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The organizers of this workshop were Detlef M�uller (Kiel), Elias M. Stein (Prin
eton)

and Hans Triebel (Jena).

43 other mathemati
ians parti
ipated and gave 28 talks. Their abstra
ts are listed in

this report in the order the talks were given. Additionally, spontaneous meetings took

pla
e, where new developments were dis
ussed. The work at this 
onferen
e was mostly

devoted to re
ent developments in several topi
s of harmoni
 analysis as well as in the

theory of fun
tion spa
es and their interplay.

We thank the \Mathematis
hes Fors
hungsinstitut Oberwolfa
h" for making this 
on-

feren
e possible.
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Abstra
ts

The Cau
hy problem for fully non-linear S
hr�odinger equations

Carlos Kenig

In this talk I des
ribed re
ent work (joint with G. Pon
e, C. Rolvung and L. Vega) on

the well-posedness of the Cau
hy problem, for short time, with data in Sobolev spa
es in

R

n

, interse
ted with weighted L

2

spa
es, with power weights. Our result says that, under

suitable ellipti
ity and asymptoti
 
atness assumptions, for data whi
h generates (in a

suitable way) metri
s whi
h are 
lose to \non-trapping" ones, this well-posedness holds for

any n � 1.

Interpolation theory and 
ompa
t operators

Fernando Cobos

In 1960, Krasnosel'skii proved that if T is a linear operator whi
h satis�es the hypothesis

of the Riesz-Thorin theorem, that is, T : L

p

0

! L

q

0

and T : L

p

1

! L

q

1

are bounded, where

1 � p

0

; q

0

; p

1

; q

1

� 1, and if, in addition, q

0

< 1 and T : L

p

0

! L

q

0

is 
ompa
t, then

T : L

p

! L

q

is 
ompa
t, where 1=p = (1 � �)=p

0

+ �=p

1

, 1=q = (1� �)=q

0

+ �=q

1

and �

is any number su
h that 0 < � < 1. At the beginning of the sixties with the foundation of

abstra
t interpolation theory, this result led to the investigation of interpolation properties

of 
ompa
t operators between general Bana
h spa
es. The �rst partial results were pub-

lished in 1964 by Lions and Peetre and by Calder�on, in their famous papers about the real

interpolation method and the 
omplex method, respe
tively. Many authors have worked

on this subje
t sin
e then, and still a lot of work is being done along di�erent dire
tions.

As it was shown by Cwikel in 1992, 
ompa
t operators 
an be interpolated by the real

method. However, a similar result for the 
omplex method is not yet known.

The aim of this talk is to survey old and new results on this subje
t, as well as some of

the tools for their proofs whi
h are intimately related to the stru
ture of the interpolation

method under study.

Maximal operators related to the Ornstein-Uhlenbe
k semigroup with


omplex time parameter

Gian
arlo Mau
eri and Peter Sj

�

ogren

In our two talks we have reported on two papers, one of whi
h is joint work also involving

J. Gar
ia-Cuerva, S. Meda & J.L. Torrea.

Let 
 be the Gaussian measure on R

d

and fH

t

: t � 0g the Ornstein-Uhlenbe
k semigroup

on (R

d

; 
), whose generator is �

1

2

4+ x � r. For ea
h p in [1;1) let E

p

� C be the 
losure

of the region of holomorphy of fH

t

: t � 0g on L

p

(
). We examine the boundedness on

L

q

(
) of the maximal operator

H

�

p

f(x) = sup

z2E

p

jH

z

f(x)j:

We prove that, for 1 < p < 2, H

�

p

is of strong type q for p < q < p

0

and of weak type p

0

.

However, H

�

p

is not of weak type p and not of strong type p

0

.
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Here the strong type p

0

estimate fails be
ause of the behaviour of the semigroup H

z

for

z near the subset i�Z of �E

p

. Indeed, if one modi�es the de�nition of H

�

p

by deleting from

E

p

an "-neighbourhood of i�Z, the resulting operator is of strong type p

0

.

A similar statement holds for the weak type p estimate, with another dis
rete subset of

�E

p

.

Os
illatory integral operators with degenerate phases

Allan Greenleaf

(joint work with Andreas Seeger)

Consider an os
illatory integral operator

T

�

f(x) =

Z

R

d

e

i��(x;y)

a(x; y)f(y)dy;

with phase � 2 C

1

R

(R

d

� R

d

) and amplitude a 2 C

1

0

(R

d

� R

d

), and in parti
ular the

de
ay properties of kT

�

k

L

2

!L

2

under various geometri
 assumptions on �. Let �

L

(x; y) =

(x;r

x

�(x; y)) and �

R

(x; y) = (y;�r

y

�(x; y)) be the proje
tions to the left and right from

the asso
iated 
anoni
al relation, whi
h we assume drop rank by at most one everywhere.

