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The conference was organised by Gero Friesecke (Warwick), Tristan Riviere (Zuerich)
and Gianni DalMaso (Trieste).

There were a total of 30 presentations, covering a wide range of topics including gra-
dient flows, mass transportation, geometric analysis, minimal surfaces, Lipschitz maps,
singularities, atomistic systems, quantum mechanics and water waves.

The stimulating discussions and the marvellous working conditions provided by the In-
stitute of Oberwolfach created a lively scientific atmosphere.

In particular, the participation of many young researchers and mathematicians from dif-
ferent fields such as applied analysis, geometry and partial differential equations shows that
calculus of variations is a growing and active topic with connections to many mathematical
disciplines.

The abstracts are listed in the order they have been entered in the book of abstracts.



Abstracts

Surface Energies in Lattice Systems
F. THEIL

We study the minimum energy configurations of cubic two-dimensional lattices. The
energy is given by the sum over nearest and second nearest neighbour interaction potentials.

(1) E = ) Viw(ylx) - y)))

z,x' €L
(2) Vow = 0 if |z —2'|>V2,

where £ C Z2. The presence of surfaces leads to the creation of boundary layers and the
concentration of energy on the boundary. We show that in a suitable limit (the equilib-
rium lengths of the springs are roughly comparable) the minimisers of half space systems
are asymptotically one-periodic in the tangential direction and the minimum energy is de-
termined by the solution of a finite dimensional nonlinear equation. Since the half space
system is infinite-dimensional and the energy is nonconvex, this result is an important step
towards a qualitative and quantitative understanding of atomistic systems with surface
energies.

Geometric Structure of Null Sets in the Plane (and some applications)
G. ALBERTI

This talk summarises (part of) a joint research with Marianna Csornyei and David Preiss
(University College London). Although our results are not directly related to the calculus
of variations, the purpose of this talk is to highlight an elementary geometric fact that lies
behind most of our proofs and that might be useful elsewhere.

Statement: every Borel set E C R?, |E| = 3 can be covered by horizontal and vertical
stripes (=~ e-neighbourhood of graphs of 1-Lipschitz functions © = x(y) or y = y(x)) so
that the sum of the heights is less than C'v/S — C' a universal constant.

Variations of this lemma have been used to prove the existence of a (weakly defined)
tangent field to null sets and singular measures in the plane, constructing Lipschitz maps
that take a given set of positive measure onto a disk (following earlier proofs of D. Preiss
and J. Hatou$ek) and Lipschitz maps that are almost nowhere differentiable with respect
to given singular measures in the plane. The lemma is obtained by discretization from
a geometric version of classical Erdds-Szekeres Theorem. Unfortunately, it is not known
if some equivalent statements holds in higher dimension (in fact, we have some partial
counterexample).



Comparison between the Classical and Intrinsic Rectifiability in Carnot
Groups

F. S. CAsSsANO

We compare in the setting of the Carnot groups, endowed with its Carnot-Carathéodory
metric, the classical and a new intrinsic notion of rectifiability. We prove that the classical
definition does not fit the geometry of the Carnot groups while the intrinsic one does.
Moreover, we prove that the classical one always implies the intrinsic one and the converse
fails.

An optimization problem in mass transportation
G. BurTAZZO

Given a connected open regular bounded subset € of R" and two probability measures
fTand f~ on Q, for every distance d on € we consider the Monge-Kantorovich cost

F(d) = inf{//Q Q\If(d(x,y))du(x,y) : v transport plan of f* onto f}

where ¥ : R — R is a given continuous increasing function with ¥(0) = 0. The distance d
is taken in the admissible class of Riemannian distances of the form

o) =it { [ et 10) =, 1) =}

where the coefficient a(z) varies in the class

Ao, f,m) = {a < (o) < B, [ ale)ds < m} ,

with «, 5, m positive constraints. It is shown that the maximization problem
max {F(d,) : a € A(a, 5,m)}

admits a solution. The proof is based on density result of isotropic Riemannian metrics in
the class of all Finsler metrics.

