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Die Tagung stand unter der Leitung von J.-P. Demailly (Grenoble), K. Hulek (Hannover)

und T. Peternell (Bayreuth). Die Teilnehmer kamen aus einer Vielzahl europ�ais
her und

au�ereurop�ais
her L�ander. In den Vortr�agen, bei denen insbesondere au
h j�ungere Mathe-

matikerinnen und Mathematiker die M�ogli
hkeit erhielten, �uber ihre Fors
hungsergeb-

nisse zu beri
hten, stellten si
h folgende Themens
hwerpunkte heraus: Calabi-Yau Man-

nigfaltigkeiten, Modulr�aume, Fl�a
hen von allgemeinem Typ, Bl�atterungen, Klassi�kation

spezieller Variet�aten, E�ektivit�at von Divisoren, singul�are Metriken, Zyklenr�aume. Neben

dem Vortragsprogramm gab es eine intensive wissens
haftli
he Zusammenarbeit vieler Teil-

nehmer.
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Abstra
ts

Higher dimensional Zariski de
ompositions

S

�

ebastien Bou
ksom

Let X be a 
ompa
t 
omplex manifold. For any pseudo-e�e
tive 
lass � 2 H

1;1

�

�

�

(X;R),

we de�ne pointwise minimal multipli
ities �(�; x); x 2 X, whi
h are the lo
al obstru
tions

to the numeri
al e�e
tivity of �. We 
an thus distinguish a non-nef lo
us of �, and de�ne

its divisorial Zariski de
omposition by removing from � the divisorial part of its non-nef

lo
us, 
ounting multipli
ities in order to end up with a 
lass whi
h is nef in 
odimension

one.

Uniformisation of holomorphi
 foliations by 
urves

Mar
o Brunella

We dis
uss the following result:

Theorem 1. Let X be a 
ompa
t 
onne
ted K�ahler manifold and let F be a (possibly

singular) holomorphi
 foliation by 
urves on X. Assume that at least one leaf of F is

hyperboli
. Then the Poin
are metri
 on the leaves of F de�nes on its 
anoni
al bundle

K

F

a singular hermitian metri
 whose 
urvature is positive (in the sense of 
urrents).

The proof 
onsists in establishing a set of holomorphi
 
onvexity for the 'foliated' uni-

versal 
overing of (X;F), in order to apply 
lassi
al results by Nishino and Yamagu
hi

about �brations on Stein manifolds.

A 
onsequen
e of the theorem is the pseudoe�e
tivity of K

F

. In this sense, it 
an be


onsidered as an expli
it metri
ised version of some results by Miyaoka, Shepherd-Barron,

M
Quillan, Bogomolov.

Deformation, symple
ti
 and Q.E.D.-equivalen
e for surfa
es of general type

Fabrizio Catanese

Friedman and Morgan's spe
ulation in the '80's was that orientedly di�eomorphi
 min-

imal surfa
es of general type should be deformation equivalent (�

def

). We observe that

X �

def

Y ) 9 a di�eom. � : X ! Y with (�) : �

�

(K

Y

) = K

X

, K

X

the 
lass of the


anoni
al bundle.

Witten's theorem (extended by Taubes for symple
. 4-manifolds) says that � : S ! S

0

a di�eom. ) �

�

(K

S

0

) = �K

S

. Up to date there are 3 types of 
ounterexamples to the

Friedman-Morgan Conje
ture, namely

i) Manetti('98) used (Z=2)

r


overs of P

1

� P

1

; his surfa
es have b

1

= 0 but are not

1-
onne
ted,

ii) Kharlamov-Kulikov ('01) used a variant of Hirzebru
h's ball quotient, so S is a

K(�; 1),

iii) I used ('01) surfa
es S = C

1

� C

2

=G quotients of produ
t of 
urves of genus � 2.

