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The 
onferen
e was organised by Gero Friese
ke (Warwi
k), Tristan Riviere (Zueri
h)

and Gianni DalMaso (Trieste).

There were a total of 30 presentations, 
overing a wide range of topi
s in
luding gra-

dient 
ows, mass transportation, geometri
 analysis, minimal surfa
es, Lips
hitz maps,

singularities, atomisti
 systems, quantum me
hani
s and water waves.

The stimulating dis
ussions and the marvellous working 
onditions provided by the In-

stitute of Oberwolfa
h 
reated a lively s
ienti�
 atmosphere.

In parti
ular, the parti
ipation of many young resear
hers and mathemati
ians from dif-

ferent �elds su
h as applied analysis, geometry and partial di�erential equations shows that


al
ulus of variations is a growing and a
tive topi
 with 
onne
tions to many mathemati
al

dis
iplines.

The abstra
ts are listed in the order they have been entered in the book of abstra
ts.
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Abstra
ts

Surfa
e Energies in Latti
e Systems

F. Theil

We study the minimum energy 
on�gurations of 
ubi
 two-dimensional latti
es. The

energy is given by the sum over nearest and se
ond nearest neighbour intera
tion potentials.

E =

X

x;x

0

2L

V

x;x

0

(jy(x)� y(x

0

)j)(1)

V

x;x

0

= 0 if jx� x

0

j >

p

2;(2)

where L � Z

2

. The presen
e of surfa
es leads to the 
reation of boundary layers and the


on
entration of energy on the boundary. We show that in a suitable limit (the equilib-

rium lengths of the springs are roughly 
omparable) the minimisers of half spa
e systems

are asymptoti
ally one-periodi
 in the tangential dire
tion and the minimum energy is de-

termined by the solution of a �nite dimensional nonlinear equation. Sin
e the half spa
e

system is in�nite-dimensional and the energy is non
onvex, this result is an important step

towards a qualitative and quantitative understanding of atomisti
 systems with surfa
e

energies.

Geometri
 Stru
ture of Null Sets in the Plane (and some appli
ations)

G. Alberti

This talk summarises (part of) a joint resear
h with Marianna Cs�ornyei and David Preiss

(University College London). Although our results are not dire
tly related to the 
al
ulus

of variations, the purpose of this talk is to highlight an elementary geometri
 fa
t that lies

behind most of our proofs and that might be useful elsewhere.

Statement: every Borel set E � R

2

, jEj = � 
an be 
overed by horizontal and verti
al

stripes (' �-neighbourhood of graphs of 1-Lips
hitz fun
tions x = x(y) or y = y(x)) so

that the sum of the heights is less than C

p

� { C a universal 
onstant.

Variations of this lemma have been used to prove the existen
e of a (weakly de�ned)

tangent �eld to null sets and singular measures in the plane, 
onstru
ting Lips
hitz maps

that take a given set of positive measure onto a disk (following earlier proofs of D. Preiss

and J. Hatou�sek) and Lips
hitz maps that are almost nowhere di�erentiable with respe
t

to given singular measures in the plane. The lemma is obtained by dis
retization from

a geometri
 version of 
lassi
al Erd}os-Szekeres Theorem. Unfortunately, it is not known

if some equivalent statements holds in higher dimension (in fa
t, we have some partial


ounterexample).
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Comparison between the Classi
al and Intrinsi
 Re
ti�ability in Carnot

Groups

F. S. Cassano

We 
ompare in the setting of the Carnot groups, endowed with its Carnot-Carath�eodory

metri
, the 
lassi
al and a new intrinsi
 notion of re
ti�ability. We prove that the 
lassi
al

de�nition does not �t the geometry of the Carnot groups while the intrinsi
 one does.

Moreover, we prove that the 
lassi
al one always implies the intrinsi
 one and the 
onverse

fails.

An optimization problem in mass transportation

G. Buttazzo

Given a 
onne
ted open regular bounded subset 
 of R

n

and two probability measures

f

+

and f

�

on 
, for every distan
e d on 
 we 
onsider the Monge-Kantorovi
h 
ost

F (d) = inf

�

Z Z


�


	(d(x; y))d�(x; y) : � transport plan of f

+

onto f

�

�

where 	 : R ! R is a given 
ontinuous in
reasing fun
tion with 	(0) = 0. The distan
e d

is taken in the admissible 
lass of Riemannian distan
es of the form

d

a

(x; y) = inf

�

Z

1

0

a(
)j


0

jdt : 
(0) = x; 
(1) = y

�

where the 
oeÆ
ient a(x) varies in the 
lass

A(�; �;m) =

�

� � a(x) � �;

Z




a(x)dx � m

�

;

with �; �;m positive 
onstraints. It is shown that the maximization problem

max fF (d

a

) : a 2 A(�; �;m)g

admits a solution. The proof is based on density result of isotropi
 Riemannian metri
s in

the 
lass of all Finsler metri
s.

