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The organizers of this workshop were Detlef Miiller (Kiel), Elias M. Stein (Princeton)
and Hans Triebel (Jena).

43 other mathematicians participated and gave 28 talks. Their abstracts are listed in
this report in the order the talks were given. Additionally, spontaneous meetings took
place, where new developments were discussed. The work at this conference was mostly
devoted to recent developments in several topics of harmonic analysis as well as in the
theory of function spaces and their interplay.

We thank the “Mathematisches Forschungsinstitut Oberwolfach” for making this con-
ference possible.



Abstracts

The Cauchy problem for fully non-linear Schrodinger equations
CARrRLOS KENIG

In this talk T described recent work (joint with G. Ponce, C. Rolvung and L. Vega) on
the well-posedness of the Cauchy problem, for short time, with data in Sobolev spaces in
R”, intersected with weighted L? spaces, with power weights. Our result says that, under
suitable ellipticity and asymptotic flatness assumptions, for data which generates (in a
suitable way) metrics which are close to “non-trapping” ones, this well-posedness holds for
any n > 1.

Interpolation theory and compact operators
FERNANDO COBOS

In 1960, Krasnosel’skii proved that if T is a linear operator which satisfies the hypothesis
of the Riesz-Thorin theorem, that is, 7' : L,, = Ly, and T": L,, — L,, are bounded, where
1 < po,qo,p1, 1 < 00, and if, in addition, ¢y < oo and T : L,, — L, is compact, then
T:L,— L,is compact, where 1/p = (1 —0)/po+0/p1, 1/¢=(1—0)/q +60/q. and 0
is any number such that 0 < § < 1. At the beginning of the sixties with the foundation of
abstract interpolation theory, this result led to the investigation of interpolation properties
of compact operators between general Banach spaces. The first partial results were pub-
lished in 1964 by Lions and Peetre and by Calderoén, in their famous papers about the real
interpolation method and the complex method, respectively. Many authors have worked
on this subject since then, and still a lot of work is being done along different directions.
As it was shown by Cwikel in 1992, compact operators can be interpolated by the real
method. However, a similar result for the complex method is not yet known.

The aim of this talk is to survey old and new results on this subject, as well as some of
the tools for their proofs which are intimately related to the structure of the interpolation
method under study.

Maximal operators related to the Ornstein-Uhlenbeck semigroup with
complex time parameter

GIANCARLO MAUCERI AND PETER SJOGREN

In our two talks we have reported on two papers, one of which is joint work also involving
J. Garcia-Cuerva, S. Meda & J.L. Torrea.

Let v be the Gaussian measure on R? and {#,: ¢ > 0} the Ornstein-Uhlenbeck semigroup
on (R%,v), whose generator is —3A +z - V. For each p in [1,00) let E, C C be the closure
of the region of holomorphy of {H;: ¢ > 0} on LP(y). We examine the boundedness on
L4(7) of the maximal operator

H,f(x) = sup M. f(z)].
2€Ep

We prove that, for 1 < p < 2, H; is of strong type ¢ for p < ¢ < p’ and of weak type p'.
However, #; is not of weak type p and not of strong type p'.



Here the strong type p' estimate fails because of the behaviour of the semigroup #, for
z near the subset i7Z of JE,. Indeed, if one modifies the definition of #; by deleting from
E, an e-neighbourhood of inZ, the resulting operator is of strong type p'.

A similar statement holds for the weak type p estimate, with another discrete subset of

OE, .

Oscillatory integral operators with degenerate phases
ALLAN GREENLEAF
(joint work with Andreas Seeger)

Consider an oscillatory integral operator

T(@) = [ e Dalo,g) )iy

with phase ® € CP(R? x R?) and amplitude a € C(R? x R?), and in particular the
decay properties of ||T)||z2—r> under various geometric assumptions on ®. Let 7y (x,y) =
(z,V,®(x,y)) and mg(z,y) = (y, —V,®(z,y)) be the projections to the left and right from
the associated canonical relation, which we assume drop rank by at most one everywhere.