For ii); iii) one takes S

0

=

�

S, so tat it is the same C

1

manifold but �

�

(K

�

S

) = �K

S

. The

heart of the proof is to show 6 9 : S ! S a di�eomorphism su
h that  

�

(K

S

) = �K

S

.

iv) there are 1-
onne
ted 
andidates, but the diÆ
ulty is to show di�eomorphism.
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Now we show the following (easy if K

S

is ample):

Theorem 2. S of general type ) 9! (up to symple
tomorphism) symple
ti
 stru
ture !

with [!℄ = K

S

.

Theorem 3. The 
anoni
al symple
ti
 stru
ture is invariant for deformation and degen-

eration to normal surfa
es yielding smoothings, 8x 2 Sing(X

0

) in the same 
omponent of

Def(X

0

; x), X

0

the 
entral �bre.

A 
orollary of these is

Theorem 4. Manetti's surfa
es yield examples (S!); (S

0

; !

0

), whi
h are symple
tomorphi


but not deformation equivalent.

After sket
hing the related theory of Donaldson's quasi-holomorphi
 maps on symple
-

ti
 4-manifolds and the Auroux-Katzarkov-Donaldson-Yotov invariants of symple
ti
 4-

manifolds, I �nally introdu
ed a very large equivalen
e relation: Q.E.D. is generated by

i) birational equivalen
e

ii) 
at deformations with �bres with 
anoni
al singularities

iii) morphisms f : X ! Y unrami�ed in 
od = 1.

Siu's theorem ) X �

Q:E:D:

Y then kod(X) = kod(Y ).

Theorem 5. For 
urves and surfa
es of spe
ial type kod(X) = kod(Y )) X �

Q:E:D:

Y .

Chara
terizing 
urves by their theta-
hara
teristi


Lu
ia Caporaso

The geometry of the moduli spa
e of stable spin 
urves is studied, with parti
ular empha-

sis on its 
ombinatorial properties. Our moduli theoreti
 results are applied to a problem

in 
lassi
al proje
tive geometry: we show that a general 
anoni
al 
urve is uniquely deter-

mined by the 
on�guration of hyperplanes 
utting theta-
hara
teristi
s on it.

On surfa
es of 
lass V II

+

0

with 
urves

Georges Dloussky

A minimal 
ompa
t 
omplex surfa
e S belongs to 
lass V II

+

0

if its Betti numbers satisfy

b

1

(S) = 1 and b

2

(S) > 0. It is well known that su
h surfa
es have at most b

2

(S) rational


urves.

Theorem 6 (G.D., K. Oeljeklaus, M. Toma). Let S be in 
lass V II

+

0

then S 
ontains a

global spheri
al shell if and only if S 
ontains b

2

(S) rational 
urves.

Therefore the main problem is to 
onstru
t su
h 
urves. We have b

2

(S) 
urves if S

admits a global ve
tor �eld. Finally a �nite quotient of a surfa
e S with a global spheri
al

shell is after desingularisation of the same type.
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Tsuji's numeri
ally trivial �brations for pseudo-e�e
tive line bundles

Thomas E
kl

In this talk two theorems were proven whi
h are related to Tsuji's re
ently de�ned inter-

se
tion numbers of (irredu
ible) 
urves C and pseudo-e�e
tive line bundles L w.r.t. to a

positive singular hermitian metri
 h on L (suppose h

jC

6� 1):

(L; h):C := lim sup

m!1

1

m

h

0

(C;O

C

(m�

�

L)
 I(�

�

h

m

));

where � : C ! C is the normalization of C and I(�

�

h

m

) � O

C

is the multiplier ideal sheaf

asso
iated to the positive singular hermitian metri
 �

�

h

m

.

The �rst theorem 
hara
terizes (L; h)� numeri
al triviality (i.e. for every 
urve C with

h

jC

6� 1 the interse
tion number (L; h):C is 0.

Theorem 7. X is (L; h)�numeri
ally trivial =) �

h

=

P

i

a

i

[D

i

℄ +R, �(R; x) = 0 for all

x 2 X.