Fast diffusion to self-similarity: complete spectrum, long time asymptotics,
and numerology

R. McCANN
(joint work with J. Denzler)

The complete spectrum is determined for the operation
H=-mp" 'A+z2-V

on the closure of C.(R") in the Hilbert space norm

I[P = / U,

Here the Barenblatt profile p is the stationary attractor of the rescaled diffusion equations

ou m
E:A(u )+ V- (zu)



in the fast supercritical regime m 6]"7_2, . m > 5, the same diffusion dynamics

represent steepest descent of an entropy E(u) on probability measures with respect to
Wasserstein distance dy. Formally, H = Hess,E on the spectral gap H > o =2—n(1—m)
found below suggests the sharp rate of asymptotic convergence:

g DB

t—00

from any centred initial data 0 < u(0,z) € L'(R"). Further eigenfunctions — all hyper-
geometric polynomials — and the presence of continuous spectrum suggest the long time
asymptotics of u(t) while yielding insight into the relations between the symmetries of R"
and the flow. Much of the strange numerology of the spectrum is explained in terms of the
number of the moments of p.

Winding behaviour of finite-time singularities of the harmonic map flow
P. ToPPING

The harmonic map flow u : D? x [0,00) — N < RY from the 2-disc to a compact
Riemannian manifold is liable to blow up in finite time.

At a singular point (x,7) € D x [0,00), “bubbling” occurs when we blow up the flow
restricted to times ¢, 17T

We show:

(1) The bubbling is, informally, non unique; it depends on the sequence ¢, T T chosen.

(2) The bubbling can be “winding” in the sense that bubbling convergence may fail
when the flow is lifted to the universal cover of V.

(3) The map u(T) € Wh?(D, N) can be discontinuous.

(4) The polynomial rate of blow-up can, in certain cases, be determined.

Convergence of the Yamabe flow for “large” energies
M. STRUWE
(joint work with H. Schwetlick)

In joint work with Hartmut Schwetlick we show sub-convergence of the Yamabe flow on
any smooth, compact 3-manifold (M, G,) without boundary, provided the initial average
scalar curvature so and the Yamabe invariant Yy = Y (M, G,) satisfy the condition

0< Yy <sg< (Y24 gn/2)2n

where s, = Y(S™, Ggn) and n = 3. The proof uses a Kazdan-Warner type estimate to rule
out concentration, as in the 2-dimensional case, treated in [1]. If n = 3, or if 3 < n < 6 and
if (M, Gy) is locally conformally flat, this key estimate may be deduced from the positive
mass theorem.

[1] M. Struwe. Curvature flows on surfaces. To appear in Annali. Sc. Norm. Sup. Pisa
(2002).



Deformations and degenerations of Einstein metrics
R. MAzzEO

I describe two projects: the first, with B. Yang, involves the study of Einstein metrics
with isolated conical singularities. Specifically, we prove analogues of various theorems due
to Hardt, Simon et al. for minimal surfaces in this context. The goals include studying
desingularisations of these singularities, and a finiteness theorem for the moduli space of
Einstein’s on a compact 4-fold (smooth) under certain conditions.

The other project, with F. Pacard, is a “boundary” gluing result for asymptotically
hyperbolic Einstein metrics. This produces many new examples and shows (modulo the
Poincaré conjecture) that every scalar-positive 3-mfd. bounds an asymptotically hyperbolic
4-mfd.

On the total variation of the Jacobian
P. MARCELLINI
(joint work with I. Fonseca and N. Fusco)

Q2 is an open set of R*. We denote by det Du the Jacobian determinant of a map
u:Q — R (n > 2). We also denote by Det Du, capitalised, the distributional Jacobian
determinant, where it exists. Given u € L®(Q;R") N W'?(Q; R") for some p > n — 1 the
total variation TV (Q) of the Jacobian determinant is defined by

TV (u,) = inf {likrginf/ | det Duy(x)| dz @ wy N u, up € Wl’"(Q,R")} :
© Ja

In a work in collaboration with Irene Fonseca (CMU, Pittsburgh) and Nicola Fusco (Uni-

versity of Napoli) we proved some general n-dimensional results and we give some examples.