Theorem

(i). If both �

L

and �

R

have at most simple 
usp (S

1;1;0

) singularities, or more generally

are of �nite type � 2, then

kT

�

k

L

2

!L

2

� 
�

�

d�1

2

�

1

4

:

(ii). If one of �

L

or �

R

has at most swallowtail (S

1;1;1;0

) singularities, or more generally

is of �nite type � 3, then

kT

�

k

L

2

!L

2

� 
�

�

d�1

2

�

1

8

:

Part (i) sharpens and extends a result of A. Come
h and S. Cu

agna. As an appli
ation,


onsider averaging operators A

j

f(x) =

R

R

f(x�


j

(t))�(t)dt, � 2 C

1

0

, with 


1

(t) = (t; t

2

; t

4

)

and 


2

(t) = (t; t

3

; t

4

) in R

3

and 


3

(t) = (t; t

2

; t

3

; t

4

) in R

4

, so that A

j

: L

2

! L

2

1

4

by van der

Corput. Then, averages over arbitrary smooth (non translation-invariant) perturbations

of the translation-invariant families fx� 


j

(t)g

x2R

d satisfy the same estimate.

Maximal fun
tions on the dis
rete Heisenberg group

Stephen Wainger

We dis
ussed a re
ent Theorem of A. Magyar, E. M. Stein and myself 
on
erning a maximal

fun
tion on the dis
rete Heisenberg group, H

d

. As a setH

d

= fhjh = (m; k) = (m

1

; m

2

; k)g

with m

j

2 Z

d

and k 2 Z. We introdu
e a multipli
ation by setting (m; k) � (n; l) =

(m+ n; k + l +m

2

� n

1

). For f de�ned on H

d

and (m; k) in H

d

, put

M

N

f(m; k) =

1

(2N + 1)

2d

X

f((n; 0) � (m; k)):

Then we have the following result.

Theorem:(A. Magyar, E.M. Stein, S. Wainger)

k sup

N

jM

n

f jk

`

2

(H

d

)

� A(d)kfk

`

2

(H

d

)

:

Appli
ations to Ergodi
 theory are given.
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Envelopes in fun
tion spa
es

Dorothee D. Haroske

We present our re
ently developed 
on
ept of envelopes in fun
tion spa
es { a relatively

simple tool for the study of spa
es, say, of Sobolev typeH

s

p

, or Besov type B

s

p;q

. Arising from

the famous Sobolev embedding theorem it is, for instan
e, well-known that B

n=p

p;q

,! L

1

if, and only if, 0 < p < 1, 0 < q � 1; a natural question thus is in what sense the

unboundedness of fun
tions belonging to H

s

p

with 1 < p < 1, and B

s

p;q

with 1 < q �

1, respe
tively, 
an be quali�ed. Con
entrating on this parti
ular feature we introdu
e

the 
on
ept of growth envelope fun
tions E

X

G

= sup

kf jXk�1

f

�

(t), t > 0, `measuring' the

unboundedness of fun
tions belonging to some fun
tion spa
e X � L

1

lo


by means of the

non-in
reasing rearrangement f

�

(t). Surprisingly enough one �nds rather simple and �nal

answers 
hara
terising spa
es like B

s

p;q

and H

s

p

; in fa
t, the results 
ontain an even �ner

des
ription of this feature than measured by E

X

G

merely. It turns out that in rearrangement-

invariant spa
es there is a 
onne
tion between E

X

G

and the fundamental fun
tion '

X

; we

derive further properties and give some examples : One veri�es for the Lorentz spa
es

E

G

(L

pq

) = (t

�1=p

; q), where E

G

(X) is the so-
alled growth envelope of a spa
e X. More

interesting, however, are the results for B

s

p;q

or H

s

p

.

Likewise we investigate limiting situations when questions of (un)boundedness of fun
tions

are repla
ed by enquiries about (almost) Lips
hitz 
ontinuity; for X ,! C it makes sense

to repla
e f

�

(t) by

!(f;t)

t

, where !(f; t) is the modulus of 
ontinuity. Now the 
ontinuity

envelope fun
tion E

X

C

and the 
ontinuity envelope E

C

are introdu
ed 
ompletely parallel to

E

X

G

and E

G

, respe
tively, and similar questions are studied.

Apart from natural appli
ations to inequalities, these sharp assertions imply not only new

(and so far �nal) results on unboundedness and Lips
hitz-
ontinuity; besides there are also

interesting 
onne
tions between growth and 
ontinuity envelopes and lift operators, as well

as with related problems of 
ompa
tness and, say, approximation numbers.