This is proven by using (L; h)� general 
urves on whi
h the restri
ted metri
 h

jC

has

the same Lelong numbers as h.

The se
ond theorem deals with �brations whose �bres are numeri
ally trivial:

Theorem 8. 9f : X

----

> Y dominant rational map with 
onne
ted �bres su
h that

(i) �bres over points outside a pluripolar set are numeri
ally trivial,

(ii) all 
urves C with dim f(C) = 1 through points x 2 X outside a pluripolar set satisfy

(L; h):C > 0.

f is unique up to birational equivalen
e.

This is proven by using a lemma whi
h states that a family with numeri
ally trivial �bres

and an (L; h)� general numeri
ally trivial se
tion is itself numeri
ally trivial.

Relative Gromov-Witten invariants

Andreas Gathmann

Let X be a smooth 
omplex proje
tive variety, and let Y � X be a smooth hypersurfa
e.

We want to look for a way to 
ompute the Gromov-Witten invariants of Y (of any genus)

from those of X.

Our idea is to degenerate the manifold X to a singular (normal 
rossing) spa
e with two


omponents. One of the 
omponents is X again, and the other is the proje
tive 
ompletion

P of the normal bundle N

Y=X

. The two 
omponents X and P interse
t in Y .

Following a 
onstru
tion of Jun Li, we de�ne Gromov-Witten invariants of this singular

spa
e. These invariants 
an be 
omputed as a 
ertain produ
t of invariants of the two


omponents X and P . More pre
isely, we need the so-
alled relative invariants of X and

P relative Y . These invariants 
an be interpreted as numbers of 
urves in X (resp. P )

with given multipli
ity 
onditions to Y . We sket
h the 
onstru
tion of the 
orresponding


ompa
t moduli spa
es of relative stable maps.

Finally, we show how a relation between the relative invariants of P and the absolute

invariants of Y 
ould lead to a formula for the Gromov-Witten invariants of Y in terms of

those of X. In genus 0, this program has already been 
ompleted and leads to the famous

mirror formula.
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E�e
tive Algebrai
 S
hottky Problem

Samuel Grushevsky

S
hottky problem, the question of 
hara
terizing Ja
obians of Riemann surfa
es among

prin
ipally polarized abelian varieties, has been solved by Shioda. He 
ompleted the proof

of Novikov's 
onje
ture, whi
h states that an abelian variety is a Ja
obian if and only if

a 
ertain modi�
ation of its asso
iated theta fun
tion satis�es the Kadomtsev-Petviashvili

(KP) di�erential equation. However, this solution is not e�e
tive and not algebrai
 in

terms of theta 
onstants. An e�e
tive algebrai
 solution in the spirit of S
hottky and

Jung's original approa
h has not yet been obtained.

We obtain formulas for degrees of the image of the Ja
obian lo
us and of the moduli

of prin
ipally polarized abelian varieties in the proje
tive spa
e, under the embedding by

level two theta 
onstants map, in terms of some interse
tion numbers on the moduli spa
es.

These degrees are then 
omputed numeri
ally in low genera | the results agree with the

known numbers in genera up to three, and are new for genus four and higher. Using Hodge

index theorem and previous work on Weil-Petersson volumes, we further obtain an expli
it

upper bound for the degree of the Ja
obian lo
us in terms of the genus.

Using this bound and e�e
tive Nullstellensatz, we then show that the KP equation for

the theta fun
tion of an abelian variety is equivalent to an e�e
tively 
onstru
ted system

of algebrai
 equations for theta 
onstants. We thus e�e
tively obtain an algebrai
 solution

to the S
hottky problem.

Some re
ent e�e
tive results in algebrai
 geometry

Gordon Heier

As a result towards the freeness part of the Fujita Conje
ture, it is proven that, if X is

a smooth 
ompa
t 
omplex manifold of dimension n, L is an ample line bundle and K

X

is

the 
anoni
al line bundle, then K

X

+mL is base point free for any integer

m � (e +

1

2

)n

4

3

+

1

2

n

2

3

+ 1;

where e � 2:71 is Euler's 
onstant.