Here are two examples:

Example 1: Let u : Q\ {0} — R* (Q open, with 0 € Q) be defined by u(x) =
(w(x) — w(0))/|w(x) — w(0)], where w is a Lipschitz-continuous map, classically
differentiable at = 0 with det Dw(0) # 0. Then TV (u, Q) = |B;| = wy,.

Example 2 (The “eight” curve): Let v = y"Uvy~ C R? be the union of two circles
of radius 1, with centres respectively at (+1,0) and (—1,0). Let h,x € Z. Let v :
[0,27] — v =~" U5~ be the curve whose image turns |h| times in 4~ and |x| times
in y* according to the parametric representation v(6) = (—1,0) 4 (cos 2h8, sin 2h6)
if 0 <0 < mvd) =(1,0) = (cos2k0,sin 2x0) if 7 < 0 < 27 let u(x) = v(x/|z]).
Then TV (u, By) = (|h| + |k|)7, while |Det Dul|(B;) = |h — k|r.

Applications of Scans
R. HARDT
(joint work with T. Riviere)

Smooth maps between Riemannian manifolds M™, N™ often fail to be dense in W' (M, N)
in both the strong and weak topologies. The energy drop in a weakly convergent sequence
has a local topological point (called bubbling) attributable to I, (V).

Following the W'?(B3, S?) case studied by Bethuel and Giaquinta, Modica, Soucek, one
may, for an individual map, look for a “topological singularity” of dimension m — [p] — 1
whose absence or presence determines the strong approximability by smooth maps. For



the weak limit of smooth maps one expects this singularity to occur as the “boundary”
of a “bubbling chain” of dimension m — [p]. Here we describe precisely, for m — 1 <
p < n, the singularity and bubbling caused by II,,_1(N) ® Q. Unlike in the W12(B? S?)
case, we find that in general (as in the W'3(B* S?) case) the bubbling is not given by
a current. We introduce a generalization, called scans to handle such bubbles. We again
obtain a scan criteria for strong approximability. Here the bubbled scans correspond to
oriented /rectifiable sets of finite lengths with integer multiplicity function # that is L for
some 0 < a < 1. We show that the optimal constant « is 1 for IL,(N™), 3 for I13(S?), and
is estimable, for any rational homotopy invariant, in terms of a diagram derivable from
Novikov-Sullivan data.

Remarks on Jesse Douglas
M. MICALLEF
(joint work with J. Gray)

This was an informal talk given in the evening on Wednesday, July 3, 2002, the 105th
anniversary of the birthday of Jesse Douglas. A key problem in minimal surface theory is
the determination of a parametrization r : [0,27] — R" of a simple closed curve I' C R",
so that the harmonic extension F' : B — R" of r is conformal; B = unit disk in R%. In
this talk, I explained how Douglas formulated this problem as an integral equation for r.
Douglas never published this work, the result is merely stated in abstracts of meetings of
the American Mathematical Society during 1926-1929. More important, Douglas eventu-
ally realised that this integral equation was the Euler-Lagrange equation for his famous
A-functional, which he used to solve the Plateau problem. This formulation of the confor-
mality of F' as a variational problem for r was a major breakthrough in minimal surface
theory; its development by Courant and others continues to play an important role in
minimal surface theory to the present day. This bears out Carathéodory’s citation for the
award of the Fields Medal in 1936 to Douglas: Douglas’s method for solving the Plateau
problem is ‘entirely original’ and ‘of great significance’.

A brief account of the life of Jesse Douglas was also presented. The talk was followed

by many interesting and valuable comments from the audience, especially Professor Stefan
Hildebrandt.

Time continuous optimal transportation problems
YANN BRENIER

The usual Monge-Kantorovich formulation of optimal transportation problems is shown
to be equivalent to a “Continuum Mechanics” type formulation where the time variable
is explicitly introduced and used. This formulation is far more flexible that the usual one
and includes the (simplified) Moser construction for the solution of the Jacobian equation.
Many generalizations of the time continuous formulations are possible, including optimal
transportation of currents, relaxed geodesics on groups of volume preserving diffeomor-
phisms, generalized harmonic maps etc.