The �

b

-
omplex on de
oupled domains

Alexander J. Nagel

This is a report on joint work with E.M. Stein. Our obje
tive is to study the relative

fundamental solutions for the operator �

b

= �

b

�

�

b

+ �

�

b

�

b

on domains 
 � C

n+1

of the

form f(z

1

; : : : ; z

n

; z

n+1

) 2 C

n+1

jIm(z

n+1

) >

P

n

j=1

P

j

(z

j

)g where ea
h P

j

is a subharmoni
,

non-harmoni
 polynomial. We show that the singularities and regularity properties of

the solutions involve di�erent phenomena that arise in the 
ases of stri
tly pseudo
onvex

domains, domains of �nite type in C

2

, or domains in whi
h the eigenvalues of the Levi form

degenerate at 
omparable rates. Instead of being variants of Calder�on-Zygmund singular

integral operators or fra
tional integral operators, the relative fundamental solution in the

de
oupled 
ase is best viewed as a \quotient" of produ
t type operators. This helps to

explain the failure of maximal subellipti
 estimates.

The following is an example of the kind of result we obtain: if 
 � C

3

is de
oupled and

if f �z

1

; �z

2

g is the standard basis for the tangential (0; 1) ve
tor �elds, 
onsider the operator

�

b

= z

1

z

1

+ z

2

z

2

. Let S denote the orthogonal proje
tions from L

2

(�
) to the null spa
e

of �

b

.

Theorem: There is a relative fundamental solution K so that �

b

K = K�

b

= I � S.

Also
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(1) The operators Z

1

�

Z

1

K and Z

2

�

Z

2

K are bounded on L

p

(�
), 1 < p <1.

(2) The operators

�

Z

1

Z

1

K and

�

Z

2

Z

2

K need not be bounded on L

2

(�
).

(3) If B

1

and B

2

are smooth fun
tions on �
 and if jB

1

(p)j4P

1

(p) � C4P

2

(p) and

jB

2

(p)j4P

2

(p) � C4P

1

(p) then [B

1

�

Z

1

Z

1

+ B

2

�

Z

2

Z

2

℄K is bounded on L

p

(�
) for

1 < p <1.

A restri
tion theorem for twisted sub-Lapla
ians

Mi
hael Kempe

For n 2 N 
onsider the 2n+1-dimensional Heisenberg Group H

n

. Its Lie algebra is spanned

by ve
tor �elds P

j

; Q

j

and U (j = 1; : : : ; n) ful�lling the 
anoni
al relations [P

j

; Q

j

℄ = U .

By a Fourier transform in the 
entral variable of H

n

, the 
onvolution on L

1

(H

n

) indu
es

a non-
ommutative 
onvolution produ
t on L

1

(R

2n

), the so-
alled twisted 
onvolution.

To P

j

; Q

j

there 
orrespond ve
tor �elds

e

P

j

;

f

Q

j

on R

2n

(and these are given by twisted


onvolution with a 
ertain kernel).

We 
onsider di�erential operators given by L

S

:= �hZ; SZi where S denotes a real

symmetri
 2n � 2n-matrix and Z = (

e

Q

1

; : : : ;

e

Q

n

;

e

P

1

; : : : ;

e

P

n

). L

S

is 
alled a twisted sub-

Lapla
ian, if S is positive de�nite. Thangavelu proved a \restri
tion theorem" for the

spe
ial 
ase L := L

Id

, namely

k1

[�;�+1℄

(L)k

L

p

!L

2

� C�

�(p)

;

where �(p) := n

�

1

p

�

1

2

�

�

1

2

and 1 � p � 2

2n

2n+2

. Although the exponent �(p) is always

optimal, the range of p for whi
h the above inequality holds 
an be improved to 1 � p <

2

2n+1

2n+3

, and it also holds for all L

S

instead of L, if S is positive de�nite. This result is analog

to the well-known restri
tion theorem for the Fourier transform by Tomas and Stein.

As usual it 
an also be used to obtain better 
onvergen
e of the 
orresponding Riesz

means.

Old and new results on BMO(R

n

)

Gerard Bourdaud

We 
onsider the following subspa
es of BMO(R

n

): VMO = UC \ BMO, CMO = C

0

,

BMO

0

= BMO




(BMO




is the set of 
ompa
tly supported fun
tions in BMO). We also


onsider the 
orresponding subspa
es of bmo(R

n

).

1. We give various 
hara
terizations of these spa
es. For instan
e, we have the following

properties:

(1) BMO

0

= R((L

1

0

)

n+1

)

(2) CMO = R((C

0

)

n+1

)

(Here R = (Id; R

1

; : : : ; R

n

), where R

j

are the Riesz transforms; and L

1

0

is the 
losure of

L

1




in L

1

.)

Assertion (1) is likely new. Assertion (2) was 
laimed in the 70's, but the proof seems

to have not been published. The two proofs rely upon a \kind of" L

1

! BMO 
ontinuity

of the 
ommutator [v; R℄ for v 2 BMO.