Furthermore, as an interesting instan
e of (e�e
tive) 'boundedness and rigidity'-type

theorems, an estimate on the 
ardinality of 
ertain �nite sets of surje
tive maps between

polarized manifolds of arbitrary dimension is proven, generalizing (e�e
tively) a theorem of

de Fran
his-Severi for 
urves to arbitrary dimension. Then, based on the same philosophy,

uniform e�e
tive versions of the Shafarevi
h Conje
ture over fun
tion �elds (Theorem of

Parshin-Arakelov) and the Mordell Conje
ture over fun
tion �elds (Theorem of Manin) are

proven. The proofs rest on a number of new algebrai
 geometri
 results that should be of

independent interest.
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Chara
terisation of 
y
le domains by S
hubert 
al
ulus and Kobayashi

Alan Hu
kleberry

A real form G of a 
omplex semisimple Lie group G

C

has only �nitely many orbits

in any given G

C


ag manifold Z = G

C

=Q. The 
omplex geometry of these orbits is

of interest, e.g. for the asso
iated representation theory. The open orbits D generally

possess only the 
onstant holomorphi
 fun
tions and the relevant asso
iated geometri


obje
ts are 
ertain positive dimensional 
ompa
t 
omplex submanifolds of D whi
h, with


ertain well-understood ex
eptions, are parametrized by the Wolf 
y
le domains 


W

(D)

in 
 := G

C

=K

C

, where K is a maximal 
ompa
t subgroup. Thus, for the various domains

D in the various ambient spa
es Z, it is possible to 
ompare the 
y
le spa
es 


W

(D).

The main result dis
ussed in the le
ture is that, with the few ex
eptions mentioned

above, for a �xed real form G all of the 
y
le spa
es 


W

(D) are the same. They are equal

to a universal domain 


AG

whi
h is natural from the point of view of group a
tions and

whi
h in essen
e, 
an be expli
itly 
omputed.

The in
lusion 


AG

� 


W

(D) follows from a S
hubert interse
tion theory, whi
h allows us

to 
onstru
t supporting in
iden
e hypersurfa
es at every boundary point of 


W

(D), along

with the identi�
ation of 


AG

with a domain of 
y
les whi
h is de�ned by all possible

in
iden
e hypersurfa
es (joint work with J.A. Wolf together with re
ent results of the

le
turer).

The opposite dire
tion is based on the following result (joint with G. Fels): If

^


 is

a G-invariant Stein domain in 
 whi
h 
ontains 


AG

and is Kobayashi hyperboli
, then

^


 = 


AG

. The in
lusion then follows from the fa
t that 


W

(D) is Kobayashi hyperboli
.

This is in turn proved by embedding it in proje
tive spa
e minus the appropriate number

of hyperplanes in general position.

Degree of Fano 4-folds

Jun-Muk Hwang

We show that the anti-
anoni
al degree of a 4-dimensional Fano manifold of Pi
ard

number 1 is bounded by 625 and when the degree is exa
tly 625 the Fano 4-fold is P

4

. The

proof uses the geometry of standard rational 
urves on the Fano 4-folds in 
ombination

with Nadel's produ
t lemma.

MMP and derived 
ategories

Yjiro Kawamata

We dis
uss the K-equivalen
e and D-equivalen
e of smooth proje
tive varieties.

Theorem 9. Assume X; Y are smooth proje
tive of dimension n and D

b

(CohX) ' D

b

(CohY ).

If �(X) = n, then X and Y are birational and K-equivalent.

Theorem 10. Let X; Y be Q-fa
torial terminal proje
tive 3-folds whi
h are K-equivalent.

Then D

b

(CohX ) ' D

b

(CohY), where X and Y are 
anoni
al 
overing sta
ks of X and Y .