Elliptic approximation of curvature-sensitive image segmentation energies
A. BRAIDES
(joint work with R. March)

In 1990 Mumford and Nitzberg proposed to improve the celebrated Mumford Shah
variational approach to image segmentation by replacing the length of the segmentation
set by a term involving also the curvature (the “Elastica” functional). In their formulation
a segmentation (U, K) is given by a set K (union of H?-curves) and a function u : Q\ K —

minimising
min{/ |Vu|2dx+/(1+/€2)d7{1+/ |u—g|2drv}
O\K K O\K

(all constant are set to 1), where Kj is the set of end points of the curves in K. The
problem above can be proved to be approximable by elliptic problem of the type

Jo (W2 IVuf? + M (0) - w1+ div([2)2) + 2 My (w) (2 + ediv(B2)) + o lu— gl da

where v € HY(Q), v,w € H*(Q). M,(z) denotes the "Modica-Mortola” energy density
energy density modified by a singular perturbation term:

W v—1)2

M () = T o 4 =

U \/ﬁ

The main issue is the term [, M, (w)(L + 5d1v(‘DW|) ) dz which is shown to behave as

. W is double-well potential with zeros at 0, 1.

f SE + ex?)dH', whose minima are circles of radius ¢.

Elliptic problems in vortex theory
G. TARANTELLO

We discuss the role of elliptic problems of Liouville-type in the study of vortices in various
gauge field theories, such as Chern-Simons theory, Electroweak theory etc. The feature of
such elliptic problems are captured essentially by the following elliptic equations:

N
(3) —Au=\e" — 47 Y Op, + f

j=1
over a 2-manifold M without boundary. The points {P;,..., Py} are given in M, f €
L'(M) and X > 0 is a given parameter. We discuss a concentration compactness concerning
(3), and its consequences towards existence results as A varies.

Cross-tie patterns and limiting minimization problems in a model for
micromagnetism

S. SERFATY
(joint work with F. Alouges and T. Riviere)

We describe a joint work with Francois Alouges and Tristan Riviere, in which we study

the family of functionals
1 1
/5|Vu|2+—/ |H|2—i-—/|u|2
0 € JRr2 €Ja



where u is a map: © — S? (magnetization in physics). H is given by VA~ !div(uyq),
the demagnetizing field. 2 is a bounded simply connected domain of R?. We study the
asymptotics ¢ — 0. Families of uniformly bounded energy converge (after extraction) to
divergence-free vector fields of unit norm, which have line singularities along which the
limiting v jumps. We prove a lower bound for the energy in terms of the angle of those
jumps; which is optimal. This lower bound can be achieved by a one-dimensional profile for
jumps less than 7/2 and by two-dimensional profiles called “cross-tie”, which we construct,
for jumps between 7/2 and 7 in angle.

Structure of entropy solutions
F. OrTo
(joint work with Camillo De Lellis)

Consider the variational problem:
1
Bw) = [ [Fuf+2 [(-jufp, oc®
0 €Ja

m. : Q — R? constraint to V - m, = 0. Let m be a strong limit of a sequence {m.}.-o
with bdd {E.(m.)}cso. The limit satisfies |m|*> = 1 a.e., V - u = 0 distributionally. It is
expected to have line singularities. But in general m ¢ BV (2). We nevertheless prove
that m has the structure as if it were in BV (£2). The main tool is the control of V - [¢p(m)]
as a (signed) Radon measure, where ¢ belongs to a certain class of nonlinear transforms
(“entropies”).

Two-dimensional parametric variational problems
S. HILDERBRANDT
(joint work with H. van der Mosel)

Let F: R" x RY, N = in(n — 1), be a parametric integrand i.e.

(4) F(z,tz) =tF(z,2) for t <0

which satisfies

(5) my|Z| < F(x,z) < mg|z| with constants m, my > 0, and
(6) F(z,z) is convex in z.

Then the integral F(X) := [, F(X,X, V X,)dudv is well defined on the class C(I') of
surfaces X : B — R", B = {(u,v) € R? : u? +v* < 1} such that X € H"?(B,R") which
map 0B monotonically (with degree 1) onto a closed rectifiable Jordan curve I' in R".

Theorem 1. There is a solution X € C(T') of the minimisation problem ”F — min in
C(T')” which is a.e. conformally parametrized and Holder continuous in B with exponent
o« = mi/my. Moreover, X € CP(B,R") for some 3 € (0,1) if T satisfies a chord-arc
condition.