2. With the help of Jones, Iwanie
, T
hamit
hian and Russ we point out some inexa
ti-

tudes on CMO and VMO whi
h appeared in the re
ent literature. The following assertions

turn to be FALSE:

(3) VMO(R

n

) is the 
losure of BUC(R

n

)
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(4) for any f 2 CMO(R

n

), the following limit does exist:

lim

t!0

1

jB(0; t)j

Z

B(0;t)

f(x)dx:

3. In 
ollaboration with Si
kel and Lanza de Cristoforis, we study the fun
tional 
al
ulus in

the above subspa
es X of BMO. That is: what fun
tions f de�ne a superposition operator

Tf(g) := f Æ g on X; for what f is Tf 
ontinuous? di�erentiable? in the BMO(R

n

).

Our results 
omplete the former by Fominykh and Chevalier. For instan
e, we have the

following \degenera
y" result:

If f is not an aÆne fun
tion, then:

(i) Tf is not 
ontinuous on VMO or on bmo.

(ii) Tf is not di�erentiable on D(R

n

) endowed with the bmo(R

n

).

Papers appeared or to appear:

� Fun
tional 
al
ulus on BMO and related spa
es (with Si
kel and Lanza de C.)

J.F.A. 2002

� Remarques sur 
ertains sous-espa
es de BMO(R

n

) et bmo(R

n

) Ann. Institut Fourier

2002.

Singular integrals on exponential growth groups

Waldemar Hebis
h

The talk extends our earlier joint work with Tim Steger. We propose a simple abstra
t

version of Calder�on-Zygmund theory, whi
h is appli
able to spa
es with exponential volume

growth. In parti
ular, we have an analog of Calder�on-Zygmund de
omposition on all

amenable Lie groups.

We apply theory to the Riesz transforms on amenable Lie groups: Let G = U � R nN ,

where N is R

Q

or C

Q

, U is a subgroup of the orthogonal (unitary) group on N and the

multipli
ation is given by (u

1

; a

1

; n

1

)(u

2

; a

2

; n

2

) = (u

1

u

2

; a

1

+ a

2

; u

2

e

sa

2

n

1

+ n

2

), s being a

s
alar. Let X

1

; : : : ; X

n

be right invariant ve
tor �elds on G. Put L = �

P

n

j=1

X

2

j

.

Then the operators R

j

= X

j

L

�

1

2

are bounded on L

p

(G), 1 < p � 2 and of weak type

(1; 1). We have also boundedness for p > 2, but then we use stronger assumptions: U

trivial, L of spe
ial form (
oming from a symmetri
 spa
e). Also under the strengthened

assumptions, if X

1


orresponds to the derivative with respe
t to a, then R

�

1

= L

�

1

2

X

1

is

not of weak type (1; 1) (the other R

�

j

are of weak type (1; 1)).

Sharp estimates for the boundedness of Bergman proje
tors

Gustavo Garrig

�

os

Let D = R

n

+ i
 be the tube domain over the light-
one 
 � R

n

. Let P : L

2

(D) !

A

2

(D) be the Bergman proje
tor, and 
onsider the mixed norm Lebesgue spa
e L

p;q

(D) =

L

q

(
;L

p

(R

n

)). We study the following problem: Given p 2 (1;1), �nd the sharp range of

q 2 (1;1) su
h that P admits a bounded extension from L

p;q

into A

p;q

. When n = 3, the

best known answer to this question is given in the following drawing:

It illustrates the regions of boundedness, unboundedness, and the open gap where for

the moment no answer is known. Boundedness in the hexagonal region was shown in a

paper by B�ekoll�e, Bonami, Peloso and Ri

i from 1998, using the Plan
herel theorem and

a suitable dis
retization of the multiplier to obtain a sharp result for p = 2. In this talk we

present sharp results for 2 � p � 4, obtained by the author in 
ollaboration with B�ekoll�e,
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������
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1/2

1/4

1/6

1/21/41/8

1/p

1/q

Bonami and Ri

i. The te
hniques this time are based on a Littlewod-Paley de
omposition

adapted to the geometry of the 
one, and the use of almost orthogonality results related

to the Bo
hner-Riesz multiplier in 2 dimensions. We also present some ne
essary and

suÆ
ient 
onditions for the 
ases 4 < p � 6, in terms of inequalities of Bo
hner-Riesz type.

This resear
h has been partially supported by the European Commission, TMR Network

\Harmoni
 Analysis: 1998-2002".

The Bergman proje
tion on Siegel domains over polyhedral 
ones

Fulvio Ri

i

(joint work with P. Ciatti)

For a 
onvex proper open 
one � in R

n

, let D

�

= R

n

+ i� be the asso
iated tube domain

in C

n

.

Given a Hermitian form �: C

m

� C

m

! C

n

that is �-positive, let also

D

�;�

= f(z; w) : Imw � �(z; z) 2 �g � C

m+n

be the asso
iated type II Siegel domain.

For ea
h of these domains, the Bergman spa
e A

p

(D) is the spa
e of L

p

-integrable

holomorphi
 fun
tions on D. The orthogonal proje
tion of L

2

(D) onto A

2

(D) is 
alled the

Bergman proje
tion.