(An example shows that D

b

(CohX) and D

b

(CohY ) are not ne
essarily equivalent).
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Meromorphi
 fun
tions on 
y
le spa
es de�ned by integration

J

�

orn Magnusson

After a brief introdu
tion to the theory of integration of meromorphi
 
ohomology 
lasses

on analyti
 families we state and explain the following theorems:

Theorem 11 (J.M., D. Barlet). Let Z be a 
ompa
t manifold, Y an ample l.
.i. of 
odim

n + 1 in Z and (X

s

)

s2S

an analyti
 family of n-
y
les in Z with S 
ompa
t. For every

irredu
ible 
omponent � of the in
iden
e divisor of Y and (X

s

)

s2S

there exists a rational

number � � 1 su
h that

i) for every � of order � in H

n+1

[Y ℄

(Z;


n

Z

) we have

order of �

o

(�) along � � d��e;

ii) there exist an arbitrarily big integers � and �

�

of order � in H

n+1

[Y ℄

(Z;


n

Z

) su
h that

order of �

o

(�) along � = ��:

Theorem 12 (J.M., D. Barlet). With the same hypothesis as in the previous theorem, let

�

0

be the union of the irredu
ible 
omponents of the in
iden
e divisor having the biggest �

and let L be the line bundle asso
iated to the in
iden
e divisor. There exists a Zariski open

dense subset U of �

0

su
h that

i) For every s in U there exist j and z in H

0

(S; L

j

) with z(s) 6= 0.

ii) For every s; s

0

in U with jY \X

s

\X

s

0

j = ; there exist j and z in H

0

(S; L

j

) su
h

that z(s) = 0 and z(s

0

) 6= 0.

Finally we give an appli
ation 
on
erning algebrai
 dimension of 
ompa
t manifolds.

From Severi varieties to ex
eptional groups

Laurent Manivel

Severi varieties were 
lassi�ed � 1980 by F. Zak, and more generally Ser
a varieties a

few years later. The �rst part of the talk presents two theorems of P.C.Chaput whi
h allow

to simplify greatly the 
lassi�
ation:

Theorem 13. Any Severi variety is homogeneous.

Theorem 14. The ambient spa
e of any Ser
a variety is the proje
tivisation of a simple

Jordan algebra.

These Jordan algebras are the algebras J

n

(A) of Hermition n � n matri
es with 
oeÆ-


ients in a division algebra, in
luding the ex
eptional J

3

(O).

The relation between J

3

(O) and the ex
eptional Lie algebras is 
lassi
al. Surprising

re
ent results have been obtained by P. Vogel and P. Deligne 
on
erning the representa-

tions of ex
eptional Lie algebras, using methods 
oming from knot theory. We explain

and expand Deligne's results by using a variant of the Tits-Freudenthal 
onstru
tion of

ex
eptional Lie algebras, whose main ingredient is triality.
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Holomorphi
 Ve
tor Fields on Fano Manifolds and Appli
ations to

Deformation Rigidity

Ngaiming Mok

In a series of arti
les Jun-Muk Hwang and the speaker have been developing a program of

study on the geometry of uniruled proje
tive manifoldsX. Fixing an irredu
ible 
omponent

K of the Chow spa
e of X 
onsisting of minimal rational 
urves as general members,

we 
onsider at a general point x of X its variety of minimal rational tangents (VMRT)

C � PT

x

X.

In a re
ent work, motivated in part by the diÆ
ult 
ases of deformation rigidity of

rational homogeneous spa
es S = G=P of Pi
ard number 1 as proje
tive manifolds, we

have studied holomorphi
 ve
tor �elds on X parti
ularly for X of Pi
ard number 1.

As guiding problems we formulate two 
onje
tures: (1) at a general point x 2 X there

is no non-trivial global holomorphi
 ve
tor �eld vanishing at x to the order � 3, (2)

dim(Aut(X)) � n

2

+ 2n; n = dimX, with equality i� X

�

=

P

n

.