Fast di�usion to self-similarity: 
omplete spe
trum, long time asymptoti
s,

and numerology

R. M
Cann

(joint work with J. Denzler)

The 
omplete spe
trum is determined for the operation

H = �m�

m�1

�+ x � r

on the 
losure of C




(R

n

) in the Hilbert spa
e norm

k	k

2

:=

Z

R

n

jr	j

2

d�:

Here the Barenblatt pro�le � is the stationary attra
tor of the res
aled di�usion equations

�u

�t

= �(u

m

) +r � (xu)
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in the fast super
riti
al regime m 2℄

n�2

n

; 1[. If m �

n

n+2

, the same di�usion dynami
s

represent steepest des
ent of an entropy E(u) on probability measures with respe
t to

Wasserstein distan
e d

2

. Formally, H = Hess

�

E on the spe
tral gap H � � = 2�n(1�m)

found below suggests the sharp rate of asymptoti
 
onvergen
e:

lim

t!1

log d

2

(u(t); �)

t

� �� < 0

from any 
entred initial data 0 � u(0; x) 2 L

1

(R

n

). Further eigenfun
tions { all hyper-

geometri
 polynomials { and the presen
e of 
ontinuous spe
trum suggest the long time

asymptoti
s of u(t) while yielding insight into the relations between the symmetries of R

n

and the 
ow. Mu
h of the strange numerology of the spe
trum is explained in terms of the

number of the moments of �.

Winding behaviour of �nite-time singularities of the harmoni
 map 
ow

P. Topping

The harmoni
 map 
ow u : D

2

� [0;1) ! N ,! R

N

from the 2-dis
 to a 
ompa
t

Riemannian manifold is liable to blow up in �nite time.

At a singular point (x; T ) 2 D � [0;1), \bubbling" o

urs when we blow up the 
ow

restri
ted to times t

n

" T

We show:

(1) The bubbling is, informally, non unique; it depends on the sequen
e t

n

" T 
hosen.

(2) The bubbling 
an be \winding" in the sense that bubbling 
onvergen
e may fail

when the 
ow is lifted to the universal 
over of N .

(3) The map u(T ) 2 W

1;2

(D;N) 
an be dis
ontinuous.

(4) The polynomial rate of blow-up 
an, in 
ertain 
ases, be determined.

Convergen
e of the Yamabe 
ow for \large" energies

M. Struwe

(joint work with H. S
hwetli
k)

In joint work with Hartmut S
hwetli
k we show sub-
onvergen
e of the Yamabe 
ow on

any smooth, 
ompa
t 3-manifold (M;G

0

) without boundary, provided the initial average

s
alar 
urvature s

0

and the Yamabe invariant Y

0

= Y (M;G

0

) satisfy the 
ondition

0 < Y

0

< s

0

� (Y

n=2

0

+ S

n=2

�

)

2=n

;

where s

�

= Y (S

n

; G

S

n

) and n = 3. The proof uses a Kazdan-Warner type estimate to rule

out 
on
entration, as in the 2-dimensional 
ase, treated in [1℄. If n = 3, or if 3 � n � 6 and

if (M;G

0

) is lo
ally 
onformally 
at, this key estimate may be dedu
ed from the positive

mass theorem.

[1℄ M. Struwe. Curvature 
ows on surfa
es. To appear in Annali. S
. Norm. Sup. Pisa

(2002).
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Deformations and degenerations of Einstein metri
s

R. Mazzeo

I des
ribe two proje
ts: the �rst, with B. Yang, involves the study of Einstein metri
s

with isolated 
oni
al singularities. Spe
i�
ally, we prove analogues of various theorems due

to Hardt, Simon et al. for minimal surfa
es in this 
ontext. The goals in
lude studying

desingularisations of these singularities, and a �niteness theorem for the moduli spa
e of

Einstein's on a 
ompa
t 4-fold (smooth) under 
ertain 
onditions.