The general question is if the Bergman proje
tion extends to a bounded operator from

L

p

(D) to A

p

(D) for p 6= 2. If n = 1, i.e. if � = R

+

, the answer is positive if and only if

1 < p <1.

Re
ent results (see e.g. G. Garrig�os' abstra
t) prove that for tube domains over 
ir
ular


ones the answer is positive only for a more restri
ted range of values of p.

We prove that if � is a polyhedral 
one (i.e. the 
onvex hull of a �nite number of half-

lines) then the Bergman proje
tion is bounded if and only if 1 < p < 1, both for tube

domains and type II domains.

The proof is based on a 
areful analysis of the Fourier multipliers (e

�y��

1

�

�

(�))=�

�

�

(�),

on R

n

, where �

�

is the dual 
one of � and

�

�

�

(�) =

Z

�

e

�y��

dy

is its 
hara
teristi
 fun
tion.
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Stability and Energy fun
tionals on K�ahler geometry

Duong H. Phong

In the early 1980's, it was 
onje
tured by S.T. Yau that the existen
e of K�ahler-Einstein

metri
s should be equivalent to stability in the sense of geometri
 invariant theory. This

notion of stability has proven diÆ
ult to exploit on geometri
 PDE's, sin
e it is global

and depends on the 
omplex stru
ture. In re
ent joint work with J. Sturm, we dis
uss its

relation to lower bounds for energy fun
tionals in K�ahler geometry, as well as to notions of

stability in real analysis. Central to our 
onsiderations is a new semi norm k �k

℄

on H

0

(Gr)

log kfk

2

℄

=

m+ 1

(m + 2)(d� 1)

1

D

Z

Z

log

(!

m

Gr

^ ��

jf(z)j

2

jPl(z)j

2d

)

!

m+1

Gr

!

m

GR

+

d�m� 2

(m + 2)(d� 1)

1

D

Z

Gr

log

jf(z)j

2

jPl(z)j

2d

!

m

Gr

(Here Z is the Chow variety), and a non-linear Radon transform, mapping the Mabu
hi

energy of a variety X to the Mabu
hi energy of the regular part Z, of its Chow variety.

Symboli
 
al
ulus for pseudodi�erential operators with periodi
 symbols

Karlheinz Gr

�

o
henig

We prove non-
ommutative versions of Wiener's Lemma on absolutely 
onvergent Fourier

series (a) for the 
ase of twisted 
onvolution and (b) for rotation algebras. Equivalently,

these results 
an be seen as a symboli
 
al
ulus for pseudodi�erential operators with peri-

odi
 symbols. Su
h operators o

ur frequently in time-frequen
y analysis and the theory

of Gabor frames. As an appli
ation we provide the solution of some open problems about

Gabor frames, among them the problem of Fei
htinger and Janssen that is known in the

literature as the \irrational 
ase".

A theory of Gabor multipliers

Hans Georg Fei
htinger

Let � C R

d

�




R

d

be a latti
e in phase spa
e, e.g. � = aZ

d

� bZ

d

. For l = (t; !) we write

�(l)g for M

!

T

t

g(z) := e

2�i!z

g(t� z) (=TF-shift). The pair (g;�) generates a Gabor frame

if (�(l)g)

l2�

is a frame for L

2

(R

d

). It is 
alled a tight Gabor frame if

f =

X

l2�

hf; �(l)gi�(l)g 8f 2 L

2

:

A Gabor multiplier is an operator of the form

G

m

f :=

X

l2�

m

l

hf; �(l)gi�(l)g

for some sequen
e (m

l

)

l2�

on �.

Atoms should be taken from S

0

(R

d

) = ff 2 L

2

; V

g

0

f 2 L

1

(R

2d

)g, where V

g

0

f(t; !) =

hf;M

!

T

t

g

0

i is the short time Fourier transform with Gaussian window.

Then m 2 `

1

=`

2

=`

1

implies G

m

tra
e 
lass/HS/ bounded.

Moreover the 
orresponding operators depend 
ontinuously in the respe
tive norms on

their ingredients (window in S

0

, but even the latti
e �!)
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Singular maximal fun
tions and Radon transforms near L

1

Andreas Seeger

(joint work with Teren
e Tao, James Wright)

We 
onsider a 
lass of maximal fun
tions whi
h are known to give L

p

-bounded operators

and for whi
h the weak-type (1-1) inequality is unknown. This 
lass in
ludes maximal

fun
tions asso
iated to parabola in the plane and the la
unary spheri
al maximal fun
tion

in R

d

. We prove a weak-type L log logL inequality, i.e.

meas

�

fx : jTf(x)j > �g

�

.

Z

�

�

jf(x)j

�

�

dx

with �(s) = s log log(10 + s).

The proofs are based on stopping time arguments involving quantities of \length" and

\thi
kness". We also obtain a related result on singular Radon transforms.