We prove spe
ial 
ases of those 
onje
tures under additional geometri
 assumptions on

the VMRT's. The results and methods of proof are then applied to deformation rigidity.

Given a regular family � : X ! � whose general �bre is S = G=P we 
onsider over the


entral �bre X

0

the Lie algebra g

0

of global holomorphi
 ve
tor �elds belonging to the

dire
t image of the relative tangent bundle.

In the diÆ
ult 
ases in
luding the isotopi
 Grassmannians S

n;k

of isotropi
 k-planes in a

2n-dimensional symple
ti
 ve
tor spa
e, 1 < k < n, we show that g

0

is isomorphi
 to the

Lie algebra g of the simple Lie group G.

The �rst diÆ
ulty is the degeneration of the Lie algebra g

t

= aut(X

t

) as t ! 0, for

instan
e the existen
e of non-trivial holomorphi
 ve
tor �elds on X

0

vanishing to the order

� 3 at a given general point x

0

2 X

0

. We 
an apply our results and methods on holomor-

phi
 ve
tor �elds to X

0

by showing that X

0

satis�es the additional geometri
 assumptions

on VMRT's whi
h we imposed. The Lie algebra g

0

�

=

g is re
onstru
ted from the symbol

algebra of leading terms at x

0

of holomorphi
 ve
tor �elds in g

0

.

In the analogous 
ase of Hermitian symmetri
 spa
es the Lie algebra stru
ture 
an be

determined by the VMRT and by the Taylor 
oeÆ
ients of the leading terms.

Enhan
ed gauge symmetry for Calabi{Yau threefolds

Bal

�

azs Szendr

}

oi

Let � be a �nite subgroup of SL(2;C) and let Y ! C

2

=� be the minimal resolution

of the quotient surfa
e with ex
eptional lines fF

i

g. Let f : X ! B be a �bration over a

smooth 
urve B with all �bres isomorphi
 to Y . Over the 
urve B, the lines F

i

may or

may not undergo monodromy. A

ordingly, the ex
eptional surfa
es in X are in one-to-one


orresponden
e with nodes of a Dynkin diagram � whi
h is of ADE type in 
ase there is

no monodromy, or of quotient type B, C, F or G if there is monodromy.

Let B(�) denote the (generalized) braid group 
orresponding to the Dynkin diagram �;

by de�nition, it is the group generated by

fx

i

: i a node of �g

subje
t to relations of the form

x

i

x

j

x

i

: : : = x

j

x

i

x

j

: : :

with m

ij

terms on both sides, where m

ij

is the index of the edge ij.
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Theorem There is a homomorphism

B(�)! Auteq(D

b

(X))

where D

b

(X) is the bounded derived 
ategory of 
oherent sheaves of X and Auteq(D

b

(X))

is its autoequivalen
e group.

The theoreti
al physi
s literature dis
usses a 
ertain 
onne
tion between Calabi{Yau

manifolds and Lie algebras under the name of enhan
ed gauge symmetry. The manifold

X is a lo
al quasiproje
tive model for the simplest 
ase of enhan
ed gauge symmetry. The

theorem shows that (a 
over of) the Weyl group of the appropriate Lie algebra a
ts on

the derived 
ategory of X. This �ts into, and has 
onne
tions with, the framework of

mirror symmetry, and via Kontsevi
h' homologi
al mirror symmetry 
onje
ture, also with

symple
ti
 geometry (of the mirror of X).

A 
ounterexample to the Hodge 
onje
ture for K�ahler varieties

Claire Voisin

The Hodge 
onje
ture 
on
erns Hodge 
lasses, namely degree 2p rational 
ohomology


lasses whi
h are of Hodge type (p; p), on proje
tive 
omplex varieties. It asks whether

su
h 
lasses are generated over Q by 
lasses of algebrai
 subsets of 
odimension p.

For a K�ahler 
ompa
t manifold X, one has the notion of Hodge 
lass, but there are

known examples where the Hodge 
lasses are not generated by 
lasses of analyti
 subsets.