The other proje
t, with F. Pa
ard, is a \boundary" gluing result for asymptoti
ally

hyperboli
 Einstein metri
s. This produ
es many new examples and shows (modulo the

Poin
ar�e 
onje
ture) that every s
alar-positive 3-mfd. bounds an asymptoti
ally hyperboli


4-mfd.

On the total variation of the Ja
obian

P. Mar
ellini

(joint work with I. Fonse
a and N. Fus
o)


 is an open set of R

n

. We denote by detDu the Ja
obian determinant of a map

u : 
 ! R

n

(n � 2). We also denote by Det Du, 
apitalised, the distributional Ja
obian

determinant, where it exists. Given u 2 L

1

(
;R

n

) \W

1;p

(
;R

n

) for some p > n� 1 the

total variation TV (
) of the Ja
obian determinant is de�ned by

TV (u;
) = inf

�

lim inf

k!1

Z




j detDu

k

(x)j dx : u

k

W

1;p

* u; u

k

2 W

1;n

(
;R

n

)

�

:

In a work in 
ollaboration with Irene Fonse
a (CMU, Pittsburgh) and Ni
ola Fus
o (Uni-

versity of Napoli) we proved some general n-dimensional results and we give some examples.

Here are two examples:

Example 1: Let u : 
 n f0g ! R

n

(
 open, with 0 2 
) be de�ned by u(x) =

(w(x) � w(0))=jw(x) � w(0)j, where w is a Lips
hitz-
ontinuous map, 
lassi
ally

di�erentiable at x = 0 with detDw(0) 6= 0. Then TV (u;
) = jB

1

j = w

n

.

Example 2 (The \eight" 
urve): Let 
 = 


+

[


�

� R

2

be the union of two 
ir
les

of radius 1, with 
entres respe
tively at (+1; 0) and (�1; 0). Let h; � 2 Z. Let v :

[0; 2�℄! 
 = 


+

[


�

be the 
urve whose image turns jhj times in 


�

and j�j times

in 


+

a

ording to the parametri
 representation v(�) = (�1; 0)+ (
os 2h�; sin 2h�)

if 0 � � � �; v(�) = (1; 0) = (
os 2��; sin 2��) if � � � � 2� let u(x) = v(x=jxj).

Then TV (u;B

1

) = (jhj+ j�j)�, while jDet Duj(B

1

) = jh� �j�.

Appli
ations of S
ans

R. Hardt

(joint work with T. Rivi�ere)

Smooth maps between Riemannian manifoldsM

m

; N

n

often fail to be dense inW

1;p

(M;N)

in both the strong and weak topologies. The energy drop in a weakly 
onvergent sequen
e

has a lo
al topologi
al point (
alled bubbling) attributable to �

[p℄

(N).

Following the W

1;2

(B

3

; S

2

) 
ase studied by Bethuel and Giaquinta, Modi
a, Sou�
ek, one

may, for an individual map, look for a \topologi
al singularity" of dimension m � [p℄ � 1

whose absen
e or presen
e determines the strong approximability by smooth maps. For
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the weak limit of smooth maps one expe
ts this singularity to o

ur as the \boundary"

of a \bubbling 
hain" of dimension m � [p℄. Here we des
ribe pre
isely, for m � 1 �

p < n, the singularity and bubbling 
aused by �

m�1

(N)
 Q . Unlike in the W

1;2

(B

3

; S

2

)


ase, we �nd that in general (as in the W

1;3

(B

4

; S

2

) 
ase) the bubbling is not given by

a 
urrent. We introdu
e a generalization, 
alled s
ans to handle su
h bubbles. We again

obtain a s
an 
riteria for strong approximability. Here the bubbled s
ans 
orrespond to

oriented/re
ti�able sets of �nite lengths with integer multipli
ity fun
tion � that is L

�

for

some 0 < � � 1. We show that the optimal 
onstant � is 1 for �

n

(N

n

),

3

4

for �

3

(S

2

), and

is estimable, for any rational homotopy invariant, in terms of a diagram derivable from

Novikov-Sullivan data.

Remarks on Jesse Douglas

M. Mi
allef

(joint work with J. Gray)

This was an informal talk given in the evening on Wednesday, July 3, 2002, the 105th

anniversary of the birthday of Jesse Douglas. A key problem in minimal surfa
e theory is

the determination of a parametrization r : [0; 2�℄ ! R

n

of a simple 
losed 
urve � � R

n

,

so that the harmoni
 extension F : B ! R

n

of r is 
onformal; B = unit disk in R

2

. In

this talk, I explained how Douglas formulated this problem as an integral equation for r.