Theorem

(i). If both 77, and 7 have at most simple cusp (S;,1,) singularities, or more generally
are of finite type < 2, then

ITallzemsre < AT i,

(ii). If one of 7, or mg has at most swallowtail (S 1,1 0) singularities, or more generally

is of finite type < 3, then

ITallz2msre < AT 5.
Part (i) sharpens and extends a result of A. Comech and S. Cuccagna. As an application,
consider averaging operators A; f(z) = [, f(z—;(t))x(t)dt, x € C§°, with v (¢) = (¢, %, ")
and 1, (t) = (t,1%,11) in R and v (t ) (t, 12,13 t4) in R, so that A;: L? — L3 by van der

4
Corput. Then, averages over arbitrary smooth (non translation-invariant) perturbations
of the translation-invariant families {x — ,(¢)} ,cra satisfy the same estimate.

Maximal functions on the discrete Heisenberg group
STEPHEN WAINGER
We discussed a recent Theorem of A. Magyar, E. M. Stein and myself concerning a maximal
function on the discrete Heisenberg group, H%. As aset H? = {h|h = (m, k) = (mq,ma, k)}

with m; € Z% and k € Z. We introduce a multiplication by setting (m,k) - (n,l) =
(m+n,k+1+msy-ny). For f defined on H? and (m, k) in H?, put

My (m ) = gy 30/ (1.0) - (m. ).

Then we have the following result.
Theorem:(A. Magyar, E.M. Stein, S. Wainger)

| S?VP | Mo fllle2zy < A f] 2309y

Applications to Ergodic theory are given.



Envelopes in function spaces
DOROTHEE D. HAROSKE

We present our recently developed concept of envelopes in function spaces — a relatively
simple tool for the study of spaces, say, of Sobolev type H;, or Besov type B, . Arising from

the famous Sobolev embedding theorem it is, for instance, well-known that Bg,{f — Ly
if, and only if, 0 < p < o0, 0 < ¢ < 1; a natural question thus is in what sense the
unboundedness of functions belonging to H, with 1 < p < oo, and B, , with 1 < ¢ <
00, respectively, can be qualified. Concentrating on this particular feature we introduce

the concept of growth envelope functions £& = sup  f*(t), t > 0, ‘measuring’ the
Ilf1X11<1

unboundedness of functions belonging to some function space X C L. by means of the
non-increasing rearrangement f*(¢). Surprisingly enough one finds rather simple and final
answers characterising spaces like B; , and Hj; in fact, the results contain an even finer
description of this feature than measured by £& merely. Tt turns out that in rearrangement-
invariant spaces there is a connection between £& and the fundamental function px; we
derive further properties and give some examples : One verifies for the Lorentz spaces
&g (Ly,) = (t71/7,q), where €g(X) is the so-called growth envelope of a space X. More
1nterest1ng, however, are the results for B,  or Hj.

Likewise we investigate limiting situations When questlons of (un)boundedness of functions
are replaced by enquiries about (almost) Lipschitz continuity; for X < C' it makes sense
to replace f*(t) by @, where w(f,t) is the modulus of continuity. Now the continuity
envelope function EX and the continuity envelope €c are introduced completely parallel to
EX and €, respectively, and similar questions are studied.

Apart from natural applications to inequalities, these sharp assertions imply not only new
(and so far final) results on unboundedness and Lipschitz-continuity; besides there are also
interesting connections between growth and continuity envelopes and lift operators, as well
as with related problems of compactness and, say, approximation numbers.

The 0,-complex on decoupled domains
ALEXANDER J. NAGEL

This is a report on joint work with E.M. Stein. Our objective is to study the relative
fundamental solutions for the operator [, = 51,5: + 5:5b on domains Q C C**! of the
form {(21,. .., 2n, 2n1) € C*F'[Im(2,11) > D7 Pj(2;)} where each Pj is a subharmonic,
non-harmonic polynomial. We show that the singularities and regularity properties of
the solutions involve different phenomena that arise in the cases of strictly pseudoconvex
domains, domains of finite type in C?, or domains in which the eigenvalues of the Levi form
degenerate at comparable rates. Instead of being variants of Calderén-Zygmund singular
integral operators or fractional integral operators, the relative fundamental solution in the
decoupled case is best viewed as a “quotient” of product type operators. This helps to
explain the failure of maximal subelliptic estimates.

The following is an example of the kind of result we obtain: if Q@ C C? is decoupled and
if {Z1, 22} is the standard basis for the tangential (0, 1) vector fields, consider the operator
[0y = 2121 + 29Z». Let S denote the orthogonal projections from L?(9€) to the null space
of Db.

Theorem: There is a relative fundamental solution K so that O,K = K[, =1— S.
Also



(1) The operators Z, 2 K and Z,Z,K are bounded on L?(99), 1 < p < oo.