On parametri
es of semi-linear ellipti
 boundary problems

Jon Johnsen

The talk 
on
erns a parametrix formula for semi-linear ellipti
 boundary problems, estab-

lished by the speaker in re
ent years. The formula shows how a given solution depends

on the data, when
e one 
an read o� its regularity diren
ly. In a broader 
ontext, with

derivatives in the L

p

-sense, this question may be te
hni
ally rather demanding to answer

by bootstrap methods (e.g. in 
ases with a large integrability gap between the \initial" and

\�nal" spa
es for the solution). It is explained how to dedu
e the formula, whi
h gives a

purely analyti
al way to obtain su
h regularity properties (in fa
t with weaker assuptions

on the data). The 
onstru
tion has been 
ompleted for non-linerarities of produ
t type,

but there remain fundamental questions for those of 
omposition type, like f(u), where

one is lead to pseudo-di�erential operators in a H�ormander 
lass S

0

1;Æ

with Æ > 1.

Restri
tion and de
ay for 
at 
urves and hypersurfa
es

Sarah N. Ziesler

In this talk I des
ribe re
ent work with A. Carbery on restri
tion theorems for hypersurfa
es

�(t) = (t; 
(t)) in R

n

(t 2 R

n�1

, 
 : R

n�1

! R) with the aÆne 
urvature K

�

(t)

1

n+1

=

(detHess
(t))

1

n+1

, introdu
ed as a mitigating fa
tor. Our work shows that, for n � 3,

there is no universal restri
tion theorem for hypersurfa
es with non-negative 
urvature, in


ontrast with the 
ase n = 2, where Sj�olin proved a universal resti
tion theorem for all


onvex 
urves. We also dis
uss de
ay estimates for the Fourier transform of the density

K

1

2

�

supported on the surfa
e and give results on the relationship between restri
tion and

de
ay.
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A non-linear Fourier transform

Cristoph Thiele

(joint work with C. Mas
alu, T. Tao)

De�ne the partial Fourier integrals of a fun
tion F on the real line by

h(�; k) =

Z

�

�1

F (x)e

ikx

dx:

The Fourier transform of F is the limit of these partial sums as � ! 1. If we write

g = exp h, then we have the following ODE for g:

�

�

g(�; k) = F (�)e

ik�

g(�; k); g(�1; k) = 1:

This exponentiated Fourier transform 
an be generalized to the matrix 
ase, e.g.

�

�

G(x; k) =

�

0 F (�)e

ik�

F (�)e

ik�

0

�

G(�; k); G(�1; k) = id:

The 
oeÆ
ient matrix is in the Lie algebra of SU(1; 1) and thus the solution is of the form

�

a(�;k) b(�;k)

b(�;k) a(�;k)

�

. It is known that

R

log ja(1; k)jdk = C

R

jF j

2

for some universal C. This is

a version of Plan
herel's identity. We 
onje
ture

Z

sup

x

log ja(�; k)jdk � C

Z

jF j

2

:

We 
an prove a variant of this where e

ik�

is repla
ed by 
hara
ters of the Cantor group:




n

= 1, (!(�; k) =

P

n2Z




x

n

k

�n

where x =

P

x

n

d

n

, k =

P

k

n

d

n

.

On the absen
e of positive eigenvalues of S
hr�odinger operators with rough

potentials

Alexandru D. Iones
u

(joint work with D. Jerison)

We 
onsider the problem of proving the absen
e of positive eigenvalues of S
hr�odinger

operators for a 
ertain 
lass of rough potentials in R

n

. Let H = �4 + V denote a

S
hr�odinger operator. Assume that V 2 L

n

2

lo


(R

n

) if n � 3 and V 2 L

k

lo


(R

n

), k > 1, if

n = 2. Assume also that for some exponent q 2 [

n

2

;1℄ (or q 2 (1;1℄ if n = 2) we have

lim

R!1

kV k

L

q

(jxj2[R;2R℄)

�R

1�

n

2q

= 0:

Then the operator H has no positive eigenvalues. The 
ase q =1 is a well-known theorem

of Kato. Our proof is based on establishing a Carleman inequality of the form

kW

m

uk

`

1

(L

p

0

(q)

)

� CkW

m

jxj

1�

n

2q

(4+ 1)uk

`

1

(L

p(q)

)

for a 
ertain sequen
e of weights W

m

, m!1. This inequality holds uniformly as m!1

and p(q) and p

0

(q) are dual exponents with the property that

1

p(q)

�

1

p

0

(q)

=

1

q

.
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Fun
tion spa
es in presen
e of symmetries: 
ompa
tness of embedings, de
ay

and smoothness of fun
tions

Leszek Skrzyp
zak

We are interested Sobolev embeddings of fun
tion spa
es of Besov and Triebel-Lizorkin

type 
onsisted of distributions invariant with respe
t to the a
tion of a 
ompa
t group of

isometries of an underlying spa
e. The underlying spa
e means in this 
ontext the Eu-


lidean spa
e or a Riemannian manifolds with bounded geometry. The following problems

are regarded:

� 
hara
terization of Besov and Triebel-Lizorkin spa
es on manifolds with bounded

geometry via heat semi-group,

� 
ompa
tness of Sobolev and Trudinger-Stri
hartz embeddings,

� improved smoothness properties of Sobolev embeddings on 
ompa
t manifolds,

� entropy numbers of embeddings of radial fun
tions on R

n

,

� lo
al smoothness and de
ay of fun
tions,

� smoothing properties and 
ompa
tness of Riesz-Bessel potentials on symmetri


spa
es of non
ompa
t type.