The reason is that there is a more general 
onstru
tion of Hodge 
lasses, whi
h 
onsists in

de�ning the Chern 
lasses of analyti
 
oherent sheaves.

We show that still the last 
lasses do not ne
essarily generate the set of Hodge 
lasses

in the K�ahler 
ase. We also show that the Chern 
lasses of holomorphi
 ve
tor bundles

do not ne
essarily generate the same set of Hodge 
lasses as those of 
oherent analyti


sheaves. A 
onsequen
e is that 
oherent analyti
 sheaves on 
ompa
t K�ahler manifolds do

not ne
essarily admit a lo
ally free resolution.

Modularity questions of Calabi-Yau varieties

Noriko Yui

The main theme of this talk is the modularity of Calabi{Yau varieties de�ned over

number �elds (e.g.,Q) in dimensions d = 1; 2 and 3. Here by the modularity, we mean a

Galois representation � : Gal(

�

Q=Q)! GL(H

d

et

(

�

X;Q

`

) asso
iated to a Calabi-Yau variety

X of dimension d is modular. We de�ne the L-series of a Calabi-Yau variety X over Q of

dimension d by L(X; s) = L(H

d

et

(

�

X;Q

`

); s).

For dimension 1 Calabi-Yau varieties (namely, ellipti
 
urves) over Q, the modularity


onje
ture has been established by the 
elebrated e�orts of Wiles et. al. For any ellipti



urve X over Q, there exists a 
usp form f of weight 2 on some �

0

(N) su
h that L(X; s) =

L(f; s).

For dimension 2, the modularity has been known for extremal (=singular) K3 surfa
es

by Shioda and Inose, and Livn�e. Let X be an extremal K3 surfa
e over Q, and assume

that the 20 algebrai
 
y
les generating the Neron-Severi group NS(X) are all de�ned over

Q. Then L(X; s) = �(s � 1)

20

L(g; s) where �(s) is the Riemann zeta-fun
tion and g is a


usp form of weight 3 on some 
ongruen
e subgroup of PSL

2

(Z).

9



From here on, my talk is fo
used on the modularity question of Calabi-Yau threefolds

de�ned over Q. We 
lassify Calabi-Yau threefolds into two 
lasses. A Calabi-Yau threefold

X is rigid if h

2;1

(X) = 0 (so B

3

(X) = 2), non-rigid otherwise.

For rigid Calabi-Yau threefolds over Q, there is a well-formulated 
onje
ture that every

rigid Calabi{Yau threefold X over Q is modular, that is, there exists a 
usp form f of

weight 4 on some �

0

(N) su
h that L(X; s) = L(f; s). Here N is divisible only by primes

of bad redu
tion. This 
onje
ture is a spe
ial 
ase of the 
onje
ture of Serre, and that of

Fontaine and Mazur.

Theorem 15. Up to date, there are at least 30 rigid Calabi-Yau threefolds over Q for

whi
h the modularity 
onje
ture has been established. (Some of these 30 rigid Calabi-Yau

threefolds may be birationally equivalent over Q.)

The modularity question of non-rigid Calabi-Yau threefolds is also addressed. We 
on-

sider non-rigid Calabi-Yau threefolds �bred by semi-stable K3 surfa
es. The existen
e of

these non-rigid Calabi-Yau threefolds is proved in the paper of Sun, Tan and Zuo entitled

Families of K3 surfa
es over 
urves satisfying the equality of Arakelov-Yau type and mod-

ularity. However, we are not able to give expli
it formulation of the modularity 
onje
ture

nor its proof for these non-rigid Calabi-Yau threefolds. As Galois representations asso
i-

ated to these non-rigid Calabi-Yau threefolds are highly redu
ible, it is our hope that the

modularity may be established sooner or later for these non-rigid Calabi-Yau threefolds.

Edited by Mi
hael L�onne
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