(2) The operators Z; 2K and Z,Z,K need not be bounded on L?(952).

(3) If By and By are smooth functions on 0Q and if |B;(p)|APi(p) < CAPy(p) and
|Ba(p)|APy(p) < CAP(p) then [By 7,7, + ByZy75]K is bounded on LP(9) for
1<p<oo.

A restriction theorem for twisted sub-Laplacians
MIiCHAEL KEMPE

For n € N consider the 2n+1-dimensional Heisenberg Group H,,. Its Lie algebra is spanned
by vector fields P;,Q; and U (j = 1,...,n) fulfilling the canonical relations [P;,Q;] = U.
By a Fourier transform in the central variable of H,,, the convolution on L!(H,) induces
a non-commutative convolution product on L'(R?"), the so-called twisted convolution.

To P;,Q; there correspond vector fields P;,Q; on R*" (and these are given by twisted
convolution with a certain kernel).

We consider differential operators given by Lg := —(Z,5SZ) where S denotes a real
symmetric 2n X 2n-matrix and Z = (@1, o Qu Py ]Bn) Lg is called a twisted sub-
Laplacian, if S is positive definite. Thangavelu proved a “restriction theorem” for the
special case L := Liq, namely

1L (D) || r 2 < NP

where 3(p) := n(% —3) —3and 1 < p < 2525 Although the exponent 3(p) is always

optimal, the range of p for which the above inequality holds can be improved to 1 < p <
2321;, and it also holds for all Lg instead of L, if S is positive definite. This result is analog
to the well-known restriction theorem for the Fourier transform by Tomas and Stein.

As usual it can also be used to obtain better convergence of the corresponding Riesz

means.

Old and new results on BMO(R")
GERARD BOURDAUD

We consider the following subspaces of BMO(R?): VMO = UCNBMO, CMO = Cj,
BMO, = BMO, (BMO, is the set of compactly supported functions in BMO). We also
consider the corresponding subspaces of bmo(R").

1. We give various characterizations of these spaces. For instance, we have the following
properties:

(1) BMO, = R((Lg)™)

(2) CMO = R((Co)™*")

(Here R = (Id, Ry, ..., R,), where R; are the Riesz transforms; and L is the closure of
L% in L>.)

Assertion (1) is likely new. Assertion (2) was claimed in the 70’s, but the proof seems
to have not been published. The two proofs rely upon a “kind of” L*° — BMO continuity
of the commutator [v, R] for v € BMO.

2. With the help of Jones, Iwaniec, Tchamitchian and Russ we point out some inexacti-
tudes on CMO and VMO which appeared in the recent literature. The following assertions
turn to be FALSE:

(3) VMO(R"™) is the closure of BUC(R")



(4) for any f € CMO(R™), the following limit does exist:

1
limi/ f(x)dzx.
=0 [B(0,1)| J o (@)

3. In collaboration with Sickel and Lanza de Cristoforis, we study the functional calculus in
the above subspaces X of BMO. That is: what functions f define a superposition operator
Tf(g) := fogon X; for what f is T'f continuous? differentiable? in the BMO(R™).
Our results complete the former by Fominykh and Chevalier. For instance, we have the
following “degeneracy” result:

If f is not an affine function, then:

(i) Tf is not continuous on VMO or on bmo.

(ii) T f is not differentiable on D(R") endowed with the bmo(R").

Papers appeared or to appear:

e Functional calculus on BMO and related spaces (with Sickel and Lanza de C.)
J.F.A. 2002

e Remarques sur certains sous-espaces de BMO(R") et bmo(R") Ann. Institut Fourier
2002.

Singular integrals on exponential growth groups
WALDEMAR HEBISCH

The talk extends our earlier joint work with Tim Steger. We propose a simple abstract
version of Calderéon-Zygmund theory, which is applicable to spaces with exponential volume
growth. In particular, we have an analog of Calderén-Zygmund decomposition on all
amenable Lie groups.

We apply theory to the Riesz transforms on amenable Lie groups: Let G =U x R x N,
where N is R? or C?, U is a subgroup of the orthogonal (unitary) group on N and the
multiplication is given by (uq, a1, nq)(ug, a2, n2) = (ugug, a1 + ag, use’*2ny + ny), s being a
scalar. Let X1,..., X, be right invariant vector fields on G. Put L = — 2?21 X?.