Theorem 2. This minimiser is of class H>>(B, R*)NC"7 (B, R") if there exists a ”perfect

loc

dominance function” G(z,p) of F. Moreover, we also have X € H>%(B,R")NnC"(B,R")
if I e C°.



Theorem 3. If F' is of the form F' = kA + F*, where A(z) = |z| is the area integrand
and F* satisfies (4), (5) (with constants mj, mj) and the standard parametric ellipticity
condition

|2 Fisi (2, 2)C°¢7 2 A(IC° = [2]*(2,€)")
with A* > 0, then F' possesses a perfect dominance function, provided that & < kg :=
2[m% — min{\*, m}}].

The concept of a dominance function was introduced by C.B. Morrey. The proof of
Theorem 3 is based on a construction of dominance functions given by Morrey. Theorem 1
is derived by considering the penalized functionals F, := F + D, € > 0, where D is the
Dirichlet integral D(X) = 1 [, |VX|? du dv. Theorem 2 follows by considering the weak
Euler equation 6G(X,¢) = 0 where G(X) = [, G(X,VX)dudov.

Rigidity in nonlinear elasticity and the derivation of plate theories
S. MULLER
(joint work with G. Friesecke and R.D. James)

The energy functional of nonlinear plate theory is a curvature functional for surfaces first
proposed on physical grounds by Kirchhoff in 1850. We show that it arises as a ['-limit of
three-dimensional nonlinear elasticity theory as the thickness of a plate goes to 0. A key
ingredient in the proof is a sharp rigidity estimate for maps v € WH2(U,R*), U C R" a
bounded Lipschitz domain. We show that there exists R € SO(n) such that

/ Vv — R|?dz < C(U) / dist*(Vv, SO(n)).

A T-convergence approach to generalised Sobolev inequalities
A. GARRONI

Well known concentration phenomena arise in problems with lack of compactness due
to the critical growth. The most famous example is given by the Sobolev inequality. The
same kind of phenomena appear in a more general situation, as has been proved by Flucher
and Miiller. They study the behaviour of ‘almost’ maximizers for the functional

f;* )dx for u =009 s.t. / |Vul?dz < 1
Q

withe > 0,0 < f(t) < c|t|m. They prove concentration by means of a generalised version
of the concentration-compactness alternative of P.L. Lions. We approach this problem
using the I'-convergence. This permits us to read easily the concentration directly by the
structure of the I'-limit. The localization of concentration points can be also obtained by
the second order expansion in I'-convergence.



Quasiminimal Partitions and Uniform Rectifiability
SEVERINE RIGOT

A quasiminimal partition is a Caccioppoli partition of R” for which one controls the
variation of a surface like energy under relatively compact perturbations that preserve the
measure of each component. Roughly speaking, one knows that this variation is negligible
compared to the initial surface energy.

We prove quantitative and uniform rectifiability properties for the set of interfaces of
quasiminimal partitions, namely uniform rectifiability in the terminology of G. David and
S. Semmes. To this aim the main issue is to handle properly the volume constraint. Using
ideas and constructions inspired by a previous work of Almgren about minimal partitions
with prescribed measure, one can get a new quasiminimality condition without volume
constraint anywhere and which is much easier to work with. Then the regularity properties
follow by fairly standard comparison and covering arguments.

Surface water waves as saddle points of the energy
E. SERE
(joint work with B. Buffoni and J.F. Toland)

By applying the mountain-pass lemma to an energy functional, we establish the existence
of two-dimensional water waves on the surface of an infinitely deep ocean in a constant
gravity field. The formulation used, which is due to K.I. Babenko, (and later to others,
independently), has as its independent variable an amplitude function which gives the
surface elevation, its nonlinear term is purely quadratic but nonlocal (it involves the Hilbert
transform C). The waves are found as critical points of the functional

I(w):/ wa'—)\/ w (1 +Cuw'), weW,”.

-7 —T

Since this functional is rather degenerate, we have to truncate it, penalize it, and regularize
it. To prove the convergence of the critical points, in the limit of vanishing regularization,
to a nontrivial wave, we use the Morse index, in the spirit of a work by Amann and Zehnder.