A 
omplex analyti
 view point on the 2d Euler equations

Nets Katz

For the 2d Euler equation of 
uid motion, two basi
 problems remain open.

(1) Do the Sobolev norms of any solution with smooth initial data grow as fast as

double exponential in time?

(2) Does a solution with initial vorti
ity in H

1

\ L

1

remain in H

1

?

These properties are on the 
ase of what 
an be proved trivially by Littlewood Paley theory.

We present an expli
it model in whi
h both might be studied.

Produ
t BMO and se
ond order 
ommutators

Mi
hael La
ey

Given a fun
tion b on the plane M

b

f = b � f is the operator of multipli
ation by b. H

1

and H

2

are 1-dimensional Hilbert transforms performed in the 2 
anoni
al dire
tions of the

plane. A theorem of Sarah Ferguson and Cora Sadosky 
on
erns the 
ommutator

k[[M

b

; H

1

℄; H

2

℄k

L

2

!L

2

' kbk

BMO(C

+

�C

+

)

What is most important is that the BMO norm is that of the dual of produ
t H

1

(C

+

�C

+

),

as indi
ated by S.-Y. Chang and R. Fe�erman.

This theorem, as in the one dimensional 
ase, admits equivaltent formulations in terms

of Hankel operators and weak fa
torization of produ
t H

1

.
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A multilinear generalization of the Cau
hy-S
hwarz inequality

Anthony Carbery

For a nonnegative measurable fun
tion K de�ned on a produ
t X

1

�� � ��X

n

of measurable

spa
es, let

Q(K) =

�

Z

K(s

1

; x

0

2

; : : : ; x

0

n

)K(s

1

; s

2

; : : : ; x

1

n

) � � �K(x

n

1

; : : : ; s

n

)d(s; x)

�

1

n+1

Then j

R

K(x

1

; : : : ; x

n

)

Q

n

i=1

f

i

(x

i

)dx

i

j � Q(K)

Q

n

i=1

kf

i

k

n+1

.

We give a proof of this result, whi
h generalizes a lemma of Katz and Tao.

Tailored fun
tion spa
es on fra
tals

Mi
hele Bri

hi

We have 
onsidered a generalization of the idea of d-sets and (d;  )-sets as follows.

Let h : (0; 1) ! R be a positive and 
ontinuous monotone fun
tion. Then a non-empty


ompa
t set � � R

n

is 
alled h-set if there exists a �nite Radon measure � with supp� = �

and �(B(
; r)) � h(r), 8
 2 � and all r 2 (0; 1). It turns out that, given h as above, there

exists an example of h-set in R

n

if, and only if, h(2

�k�l

)=h(2

�l

) & 2

�kn

8k; l 2 N

0

. Here

\&" means \up to an equivalent fun
tion

e

h" the estimate holds with the usual � symbol.

The main theorem we have proved reads as follows.

Let � be an h-set ful�lling a 
ertain geometri
al 
ondition (ball 
ondition). Then, for

0 < p <1 and 0 < q � min(1; p)

TrB

h

p

pq

(R

n

) = L

p

(�):

Here h

p

is the sequen
e h

p

= fh(2

�j

)

1

p

2

n

p

j

g

j2N

0

and the related generalized Besov spa
es


an be de�ned in analogy to the 
lassi
al ones.

Afterwards, omitting details, one de�nes B

s

pq

(�) or even B

�

pq

(�) (for a given \positive"

sequen
e f�

j

g) as

B

s

pq

(�) = Tr

�

B

2

js

h

p

pq

(R

n

) for 0 < p; q � 1:

Here 2

js

h

p

means the sequen
e f2

js

h(2

�j

)

1

p

2

n

p

j

g. On
e Besov-type spa
es are de�ned, one


an provide some more dire
t 
hara
terizations and exploit their de�nition for appli
ations

to PDE's.