Then the operators R; = X]-L_% are bounded on L*(G), 1 < p < 2 and of weak type
(1,1). We have also boundedness for p > 2, but then we use stronger assumptions: U
trivial, L of special form (coming from a symmetric space). Also under the strengthened

assumptions, if X corresponds to the derivative with respect to a, then R} = L_%Xl is
not of weak type (1,1) (the other R} are of weak type (1,1)).

Sharp estimates for the boundedness of Bergman projectors
GUSTAVO GARRIGOS

Let D = R" 4 i€ be the tube domain over the light-cone Q@ C R". Let P: L*(D) —
A%(D) be the Bergman projector, and consider the mixed norm Lebesgue space LP4(D) =
L9(Q; LP(R™)). We study the following problem: Given p € (1,00), find the sharp range of
q € (1,00) such that P admits a bounded extension from LP? into AP?. When n = 3, the
best known answer to this question is given in the following drawing:

It illustrates the regions of boundedness, unboundedness, and the open gap where for
the moment no answer is known. Boundedness in the hexagonal region was shown in a
paper by Békollé, Bonami, Peloso and Ricci from 1998, using the Plancherel theorem and
a suitable discretization of the multiplier to obtain a sharp result for p = 2. In this talk we
present, sharp results for 2 < p < 4, obtained by the author in collaboration with Békollé,
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Bonami and Ricci. The techniques this time are based on a Littlewod-Paley decomposition
adapted to the geometry of the cone, and the use of almost orthogonality results related
to the Bochner-Riesz multiplier in 2 dimensions. We also present some necessary and
sufficient conditions for the cases 4 < p < 6, in terms of inequalities of Bochner-Riesz type.
This research has been partially supported by the European Commission, TMR Network
“Harmonic Analysis: 1998-2002".

The Bergman projection on Siegel domains over polyhedral cones
FuLvio Ricci
(joint work with P. Ciatti)

For a convex proper open cone I' in R", let Dr = R" + iI" be the associated tube domain
in C".

Given a Hermitian form ®&: C™ x C™ — C” that is I'-positive, let also
Drs = {(z,w): Imw — &(z,2) e '} c C"*"

be the associated type I Siegel domain.

For each of these domains, the Bergman space AP(D) is the space of LP-integrable
holomorphic functions on D. The orthogonal projection of L?(D) onto A%(D) is called the
Bergman projection.

The general question is if the Bergman projection extends to a bounded operator from
LP(D) to AP(D) for p # 2. If n =1, i.e. if T = R*, the answer is positive if and only if
1<p<oo.

Recent results (see e.g. G. Garrigds’ abstract) prove that for tube domains over circular
cones the answer is positive only for a more restricted range of values of p.

We prove that if " is a polyhedral cone (i.e. the convex hull of a finite number of half-
lines) then the Bergman projection is bounded if and only if 1 < p < oo, both for tube
domains and type Il domains.

The proof is based on a careful analysis of the Fourier multipliers (e=¢1p-(£))/xr-(€),
on R”, where I'* is the dual cone of [' and

xr-(§) = /F e Vidy

is its characteristic function.



Stability and Energy functionals on Kahler geometry
Duonc H. PHONG

In the early 1980’s, it was conjectured by S.T. Yau that the existence of Kahler-Einstein
metrics should be equivalent to stability in the sense of geometric invariant theory. This
notion of stability has proven difficult to exploit on geometric PDE’s, since it is global
and depends on the complex structure. In recent joint work with J. Sturm, we discuss its
relation to lower bounds for energy functionals in Kahler geometry, as well as to notions of
stability in real analysis. Central to our considerations is a new semi norm || -||; on H°(Gr)

(wm A 00 LAL Y

m"‘l [P1(2)[2 m
g/ = 7= 5D o
d—m—2 |f(2)?
1
= 1)D 08 Tp]() | EYCr

(Here Z is the Chow variety), and a non-linear Radon transform, mapping the Mabuchi
energy of a variety X to the Mabuchi energy of the regular part 7, of its Chow variety.

Symbolic calculus for pseudodifferential operators with periodic symbols
KARLHEINZ GROCHENIG

We prove non-commutative versions of Wiener’s Lemma on absolutely convergent Fourier
series (a) for the case of twisted convolution and (b) for rotation algebras. Equivalently,
these results can be seen as a symbolic calculus for pseudodifferential operators with peri-
odic symbols. Such operators occur frequently in time-frequency analysis and the theory
of Gabor frames. As an application we provide the solution of some open problems about
Gabor frames, among them the problem of Feichtinger and Janssen that is known in the
literature as the “irrational case”.