Douglas never published this work, the result is merely stated in abstra
ts of meetings of

the Ameri
an Mathemati
al So
iety during 1926-1929. More important, Douglas eventu-

ally realised that this integral equation was the Euler-Lagrange equation for his famous

A-fun
tional, whi
h he used to solve the Plateau problem. This formulation of the 
onfor-

mality of F as a variational problem for r was a major breakthrough in minimal surfa
e

theory; its development by Courant and others 
ontinues to play an important role in

minimal surfa
e theory to the present day. This bears out Carath�eodory's 
itation for the

award of the Fields Medal in 1936 to Douglas: Douglas's method for solving the Plateau

problem is `entirely original' and `of great signi�
an
e'.

A brief a

ount of the life of Jesse Douglas was also presented. The talk was followed

by many interesting and valuable 
omments from the audien
e, espe
ially Professor Stefan

Hildebrandt.

Time 
ontinuous optimal transportation problems

Yann Brenier

The usual Monge-Kantorovi
h formulation of optimal transportation problems is shown

to be equivalent to a \Continuum Me
hani
s" type formulation where the time variable

is expli
itly introdu
ed and used. This formulation is far more 
exible that the usual one

and in
ludes the (simpli�ed) Moser 
onstru
tion for the solution of the Ja
obian equation.

Many generalizations of the time 
ontinuous formulations are possible, in
luding optimal

transportation of 
urrents, relaxed geodesi
s on groups of volume preserving di�eomor-

phisms, generalized harmoni
 maps et
.
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Ellipti
 approximation of 
urvature-sensitive image segmentation energies

A. Braides

(joint work with R. Mar
h)

In 1990 Mumford and Nitzberg proposed to improve the 
elebrated Mumford Shah

variational approa
h to image segmentation by repla
ing the length of the segmentation

set by a term involving also the 
urvature (the \Elasti
a" fun
tional). In their formulation

a segmentation (U;K) is given by a set K (union of H

2

-
urves) and a fun
tion u : 
nK !

minimising

min

�

Z


nK

jruj

2

dx +

Z

K

(1 + �

2

) dH

1

+

Z


nK

ju� gj

2

dx

�

(all 
onstant are set to 1), where K

0

is the set of end points of the 
urves in K. The

problem above 
an be proved to be approximable by ellipti
 problem of the type

R




(v

2

jruj

2

+

1

2

M

�

(v) � w

2

(1 + div(

Dv

jDvj

)

2

) +

1

4�

M

�

(w)(

1

"

+ "div(

Dw

jDwj

)

2

)) +

R


nK

ju� gj

2

dx

where u 2 H

1

(
), v; w 2 H

2

(
). M

�

(z) denotes the "Modi
a-Mortola" energy density

energy density modi�ed by a singular perturbation term:

M

�

(v) =

W (�)

�

+ 2�jrvj

2

+

(v � 1)

2

p

�

: W is double-well potential with zeros at 0; 1:

The main issue is the term

R




M

�

(w)(

1

"

+ "div(

Dw

jDW j

)

2

) dx whi
h is shown to behave as

R

�E

(

1

"

+ "�

2

) dH

1

, whose minima are 
ir
les of radius ".

Ellipti
 problems in vortex theory

G. Tarantello

We dis
uss the role of ellipti
 problems of Liouville-type in the study of vorti
es in various

gauge �eld theories, su
h as Chern-Simons theory, Ele
troweak theory et
. The feature of

su
h ellipti
 problems are 
aptured essentially by the following ellipti
 equations:

(3) ��u = �e

u

� 4�

N

X

j=1

Æ

P

j

+ f

over a 2-manifold M without boundary. The points fP

1

; : : : ; P

N

g are given in M , f 2

L

1

(M) and � > 0 is a given parameter. We dis
uss a 
on
entration 
ompa
tness 
on
erning

(3), and its 
onsequen
es towards existen
e results as � varies.

Cross-tie patterns and limiting minimization problems in a model for

mi
romagnetism

S. Serfaty

(joint work with F. Alouges and T. Rivi�ere)

We des
ribe a joint work with Fran
ois Alouges and Tristan Rivi�ere, in whi
h we study

the family of fun
tionals

Z




"jruj

2

+

1

"

Z

R

2

jHj

2

+

1

"

Z




juj

2
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where u is a map: 
 ! S

2

(magnetization in physi
s). H is given by r�

�1

div(u�




),

the demagnetizing �eld. 
 is a bounded simply 
onne
ted domain of R

2

. We study the

asymptoti
s " ! 0. Families of uniformly bounded energy 
onverge (after extra
tion) to

divergen
e-free ve
tor �elds of unit norm, whi
h have line singularities along whi
h the

limiting u jumps. We prove a lower bound for the energy in terms of the angle of those

jumps; whi
h is optimal. This lower bound 
an be a
hieved by a one-dimensional pro�le for

jumps less than �=2 and by two-dimensional pro�les 
alled \
ross-tie", whi
h we 
onstru
t,

for jumps between �=2 and � in angle.