Riesz transform, Littlewood-Paley-Stein fun
tions and heat kernels on

non-
ompa
t Riemannian manifolds

Thierry Coulhon

(joint work with Xuan Thinh Duong)

Robert Stri
hartz has asked in 1983 for whi
h 
omplete non-
ompa
t Riemannian manifolds

M and whi
h p 2℄1;+1[ one has

C

�1

p

k�

1=2

fk

p

� kjrf jk

p

� C

p

k�

1=2

fk

p

; 8 f 2 C

1

0

(M):

The se
ond inequality above means that the Riesz transform is bounded on L

p

(M). If

true, it implies the �rst inequality for the 
onjugate exponent of p. We proved in [2℄ that

the Riesz transform is bounded on L

p

(M), 1 < p � 2, and has weak type (1; 1) if:

1. V (x; 2r) � C V (x; r); 8 x 2M; r > 0
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2. p

t

(x; x) �

C

V (x;

p

t)

; 8 x 2M; t > 0:

Here V (x; r) is the Riemannian volume of the geodesi
 ball of 
enter x 2M and radius

r > 0, and p

t

(x; y), t > 0, x; y 2M is the heat kernel onM . The example of two Eu
lidean

planes glued by a 
ylinder shows that the above statement is false for p > 2. On Vi
sek

manifolds (see [1℄), the even weaker inequality k�

1=2

fk

p

� C

p

kjrf jk

p

is false for p < 2�".

In [5℄, we prove that the multipli
ative inequality kjrf jk

2

p

� C

p

k�fk

p

kfk

p

is valid on any


omplete Riemannian manifold for 1 < p � 2, and for p > 2 on every 
omplete Riemannian

manifold satisfying

3. jre

�t�

f j � Ce

�t�

(jrf j); 8 f 2 C

1

0

(M); 8 t > 0:

This relies heavily on the use of Littlewood-Paley-Stein fun
tions and on the work of

P-A. Meyer. The Riesz transform itself is bounded on L

p

(M) for p > 2 if 1 and 2 above are

satis�ed, and in addition the heat kernel on fun
tion suitably dominates the heat kernel

on 1-forms (whi
h generalizes the results of Bakry). Finally, we were re
ently able to rea
h

the same 
on
lusion under the weaker set of assumptions 1, 2, 3.
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[3℄ Coulhon T., Duong X.T., Riesz transforms for p > 2, C.R.A.S. Paris, 332, 11, s�erie I, 975-980,

2001.

[4℄ Coulhon T., Duong X.T., Li X.D., Littlewood-Paley-Stein fun
tions on 
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ifolds for 1 � p � 2, to appear in Studia Math..

[5℄ Coulhon T., Duong X.T., Riesz transform and related inequalities on non-
ompa
t Riemannian

manifolds, preprint.

Rigidity of nilpotent Lie groups

Hans Martin Reimann

Carnot groups N are nilpotent Lie groups, whi
h are equipped with a generalized 
onta
t

stru
ture, a non integrable subbundle HN of the tangent bundle TN . A (generalized)


onta
t mapping on a Carnot group is a di�eomorphism, whi
h preserves HN . The group

N is rigid, if the Lie algebra of in�nitesimal generators for 
onta
t mappings is �nite

dimensional.

The rigid nilpotent Lie groups whi
h appear in the Iwasawa de
omposition of paraboli


subgroups of simple Lie groups have been 
lassi�ed by Yamagu
hi.

H-type groups are shown to be rigid if dim(
enter) � 3, global results for 
onta
t

mappings on rigid nilpotent groups are dis
ussed.

On 1-quasi
onformal maps of Carnot groups

Mi
hael Cowling

(joint work with Lu
a Capogna)

A Carnot group G is a 
onne
ted, simply 
onne
ted nilpotent Lie group, whose Lie algebra

g is strati�ed, that is, g = g

1

� g

2

� � � � � g

r

, where [g

1

; g

j

℄ = g

j+1

; further, g 
arries an

inner produ
t su
h that the various g

j

are mutually orthogonal.

The identi�
ation of g with the set

~

g of left-invariant ve
tor �elds on G leads to the

de�nition of the horizontal tangent spa
e HT (G): HT

p

(G) = f

~

X

p

: X 2 g

1

g; this 
arries

an invariant subriemannian metri
. Suppose that U is an open subset ofG. A di�erentiable
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map f : U ! G is said to be 
onformal if df maps HT (U) to HT (G), and the restri
tion

of df to ea
h HT

p

(U) is a multiple of an orthogonal map.

The inner produ
t on g indu
es a Carnot{Caratheodory metri
 on G: we de�ne d(x; y) to

be the in�mum of the lengths of all 
urves from x to y whose tangent ve
tors are horizontal.

A homeomorphism f : U ! G is said to be �-quasi
onformal if it is �-quasi
onformal

relative to this metri
 (i.e., as the radius of balls be
ome smaller, the ratio of the outer

radius to the inner radius of their images be
omes at most �). Capogna showed that if f is

1-quasi
onformal, then the �rst 
omponent of f is smooth. Our result extends this to all

f . In parti
ular, 
onformal and 1-quasi
onformal maps 
oin
ide, and both are smooth.

Edited by Mi
hael Kempe
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