A theory of Gabor multipliers
HANS GEORG FEICHTINGER

Let A <R x RE be a lattice in phase space, e.g. A = aZ? x bZ?. For | = (t,w) we write
7(l)g for M,T,g(z) := e*™“*g(t — z) (=TF-shift). The pair (g, A) generates a Gabor frame
if (m(1)g)ien is a frame for L2(R?). It is called a tight Gabor frame if

F=>(f.rhg)r()g Vf € L2
leA
A Gabor multiplier is an operator of the form

Gl =Y mi(f,m(D)g)r(l)g
leA

for some sequence (my);ep on A.

Atoms should be taken from Sy(R?) = {f € L%V, f € L*(R**)}, where V,, f(t,w) =
(f, M,T,go) is the short time Fourier transform with Gaussian window.

Then m € ¢'/¢%/¢> implies G, trace class/HS/ bounded.

Moreover the corresponding operators depend continuously in the respective norms on
their ingredients (window in Sy, but even the lattice A!)



Singular maximal functions and Radon transforms near L'
ANDREAS SEEGER
(joint work with Terence Tao, James Wright)

We consider a class of maximal functions which are known to give LP-bounded operators
and for which the weak-type (1-1) inequality is unknown. This class includes maximal
functions associated to parabola in the plane and the lacunary spherical maximal function
in R?. We prove a weak-type L loglog L inequality, i.e.

meas({x: |Tf(x)| > a}) < /®<M>da:
a
with ®(s) = sloglog(10 + s).
The proofs are based on stopping time arguments involving quantities of “length” and
“thickness”. We also obtain a related result on singular Radon transforms.

On parametrices of semi-linear elliptic boundary problems
JON JOHNSEN

The talk concerns a parametrix formula for semi-linear elliptic boundary problems, estab-
lished by the speaker in recent years. The formula shows how a given solution depends
on the data, whence one can read off its regularity direncly. In a broader context, with
derivatives in the LP-sense, this question may be technically rather demanding to answer
by bootstrap methods (e.g. in cases with a large integrability gap between the “initial” and
“final” spaces for the solution). It is explained how to deduce the formula, which gives a
purely analytical way to obtain such regularity properties (in fact with weaker assuptions
on the data). The construction has been completed for non-linerarities of product type,
but there remain fundamental questions for those of composition type, like f(u), where
one is lead to pseudo-differential operators in a Hormander class S? 5 with § > 1.

Restriction and decay for flat curves and hypersurfaces
SARAH N. ZIESLER

In this talk T describe recent work with A. Carbery on restriction theorems for hypersurfaces
T(t) = (t,7(t) in R* (¢t € R*L, v: R"! — R) with the affine curvature Kp(t)= =
(det Hessv(t))n%l, introduced as a mitigating factor. Our work shows that, for n > 3,
there is no universal restriction theorem for hypersurfaces with non-negative curvature, in
contrast with the case n = 2, where Sj6lin proved a universal restiction theorem for all
convex curves. We also discuss decay estimates for the Fourier transform of the density

1
K} supported on the surface and give results on the relationship between restriction and
decay.



A non-linear Fourier transform
CRISTOPH THIELE
(joint work with C. Mascalu, T. Tao)

Define the partial Fourier integrals of a function F' on the real line by

h(a, k) = /04 F(z)e*dzx.

o0

The Fourier transform of F' is the limit of these partial sums as o — oo. If we write
g = exp h, then we have the following ODE for g:

0ug(a, k) = F(a)e*g(a, k), g(—o0,k) =1.

This exponentiated Fourier transform can be generalized to the matrix case, e.g.

@G@Jﬁ:<f6%ﬁal“%éa>gm¢% G (—o0, k) = id.

The coefficient matrix is in the Lie algebra of SU(1,1) and thus the solution is of the form

a(a,k) b(a,k) . . ..
(W m) It is known that [ log|a(co, k)|dk = C [ |F|? for some universal C. This is

a version of Plancherel’s identity. We conjecture

/wm%MmMMSC/WP

We can prove a variant of this where e**® is replaced by characters of the Cantor group:

Y =1, (wle, k) =3,c7 7" " where 2 = Y- 2, d", k=Y knd™.