Stru
ture of entropy solutions

F. Otto

(joint work with Camillo De Lellis)

Consider the variational problem:

E

"

(w

"

) = "

Z




jrw

"

j

2

+

1

"

Z




(1� jw

"

j

2

)

2

; 
 � R

2

m

"

: 
 ! R

2


onstraint to r � m

"

= 0. Let m be a strong limit of a sequen
e fm

"

g

">0

with bdd fE

"

(m

"

)g

">0

. The limit satis�es jmj

2

= 1 a.e., r � u = 0 distributionally. It is

expe
ted to have line singularities. But in general m 62 BV (
). We nevertheless prove

that m has the stru
ture as if it were in BV (
). The main tool is the 
ontrol of r� [�(m)℄

as a (signed) Radon measure, where � belongs to a 
ertain 
lass of nonlinear transforms

(\entropies").

Two-dimensional parametri
 variational problems

S. Hilderbrandt

(joint work with H. van der Mosel)

Let F : R

n

� R

N

; N =

1

2

n(n� 1), be a parametri
 integrand i.e.

(4) F (x; tz) = tF (x; z) for t < 0

whi
h satis�es

m

1

jZj � F (x; z) � m

2

jzj with 
onstants m

1

; m

2

> 0; and(5)

F (x; z) is 
onvex in z:(6)

Then the integral F(X) :=

R

B

F (X;X

u

_ X

v

) du dv is well de�ned on the 
lass C(�) of

surfa
es X : B ! R

n

, B = f(u; v) 2 R

2

: u

2

+ v

2

< 1g su
h that X 2 H

1;2

(B;R

N

) whi
h

map �B monotoni
ally (with degree 1) onto a 
losed re
ti�able Jordan 
urve � in R

n

.

Theorem 1. There is a solution X 2 C(�) of the minimisation problem "F ! min in

C(�)" whi
h is a.e. 
onformally parametrized and H�older 
ontinuous in B with exponent

� = m

1

=m

2

. Moreover, X 2 C

�

(B;R

n

) for some � 2 (0; 1) if � satis�es a 
hord-ar



ondition.

Theorem 2. This minimiser is of 
lassH

2;2

lo


(B;R

n

)\C

1;�

(B;R

n

) if there exists a "perfe
t

dominan
e fun
tion" G(x; p) of F . Moreover, we also have X 2 H

2;2

(B;R

n

)\C

1;�

(B;R

n

)

if � 2 C

3

.
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Theorem 3. If F is of the form F = kA + F

�

, where A(z) = jzj is the area integrand

and F

�

satis�es (4), (5) (with 
onstants m

�

1

, m

�

2

) and the standard parametri
 ellipti
ity


ondition

jzjF

�

z

i

z

j

(x; z)�

i

�

j

� �

�

(j�j

2

� jzj

�2

hz; �i

2

)

with �

�

> 0, then F possesses a perfe
t dominan
e fun
tion, provided that k < k

0

:=

2[m

�

2

�minf�

�

; m

�

1

g℄.

The 
on
ept of a dominan
e fun
tion was introdu
ed by C.B. Morrey. The proof of

Theorem 3 is based on a 
onstru
tion of dominan
e fun
tions given by Morrey. Theorem 1

is derived by 
onsidering the penalized fun
tionals F

"

:= F + "D, " > 0, where D is the

Diri
hlet integral D(X) =

1

2

R

B

jrXj

2

du dv. Theorem 2 follows by 
onsidering the weak

Euler equation ÆG(X; �) = 0 where G(X) =

R

B

G(X;rX) du dv.