Vortex energy for rotating Bose-Einstein condensates
A. AFTALION
(joint work with T. Riviere and R. Junard)

We find an asymptotic expansion for the energy describing a Bose Einstein condensate
in terms of the rotational velocity €2 and a small parameter €. This simplified energy allows
us to understand why in the present experiments the vortex line line is not straight along
the axis of rotation but bending.

10



A relative Morse index for the Dirac-Fock functional
E. PATUREL

We prove the existence of infinitely many stationary solutions of the Dirac-Fock model
describing atoms and molecules, under the assumption: N < Z 4+ 1 and max(Z, N) < Z.
where N is the electron number, Z the total positive charge, a the electromagnetic coupling

constant (~ —=) and Z, = a(22+£)‘ This work is an improvement of an article of Esteban
T 2

137
and Séré, where the claim was proved under more restrictive assumptions on N. The stress
is put on the construction of a relative Morse index for the functional, which allows us to
control the energy of the mean field operator.

Douglas condition for Willmore surfaces of prescribed genus
ERNST KUWERT

Let 3, be the infimum of the Willmore functional among oriented, immersed surfaces of
genus p in R”. By a result of L. Simon, for each p € N there is a partition p = p; +...+p,
with p; > 1 such that each of the 3, is attained and moreover one has the equation

ep=¢€p +...+e,, (e,=0,—4m).
By extending the case r > 2 we obtain the following

Theorem. For any p € N; the infimum /3, is attained.
Simon’s work reduces the problem to proving e,, 1, < €,, + €,,.

Removability of point singularities of Willmore surfaces
R. SCHATZLE

We prove that single, unit-density point singularities can be removed. In particular,
this implies that blowup limits of Willmore flows with energy < 87 are smooth at infinity.
As consequences we determine 87 as the optimal energy level such that Willmore flows
of spheres below this level exist globally and converge to round spheres, and we obtain
compactness results for Gilmore tori.

Det vs det
I. FONSECA
(joint work with P. Marcellini and N Fusco)

It is well known that u € W"N(Q : RY) — [, |det Du| is W""-sequentially weakly
lower semicontinuous, where  C RY is an open set. However, many variational problems
lead us to consider the case where the setting is now in WH?(Q, RY) for some p < N. Two
questions naturally arise:

Q1. What are the “minimal regularity” assumptions on u guaranteeing that

N

0 .
DetDu = det D where DetDu = »  ——(u'(adjDu)])?
= 833]‘
Q2. What is the “weakest notion” of convergence under which

Uy € VVI})’CN(Q; RY), wu, — u = DetDu, = det Du,, — DetDu?

11



The understanding of these questions is relevant to the study of vorticity for Ginzburg-
Landau equations, cavitation of nonlinear elastic rubber-like materials, singularities of
harmonic mappings with values on the sphere, etc. When addressing Q2 it is tempting to
introduce the relaxed functional TV (u, 2), the total variation of the Jacobian determinant
given by

loc

TV (u,Q) = inf{li_m/ |det Duy,| @ uw—u W'Y, u, € W5}
%

Jointly with N. Fusco and P. Marcellini, it was shown that if p > N—1 and TV (u, Q) < 400,
then TV (u,-), DetDu are finite Radon measures, det Du € L'(2),

TV (u,-) = |det VulL"|Q2 + As, DetDu = det Dul™|Q + ps,

where \q, p, are finite Radon measures, singular with respect to £™|€2, and |us| < A;. The
proof of this result is strongly hinged on a theorem obtain in collaboration with G. Leoni
and J. Maly, stating that if u, € WYY w € BV, u, — u L', {u, } bounded in W»¥~1 and
if det Du,, = 1 for some Radon measure i, then di—“N = det Du.This result is sharp, in that
there are examples asserting that one cannot, in general, assume that {u,} is bounded in
WP p < N —1 and unbounded in W~ and also one cannot, in general, assume that

u, € WH? \ WY for some p < N.