On the absence of positive eigenvalues of Schrodinger operators with rough
potentials

ALEXANDRU D. IONESCU
(joint work with D. Jerison)

We consider the problem of proving the absence of positive eigenvalues of Schrodinger

operators for a certain class of rough potentials in R*. Let H = —A + V denote a
Schrodinger operator. Assume that V € L2 (R") if n > 3 and V € LE (R"), k > 1, if
n = 2. Assume also that for some exponent ¢ € [§,00] (or ¢ € (1, 00] if n = 2) we have

A ([Vizagaierrery - R'™ =0.
Then the operator H has no positive eigenvalues. The case ¢ = oo is a well-known theorem
of Kato. Our proof is based on establishing a Carleman inequality of the form

IWontll g gy < ClWnlz]'™2 (A + Dl oo

for a certain sequence of weights W,,,, m — oo. This inequality holds uniformly as m — oo
and p(q) and p'(¢) are dual exponents with the property that ﬁ — 4 =1

p'(e) — ¢

10



Function spaces in presence of symmetries: compactness of embedings, decay
and smoothness of functions

LESZEK SKRZYPCZAK

We are interested Sobolev embeddings of function spaces of Besov and Triebel-Lizorkin
type consisted of distributions invariant with respect to the action of a compact group of
isometries of an underlying space. The underlying space means in this context the Eu-
clidean space or a Riemannian manifolds with bounded geometry. The following problems
are regarded:

e characterization of Besov and Triebel-Lizorkin spaces on manifolds with bounded
geometry via heat semi-group,

compactness of Sobolev and Trudinger-Strichartz embeddings,

improved smoothness properties of Sobolev embeddings on compact manifolds,
entropy numbers of embeddings of radial functions on R”,

local smoothness and decay of functions,

smoothing properties and compactness of Riesz-Bessel potentials on symmetric
spaces of noncompact type.

A complex analytic view point on the 2d Euler equations
NETS KATZ

For the 2d Euler equation of fluid motion, two basic problems remain open.

(1) Do the Sobolev norms of any solution with smooth initial data grow as fast as
double exponential in time?
(2) Does a solution with initial vorticity in H' N L* remain in H'?
These properties are on the case of what can be proved trivially by Littlewood Paley theory.
We present an explicit model in which both might be studied.

Product BMO and second order commutators
MICHAEL LACEY

Given a function b on the plane M,f = b - f is the operator of multiplication by b. H;
and H, are 1-dimensional Hilbert transforms performed in the 2 canonical directions of the
plane. A theorem of Sarah Ferguson and Cora Sadosky concerns the commutator

[[[My, H1], Ha]|| 212 = [[bl|BMoey xcy )
What is most important is that the BMO norm is that of the dual of product H*(C, xC, ),
as indicated by S.-Y. Chang and R. Fefferman.
This theorem, as in the one dimensional case, admits equivaltent formulations in terms
of Hankel operators and weak factorization of product H!.

11



A multilinear generalization of the Cauchy-Schwarz inequality
ANTHONY CARBERY

For a nonnegative measurable function K defined on a product X; x - --x X,, of measurable
spaces, let

1

Q(K) = </K(sl,:r;g,...,x?l)K(sl,SQ,...,x,ll)---K(:L"f,...,sn)d(s,x))H1

Then | [ K (21, ... 20) [T fi(we)dri| < QUE) TTiZy | fillnsr-
We give a proof of this result, which generalizes a lemma of Katz and Tao.

Tailored function spaces on fractals
MICHELE BRICCHI

We have considered a generalization of the idea of d-sets and (d, 1)-sets as follows.

Let h: (0,1) — R be a positive and continuous monotone function. Then a non-empty
compact set [' C R” is called h-set if there exists a finite Radon measure p with suppy =T
and pu(B(v,r)) ~ h(r), Vy € T and all r € (0,1). It turns out that, given h as above, there
exists an example of h-set in R” if, and only if, (27 * 1) /h(27!) > 2% Vk,1 € Ny. Here
“>” means “up to an equivalent function hA” the estimate holds with the usual > symbol.

The main theorem we have proved reads as follows.

Let T be an h-set fulfilling a certain geometrical condition (ball condition). Then, for
0<p<ooand0<g<min(l,p)

TrB!»(R") = L,(T).

Here h, is the sequence h, = {h(2’j)%2%j}j€N0 and the related generalized Besov spaces
can be defined in analogy to the classical ones.