Rigidity in nonlinear elasti
ity and the derivation of plate theories

S. M

�

uller

(joint work with G. Friese
ke and R.D. James)

The energy fun
tional of nonlinear plate theory is a 
urvature fun
tional for surfa
es �rst

proposed on physi
al grounds by Kir
hho� in 1850. We show that it arises as a �-limit of

three-dimensional nonlinear elasti
ity theory as the thi
kness of a plate goes to 0. A key

ingredient in the proof is a sharp rigidity estimate for maps v 2 W

1;2

(U;R

n

), U � R

n

a

bounded Lips
hitz domain. We show that there exists R 2 SO(n) su
h that

Z

U

jrv � Rj

2

dx � C(U)

Z

U

dist

2

(rv; SO(n)):

A �-
onvergen
e approa
h to generalised Sobolev inequalities

A. Garroni

Well known 
on
entration phenomena arise in problems with la
k of 
ompa
tness due

to the 
riti
al growth. The most famous example is given by the Sobolev inequality. The

same kind of phenomena appear in a more general situation, as has been proved by Flu
her

and M�uller. They study the behaviour of `almost' maximizers for the fun
tional

Z




f("u)

"

2

�

dx for u = 0 �
 s.t.

Z




jruj

2

dx � 1

with " > 0, 0 � f(t) � 
jtj

2n

n�2

. They prove 
on
entration by means of a generalised version

of the 
on
entration-
ompa
tness alternative of P.L. Lions. We approa
h this problem

using the �-
onvergen
e. This permits us to read easily the 
on
entration dire
tly by the

stru
ture of the �-limit. The lo
alization of 
on
entration points 
an be also obtained by

the se
ond order expansion in �-
onvergen
e.

9



Quasiminimal Partitions and Uniform Re
ti�ability

S

�

everine Rigot

A quasiminimal partition is a Ca

ioppoli partition of R

n

for whi
h one 
ontrols the

variation of a surfa
e like energy under relatively 
ompa
t perturbations that preserve the

measure of ea
h 
omponent. Roughly speaking, one knows that this variation is negligible


ompared to the initial surfa
e energy.

We prove quantitative and uniform re
ti�ability properties for the set of interfa
es of

quasiminimal partitions, namely uniform re
ti�ability in the terminology of G. David and

S. Semmes. To this aim the main issue is to handle properly the volume 
onstraint. Using

ideas and 
onstru
tions inspired by a previous work of Almgren about minimal partitions

with pres
ribed measure, one 
an get a new quasiminimality 
ondition without volume


onstraint anywhere and whi
h is mu
h easier to work with. Then the regularity properties

follow by fairly standard 
omparison and 
overing arguments.

Surfa
e water waves as saddle points of the energy

E. S

�

er

�

e

(joint work with B. Bu�oni and J.F. Toland)

By applying the mountain-pass lemma to an energy fun
tional, we establish the existen
e

of two-dimensional water waves on the surfa
e of an in�nitely deep o
ean in a 
onstant

gravity �eld. The formulation used, whi
h is due to K.I. Babenko, (and later to others,

independently), has as its independent variable an amplitude fun
tion whi
h gives the

surfa
e elevation, its nonlinear term is purely quadrati
 but nonlo
al (it involves the Hilbert

transform C). The waves are found as 
riti
al points of the fun
tional

I(w) =

Z

�

��

wCw

0

� �

Z

�

��

w

2

(1 + Cw

0

); w 2 W

1;2

2�

:

Sin
e this fun
tional is rather degenerate, we have to trun
ate it, penalize it, and regularize

it. To prove the 
onvergen
e of the 
riti
al points, in the limit of vanishing regularization,

to a nontrivial wave, we use the Morse index, in the spirit of a work by Amann and Zehnder.

Vortex energy for rotating Bose-Einstein 
ondensates

A. Aftalion

(joint work with T. Rivi�ere and R. Junard)

We �nd an asymptoti
 expansion for the energy des
ribing a Bose Einstein 
ondensate

in terms of the rotational velo
ity 
 and a small parameter ". This simpli�ed energy allows

us to understand why in the present experiments the vortex line line is not straight along

the axis of rotation but bending.

10



A relative Morse index for the Dira
-Fo
k fun
tional

E. Paturel

We prove the existen
e of in�nitely many stationary solutions of the Dira
-Fo
k model

des
ribing atoms and mole
ules, under the assumption: N < Z + 1 and max(Z;N) < Z




where N is the ele
tron number, Z the total positive 
harge, � the ele
tromagneti
 
oupling


onstant (�

1

137

) and Z




=

2

�(

2

�

+

�

2

)

. This work is an improvement of an arti
le of Esteban

and S�er�e, where the 
laim was proved under more restri
tive assumptions on N . The stress

is put on the 
onstru
tion of a relative Morse index for the fun
tional, whi
h allows us to


ontrol the energy of the mean �eld operator.

