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Die Tagung stand unter der Leitung von J.-P. Demailly (Grenoble), K. Hulek (Hannover)
und T. Peternell (Bayreuth). Die Teilnehmer kamen aus einer Vielzahl européischer und
auflereuropéiischer Lander. In den Vortriagen, bei denen insbesondere auch jiingere Mathe-
matikerinnen und Mathematiker die Moglichkeit erhielten, iiber ihre Forschungsergeb-
nisse zu berichten, stellten sich folgende Themenschwerpunkte heraus: Calabi-Yau Man-
nigfaltigkeiten, Modulrdume, Flachen von allgemeinem Typ, Blitterungen, Klassifikation
spezieller Varietaten, Effektivitat von Divisoren, singulare Metriken, Zyklenraume. Neben
dem Vortragsprogramm gab es eine intensive wissenschaftliche Zusammenarbeit vieler Teil-
nehmer.



Abstracts

Higher dimensional Zariski decompositions
SEBASTIEN BOUCKSOM

Let X be a compact complex manifold. For any pseudo-effective class o« € H ;g (X,R),
we define pointwise minimal multiplicities v(a, x), € X, which are the local obstructions
to the numerical effectivity of a. We can thus distinguish a non-nef locus of «, and define
its divisorial Zariski decomposition by removing from « the divisorial part of its non-nef
locus, counting multiplicities in order to end up with a class which is nef in codimension
one.

Uniformisation of holomorphic foliations by curves
MARCO BRUNELLA

We discuss the following result:

Theorem 1. Let X be a compact connected Kdihler manifold and let F be a (possibly
singular) holomorphic foliation by curves on X. Assume that at least one leaf of F is
hyperbolic. Then the Poincare metric on the leaves of F defines on its canonical bundle
Kz a singular hermitian metric whose curvature is positive (in the sense of currents).

The proof consists in establishing a set of holomorphic convexity for the ’foliated’ uni-
versal covering of (X, F), in order to apply classical results by Nishino and Yamaguchi
about fibrations on Stein manifolds.

A consequence of the theorem is the pseudoeffectivity of K. In this sense, it can be
considered as an explicit metricised version of some results by Miyaoka, Shepherd-Barron,
McQuillan, Bogomolov.

Deformation, symplectic and Q.E.D.-equivalence for surfaces of general type
FABRIZIO CATANESE

Friedman and Morgan’s speculation in the ’80’s was that orientedly diffeomorphic min-
imal surfaces of general type should be deformation equivalent (~g.r). We observe that
X ~gep Y = Fadiffeom. ¢ : X — Y with (%) : ¢*(Ky) = Ky, Kx the class of the
canonical bundle.

Witten’s theorem (extended by Taubes for symplec. 4-manifolds) says that ¢ : S — S
a difftom. = ¢*(Kg¢) = £Ks. Up to date there are 3 types of counterexamples to the
Friedman-Morgan Conjecture, namely
i) Manetti(’98) used (Z/2)" covers of P' x P'; his surfaces have b, = 0 but are not
1-connected,
ii) Kharlamov-Kulikov (’01) used a variant of Hirzebruch’s ball quotient, so S is a
K(rm, 1),
iii) T used ('01) surfaces S = C; x Cy/G quotients of product of curves of genus > 2.
For ii), i) one takes S’ = S, so tat it is the same C'° manifold but ¢*(Kg) = —Kg. The
heart of the proof is to show Ay : S — S a diffeomorphism such that ¢*(Kg) = — K.

iv) there are 1-connected candidates, but the difficulty is to show diffeomorphism.



Now we show the following (easy if Kg is ample):

Theorem 2. S of general type = 3! (up to symplectomorphism) symplectic structure w
with [w] = Kg.

Theorem 3. The canonical symplectic structure is invariant for deformation and degen-

eration to normal surfaces yielding smoothings, Vx € Sing(Xy) in the same component of
Def(Xy, z), Xo the central fibre.

A corollary of these is

Theorem 4. Manetti’s surfaces yield examples (Sw), (S',w'), which are symplectomorphic
but not deformation equivalent.

After sketching the related theory of Donaldson’s quasi-holomorphic maps on symplec-
tic 4-manifolds and the Auroux-Katzarkov-Donaldson-Yotov invariants of symplectic 4-
manifolds, I finally introduced a very large equivalence relation: Q.E.D. is generated by

i) birational equivalence
ii) flat deformations with fibres with canonical singularities
iii) morphisms f: X — Y unramified in cod = 1.

Siu’s theorem = X ~g g.p. Y then kod(X) = kod(Y').

Theorem 5. For curves and surfaces of special type kod(X) = kod(Y) = X ~gpp. Y.

Characterizing curves by their theta-characteristic
Lucia CAPORASO

The geometry of the moduli space of stable spin curves is studied, with particular empha-
sis on its combinatorial properties. Our moduli theoretic results are applied to a problem
in classical projective geometry: we show that a general canonical curve is uniquely deter-
mined by the configuration of hyperplanes cutting theta-characteristics on it.