Afterwards, omitting details, one defines B, (T') or even By (T') (for a given “positive”
sequence {o;}) as

B: (T) = Tep BZ(R")  for 0 < p,q < oo.

Here 27°h, means the sequence {295h(277)»257}. Once Besov-type spaces are defined, one
can provide some more direct characterizations and exploit their definition for applications
to PDE’s.

Riesz transform, Littlewood-Paley-Stein functions and heat kernels on
non-compact Riemannian manifolds

THIERRY COULHON
(joint work with Xuan Thinh Duong)

Robert Strichartz has asked in 1983 for which complete non-compact Riemannian manifolds
M and which p €]1, 4+o00[ one has

CoUAY2 Fll, < IV £l < CIAY fll,p, ¥ f € CO(M).

The second inequality above means that the Riesz transform is bounded on LP(M). If
true, it implies the first inequality for the conjugate exponent of p. We proved in [2] that
the Riesz transform is bounded on LP(M), 1 < p < 2, and has weak type (1, 1) if:

1. V(z,2r) < CV(z,r), Ve € M, r >0

12



2. py(z,x) < m, Vaee M, t>D0.

Here V(z,r) is the Riemannian volume of the geodesic ball of center # € M and radius
r >0, and py(x,y), t > 0, x,y € M is the heat kernel on M. The example of two Euclidean
planes glued by a cylinder shows that the above statement is false for p > 2. On Vicsek
manifolds (see [1]), the even weaker inequality ||AY2f]|, < C, |||V f]|, is false for p < 2 —«¢.
In [5], we prove that the multiplicative inequality |||V f]||2 < C,IIAf],|lf]l, is valid on any
complete Riemannian manifold for 1 < p < 2, and for p > 2 on every complete Riemannian
manifold satisfying

3. |[Ve '2f| < Ce " 2(IVf]), Vf €C®(M), V> 0.

This relies heavily on the use of Littlewood-Paley-Stein functions and on the work of
P-A. Meyer. The Riesz transform itself is bounded on L?(M) for p > 2 if 1 and 2 above are
satisfied, and in addition the heat kernel on function suitably dominates the heat kernel
on 1-forms (which generalizes the results of Bakry). Finally, we were recently able to reach
the same conclusion under the weaker set of assumptions 1, 2, 3.
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Rigidity of nilpotent Lie groups
HANS MARTIN REIMANN

Carnot groups N are nilpotent Lie groups, which are equipped with a generalized contact
structure, a non integrable subbundle HN of the tangent bundle TN. A (generalized)
contact mapping on a Carnot group is a diffeomorphism, which preserves HN. The group
N is rigid, if the Lie algebra of infinitesimal generators for contact mappings is finite
dimensional.

The rigid nilpotent Lie groups which appear in the Iwasawa decomposition of parabolic
subgroups of simple Lie groups have been classified by Yamaguchi.

H-type groups are shown to be rigid if dim(center) > 3, global results for contact
mappings on rigid nilpotent groups are discussed.

On 1-quasiconformal maps of Carnot groups
MicHAEL COWLING
(joint work with Luca Capogna)

A Carnot group G is a connected, simply connected nilpotent Lie group, whose Lie algebra
g is stratified, that is, g = g1 ® g2 ® - - - ® g,, where [gy, g;] = g;41; further, g carries an
inner product such that the various g; are mutually orthogonal.

The identification of g with the set g of left-invariant vector fields on G leads to the
definition of the horizontal tangent space HT(G): HT,(G) = {X, : X € g,}; this carries
an invariant subriemannian metric. Suppose that U is an open subset of G. A differentiable
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map f : U — G is said to be conformal if df maps HT(U) to HT(G), and the restriction
of df to each HT,(U) is a multiple of an orthogonal map.

The inner product on g induces a Carnot—Caratheodory metric on G: we define d(z,y) to
be the infimum of the lengths of all curves from x to y whose tangent vectors are horizontal.
A homeomorphism f : U — G is said to be A-quasiconformal if it is A-quasiconformal
relative to this metric (i.e., as the radius of balls become smaller, the ratio of the outer
radius to the inner radius of their images becomes at most ). Capogna showed that if f is
1-quasiconformal, then the first component of f is smooth. Our result extends this to all
f. In particular, conformal and 1-quasiconformal maps coincide, and both are smooth.

Edited by Michael Kempe
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