinite) wavelet series appropriately leads
to stable Galerkin schemes.

Some New Applications of the Least-Squares Finite Element Method
Bo-NAN JIANG

It has become standard practise that different numerical schemes are employed for each
type of differential equations. In this talk I will T show that without any special treat-
ments by using only one formulation the LSFEM is able to simulate almost all kinds of
problems in fluid dynamics and electromagnetics. New examples from solid mechanics and
magnetohydrodynamics (MHD) will be given to support my opinion. The LSFEM is able
to give simultaneous solutions for displacements, drilling rotation and stresses in elasticity



including incompressible materials, and for deflection, slopes, moments and shear forces
in plate bending with an optimal rate of convergence for all variables. Without the use
of complicated flux-splitting for shock-capturing and an expensive Poisson solver for cor-
recting magnetic field the simple LSFEM can capture shocks and complex flow patterns in
compressible MHD.

Least-Squares Finite Element Methods for the Stress-Displacement
Formulation of Elasticity

GERHARD STARKE
(joint work with Zhiqiang Cai)

A least-squares finite element method for linear elasticity is developed. The least-squares
functional is based on the stress-displacement formulation with the symmetry condition of
the stress tensor imposed in the first-order system. Using the H(div)-conforming Raviart-
Thomas spaces for the stress components and nonconforming finite elements for the dis-
placements, this method is shown to be optimal in the H(div) and the (broken) H' norm,
respectively, uniformly in the incompressible limit. The local evaluation of the least-squares
functional therefore represents an a posteriori error estimator. Computational results ob-
tained with an adaptive refinement strategy based on this estimator are presented for
a benchmark test problem. Moreover, the least-squares formulation is extended to geo-
metrically nonlinear elasticity where a Gauss-Newton method is described for solving the
nonlinear least-squares problems. Finally, an extension to a coupled problem associated
with fluid flow in deformable porous media is presented.

Least-squares finite element methods for optimization and control problems
for linear partial differential equations (Part 1)

PAVEL BOCHEV
(joint work with Max Gunzburger)

For many years, optimization and control problems for systems governed by partial differ-
ential equations have been, in many applications, a subject of interest to experimentalists.
For example, boundary layer control in fluid mechanics was studied by Prandtl as early as
1904. These problems also been a subject of theoretical interest and, for almost as long
as computers have been around, of computational interest as well. Most of the efforts
in the latter direction have employed elementary optimization strategies. For example, a
popular “brute force” strategy has been, in problems for which one wishes to minimize a
cost or performance functional, to evaluate that functional for several values of the control
variables or design parameters and then to simply select those values which result in the
smallest value for the functional.

More recently, mathematicians, scientists, and engineers have turned to the applica-
tion of sophisticated optimization strategies for solving optimization and control problems
for systems governed by partial differential equations. On the mathematical side, one
may credit J.-L. Lions and D. Russell for helping popularize and foment such approaches.
Today, many different local and global optimization strategies, e.g., Lagrange multiplier
methods, sensitivity or adjoint-based gradient methods, quasi-Newton methods, evolution-
ary algorithms, etc., are in common use.

The problems that we will discuss fall into the class of constrained optimization and
control problems. The four ingredients that a define a problem in this class are:



a set, of state variables which describe the physical system of interest;

a set of control variables or design paramaters which are at our disposal in order to
effect the optimization;

a cost, or performance, or objective functional which depends on the state and/or
control variables and whose minimization is the object of control; and

a system of partial differential equations along with boundary and initial conditions
which act as constraints that candidate state and control variables must satisfy.

Several popular approaches to solving such optimization and control problems for sys-
tems governed by partial differential equations are based, one way or another, on optimality
systems deduced from the application of the Lagrange multiplier rule. This may not be
surprising since the Lagrange multiplier rule is, of course, a standard approach to solv-
ing finite-dimensional optimization problems. Perhaps more surprising is that penalty
methods, which are another popular approach for the latter setting, have not engendered
anywhere near as much interest for the infinite-dimensional problems which are of interest
here. In this talk, we will see why naively defined penalty methods may not be practical
and, using methodologies associated with modern least-squares finite element methods, we
will also see how practical penalty methods can be defined. Moreover, we will see how
penalty methods offer certain efficiency-related advantages compared to methods based on
the Lagrange multiplier rule.

Least-Squares finite element methods for optimization and control problems
for linear partial differential equations (Part 2)

MAX GUNZBURGER
(joint work with Pavel Bochev)

(same abstract as Part 1)

Edited by Gerhard Starke
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