Douglas 
ondition for Willmore surfa
es of pres
ribed genus

Ernst Kuwert

Let �

p

be the in�mum of the Willmore fun
tional among oriented, immersed surfa
es of

genus p in R

n

. By a result of L. Simon, for ea
h p 2 N there is a partition p = p

1

+ : : :+ p

r

with p

i

� 1 su
h that ea
h of the �

p

i

is attained and moreover one has the equation

e

p

= e

p

1

+ : : :+ e

p

r

; (e

p

= �

p

� 4�):

By extending the 
ase r � 2 we obtain the following

Theorem. For any p 2 N

0

the in�mum �

p

is attained.

Simon's work redu
es the problem to proving e

p

1

+p

2

< e

p

1

+ e

p

2

.

Removability of point singularities of Willmore surfa
es

R. S
h

�

atzle

We prove that single, unit-density point singularities 
an be removed. In parti
ular,

this implies that blowup limits of Willmore 
ows with energy � 8� are smooth at in�nity.

As 
onsequen
es we determine 8� as the optimal energy level su
h that Willmore 
ows

of spheres below this level exist globally and 
onverge to round spheres, and we obtain


ompa
tness results for Gilmore tori.

Det vs det

I. Fonse
a

(joint work with P. Mar
ellini and N Fus
o)

It is well known that u 2 W

1;N

(
 : R

N

) !

R




j detDuj is W

1;N

{sequentially weakly

lower semi
ontinuous, where 
 � R

N

is an open set. However, many variational problems

lead us to 
onsider the 
ase where the setting is now in W

1;p

(
;R

N

) for some p < N . Two

questions naturally arise:

Q1. What are the \minimal regularity" assumptions on u guaranteeing that

DetDu = detD where DetDu =

N

X

j=1

�

�x

j

(u

1

(adjDu)

j

1

)?

Q2. What is the \weakest notion" of 
onvergen
e under whi
h

u

n

2 W

1;N

lo


(
;R

N

); u

n

* u) DetDu

n

= detDu

n

* DetDu?
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The understanding of these questions is relevant to the study of vorti
ity for Ginzburg-

Landau equations, 
avitation of nonlinear elasti
 rubber-like materials, singularities of

harmoni
 mappings with values on the sphere, et
. When addressing Q2 it is tempting to

introdu
e the relaxed fun
tional TV (u;
), the total variation of the Ja
obian determinant

given by

TV (u;
) := infflim

Z




j detDu

n

j : u * u W

1;p

; u

n

2 W

1;N

lo


g:

Jointly with N. Fus
o and P. Mar
ellini, it was shown that if p > N�1 and TV (u;
) < +1,

then TV (u; �), DetDu are �nite Radon measures, detDu 2 L

1

(
),

TV (u; �) = j detrujL

n

j
 + �

s

; DetDu = detDuL

n

j
 + �

s

;

where �

s

, �

s

are �nite Radon measures, singular with respe
t to L

n

j
, and j�

s

j � �

s

. The

proof of this result is strongly hinged on a theorem obtain in 
ollaboration with G. Leoni

and J. Maly, stating that if u

n

2 W

1;N

, u 2 BV , u

n

! u L

1

, fu

n

g bounded inW

1;N�1

, and

if detDu

n

�

* � for some Radon measure �, then

d�

dL

N

= detDu.This result is sharp, in that

there are examples asserting that one 
annot, in general, assume that fu

n

g is bounded in

W

1;p

, p < N � 1 and unbounded in W

1;N�1

, and also one 
annot, in general, assume that

u

n

2 W

1;p

nW

1;N

for some p < N .

Three dimensional water waves by variational and dynami
al methods

R. Pego

We des
ribe travelling waves in models of wave propagation on water of �nite depth, for

three models:

(1) the KP - equation

(2) the Benney Luke equation (an isotropi
 model for long wave of small amplitude)

(3) the exa
t Euler equations for water waves

When surfa
e tension is strong, the equation for travelling waves is ellipti
. Finite

energy solitary waves had been found for KP by 
on
entration-
ompa
tness methods, and

we a
hieve the same for BL and demonstrate �-
onvergen
e to KP in the appropriate

s
aling limit. The problem for the exa
t Euler equations is open.