Three dimensional water waves by variational and dynamical methods
R. PEGO

We describe travelling waves in models of wave propagation on water of finite depth, for
three models:
(1) the KP - equation
(2) the Benney Luke equation (an isotropic model for long wave of small amplitude)
(3) the exact Euler equations for water waves

When surface tension is strong, the equation for travelling waves is elliptic. Finite
energy solitary waves had been found for KP by concentration-compactness methods, and
we achieve the same for BL and demonstrate I'-convergence to KP in the appropriate
scaling limit. The problem for the exact Euler equations is open.

When surface tension is zero, looking for fast waves yields problems best addressed
through spatial dynamics. For BLL and the Euler equations this yields an ill-posed system,
but for BL we prove (as for KP) there is an infinite-dimensional family of travelling waves
that corresponds to a centre manifold of infinite dimension and codimension. The exact
equations admit formally a conserved “energy” for spatial dynamics, but the existence of
a centre manifold for nonlinear waves remains open.

12



Harnack inequalities on scale irregular fractals
UMBERTO Mosco

Following Barlow-Hambly (1997) we construct a family of homogeneous non self-similar
Sierpinski curves in R”?, D > 2. Each curve K(€) of the family depends on an “environ-
ment” sequence & = (£, &y, .. .), where each &; takes its value in a finite set of “scales”, A.
The main scaling exponents associated with a € A are

ag>1, Ny >2, p, >1

for length, volume (mass), energy, respectively. The asymptotic frequency of a € A in
¢ € AV is described by probabilities 0 < p, < 1,3, ,pa =1, on A:

n—o0

1 n

o = lim A (n), B (n) = = Ig,.
y S, 10 = 31

Under the assumption
g WO —p < 2 1,

n

where ¢ is a regular increasing function on the real line, g(0) = 1, we are able to carry
out an “effective” description of K€ inspired by homogenization theory. We replace the
complicated fine structure of K& by an intrinsic quasi-metric structure within K and
we estimate the scaling laws for volume and spectral gap on balls Br of d. The effective

quasi-metric d is of the kind d(z,y) = |z — y|°, where § > 0 is an index of the ramifications
in K©, which is chosen to be

5 — EZapa log(Napa)
2 > . paloga,

We then prove the volume estimate vol(Bg) ~ R’e“®) where

_ 5 2aPalog(Na)

Za Pa log(Napa)
and the “universal” spectral gap scaling \;(Bgr) ~ R~2e(—cG(R)), where G(R) ~ g(clog(1/R)).
By assuming fastest convergence, i.e. g(s) = O(1), we then prove Harnack inequality on
balls Br and Green function estimates on concentric balls B, C By of the kind
1

dBgr (370, x)|x€(9Br ~ E(R27V — T27V)_

v

13



Singularities of minimal submanifolds
L. SimoN

This talk focussed on a PDE method for finding singular minimal surfaces of codimen-
sion 1. One begins with the equation

- D;u m
Mu = Dz : = s
" lzzl ( 1+ |Vu|2> ur/1+ |Dul?

where m is an integer > 1 and n > 2. In the case where we actually use the (n+1)-variable
version of this equation, so that u = u(z,y) with z € R* and y € R a “weak linearization”
process was introduced to demonstrate the existence of a rich class of solutions of the form

u(z,y) = /mr +v(z,y), where |v(x,y)| < CRY, r = |z|, R = /T2 + 12.

Strict convexity and the existence of optimal transports
B. KIRCHHEIM
(joint work with L. Ambrosio and A. Pratteli)

We consider the Monge problem. Given two (absolutely continuous) probabilities ji1,/o
in the n-dimensional space and a norm ||| on that space, try to find a mapping ¢ : R — R™
that maps the first measure onto the second (u1(¢1(A)) = po(A) for all A) and minimizes
the average d-distance the points are moved, i.e.

/||¢>(1f)—x||du1(a:) — min.

The existence of such an optimal transport map in case of a norm having a sufficiently
curved unit ball was established by several authors, including Caffarelli, Evans, Feldmann,
Gangbo, McCann, Trudinger and Wang. In joint work with L.Ambrosio and Aldo Pratteli
we can prove the existence of an optimal transport also for general norms in the plane and
crystaline norms (corresponding to polyhedral unit balls) in any dimension.

Edited by Florian Theil
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