When surfa
e tension is zero, looking for fast waves yields problems best addressed

through spatial dynami
s. For BL and the Euler equations this yields an ill-posed system,

but for BL we prove (as for KP) there is an in�nite-dimensional family of travelling waves

that 
orresponds to a 
entre manifold of in�nite dimension and 
odimension. The exa
t

equations admit formally a 
onserved \energy" for spatial dynami
s, but the existen
e of

a 
entre manifold for nonlinear waves remains open.
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Harna
k inequalities on s
ale irregular fra
tals

Umberto Mos
o

Following Barlow-Hambly (1997) we 
onstru
t a family of homogeneous non self-similar

Sierpinski 
urves in R

D

, D � 2. Ea
h 
urve K(�) of the family depends on an \environ-

ment" sequen
e � = (�

1

; �

2

; : : :), where ea
h �

i

takes its value in a �nite set of \s
ales", A.

The main s
aling exponents asso
iated with a 2 A are

�

a

> 1; N

a

� 2; �

a

> 1

for length, volume (mass), energy, respe
tively. The asymptoti
 frequen
y of a 2 A in

� 2 A

N

is des
ribed by probabilities 0 � p

a

� 1,

P

a2A

p

a

= 1, on A:

p

a

= lim

n!1

h

(�)

a

(n); h

(�)

a

(n) =

1

n

n

X

i=1

1

�

i

:

Under the assumption

(7) jh

(�)

a

(n)� p

a

j �

g(n)

n

; n � 1;

where g is a regular in
reasing fun
tion on the real line, g(0) = 1, we are able to 
arry

out an \e�e
tive" des
ription of K

(�)

inspired by homogenization theory. We repla
e the


ompli
ated �ne stru
ture of K

(�)

by an intrinsi
 quasi-metri
 stru
ture within K

(�)

and

we estimate the s
aling laws for volume and spe
tral gap on balls B

R

of d. The e�e
tive

quasi-metri
 d is of the kind d(x; y) = jx� yj

Æ

, where Æ > 0 is an index of the rami�
ations

in K

(�)

, whi
h is 
hosen to be

Æ =

1

2

P

a

p

a

log(N

a

�

a

)

P

a

p

a

log�

a

We then prove the volume estimate vol(B

R

) � R

�

e

G(R)

where

� = 2

P

a

p

a

log(N

a

)

P

a

p

a

log(N

a

�

a

)

and the \universal" spe
tral gap s
aling �

1

(B

R

) � R

�2

e(�
G(R)), whereG(R) � g(
 log(1=R)).

By assuming fastest 
onvergen
e, i.e. g(s) = O(1), we then prove Harna
k inequality on

balls B

R

and Green fun
tion estimates on 
on
entri
 balls B

r

� B

R

of the kind

g

B

R

(x

0

; x)j

x2�B

r

�

1

2� �

(R

2��

� r

2��

):
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Singularities of minimal submanifolds

L. Simon

This talk fo
ussed on a PDE method for �nding singular minimal surfa
es of 
odimen-

sion 1. One begins with the equation

Mu :=

n

X

i=1

D

i

 

D

i

u

p

1 + jruj

2

!

=

m

u

p

1 + jDuj

2

;

where m is an integer � 1 and n � 2. In the 
ase where we a
tually use the (n+1)-variable

version of this equation, so that u = u(x; y) with x 2 R

n

and y 2 R a \weak linearization"

pro
ess was introdu
ed to demonstrate the existen
e of a ri
h 
lass of solutions of the form

u(x; y) =

p

mr + v(x; y), where jv(x; y)j � CR

Q

, r = jxj, R =

p

r

2

+ y

2

.

Stri
t 
onvexity and the existen
e of optimal transports

B. Kir
hheim

(joint work with L. Ambrosio and A. Pratteli)

We 
onsider the Monge problem. Given two (absolutely 
ontinuous) probabilities �

1

,�

2

in the n-dimensional spa
e and a norm k�k on that spa
e, try to �nd a mapping � : R

n

! R

n

that maps the �rst measure onto the se
ond (�

1

(�

�1

(A)) = �

2

(A) for all A) and minimizes

the average d-distan
e the points are moved, i.e.

Z

k�(x)� xkd�

1

(x)! min:

The existen
e of su
h an optimal transport map in 
ase of a norm having a suÆ
iently


urved unit ball was established by several authors, in
luding Ca�arelli, Evans, Feldmann,

Gangbo, M
Cann, Trudinger and Wang. In joint work with L.Ambrosio and Aldo Pratteli

we 
an prove the existen
e of an optimal transport also for general norms in the plane and


rystaline norms (
orresponding to polyhedral unit balls) in any dimension.

Edited by Florian Theil
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