On surfaces of class VI with curves
GEORGES DLOUSSKY

A minimal compact complex surface S belongs to class VI if its Betti numbers satisfy
b1(S) =1 and bo(S) > 0. It is well known that such surfaces have at most by(S) rational
curves.

Theorem 6 (G.D., K. Oeljeklaus, M. Toma). Let S be in class VII) then S contains a
global spherical shell if and only if S contains by(S) rational curves.

Therefore the main problem is to construct such curves. We have by(S) curves if S
admits a global vector field. Finally a finite quotient of a surface S with a global spherical
shell is after desingularisation of the same type.



Tsuji’s numerically trivial fibrations for pseudo-effective line bundles
THOMAS ECKL

In this talk two theorems were proven which are related to Tsuji’s recently defined inter-
section numbers of (irreducible) curves C' and pseudo-effective line bundles L w.r.t. to a
positive singular hermitian metric i on L (suppose hjc # 00):

1 —
(L, h).C = limsup —h°(C, Oz(mn*L) @ Z(7*h™)),
m—oo M
where 7 : C' — C is the normalization of C' and Z(7*h™) C O is the multiplier ideal sheaf
associated to the positive singular hermitian metric 7*h™.
The first theorem characterizes (L, h)— numerical triviality (i.e. for every curve C' with
hjc # oo the intersection number (L, h).C' is 0.

Theorem 7. X is (L, h)— numerically triviel = ©;, = >, a;,[D;]+ R, v(R,x) =0 for all
reX.

This is proven by using (L, h)— general curves on which the restricted metric A has
the same Lelong numbers as h.
The second theorem deals with fibrations whose fibres are numerically trivial:

Theorem 8. df : X----> Y dominant rational map with connected fibres such that

(i) fibres over points outside a pluripolar set are numerically trivial,
(ii) all curves C with dim f(C') = 1 through points x € X outside a pluripolar set satisfy
(L,h).C" > 0.

f s unique up to birational equivalence.

This is proven by using a lemma which states that a family with numerically trivial fibres
and an (L, h)— general numerically trivial section is itself numerically trivial.

Relative Gromov-Witten invariants
ANDREAS GATHMANN

Let X be a smooth complex projective variety, and let Y C X be a smooth hypersurface.
We want to look for a way to compute the Gromov-Witten invariants of Y (of any genus)
from those of X.

Our idea is to degenerate the manifold X to a singular (normal crossing) space with two
components. One of the components is X again, and the other is the projective completion
P of the normal bundle Ny, x. The two components X and P intersect in Y.

Following a construction of Jun Li, we define Gromov-Witten invariants of this singular
space. These invariants can be computed as a certain product of invariants of the two
components X and P. More precisely, we need the so-called relative invariants of X and
P relative Y. These invariants can be interpreted as numbers of curves in X (resp. P)
with given multiplicity conditions to Y. We sketch the construction of the corresponding
compact moduli spaces of relative stable maps.

Finally, we show how a relation between the relative invariants of P and the absolute
invariants of Y could lead to a formula for the Gromov-Witten invariants of Y in terms of
those of X. In genus 0, this program has already been completed and leads to the famous
mirror formula.



Effective Algebraic Schottky Problem
SAMUEL GRUSHEVSKY

Schottky problem, the question of characterizing Jacobians of Riemann surfaces among
principally polarized abelian varieties, has been solved by Shioda. He completed the proof
of Novikov’s conjecture, which states that an abelian variety is a Jacobian if and only if
a certain modification of its associated theta function satisfies the Kadomtsev-Petviashvili
(KP) differential equation. However, this solution is not effective and not algebraic in
terms of theta constants. An effective algebraic solution in the spirit of Schottky and
Jung’s original approach has not yet been obtained.

We obtain formulas for degrees of the image of the Jacobian locus and of the moduli
of principally polarized abelian varieties in the projective space, under the embedding by
level two theta constants map, in terms of some intersection numbers on the moduli spaces.
These degrees are then computed numerically in low genera — the results agree with the
known numbers in genera up to three, and are new for genus four and higher. Using Hodge
index theorem and previous work on Weil-Petersson volumes, we further obtain an explicit
upper bound for the degree of the Jacobian locus in terms of the genus.

Using this bound and effective Nullstellensatz, we then show that the KP equation for
the theta function of an abelian variety is equivalent to an effectively constructed system
of algebraic equations for theta constants. We thus effectively obtain an algebraic solution
to the Schottky problem.

Some recent effective results in algebraic geometry
GORDON HEIER

As a result towards the freeness part of the Fujita Conjecture, it is proven that, if X is
a smooth compact complex manifold of dimension n, L is an ample line bundle and K is
the canonical line bundle, then Kx 4+ mL is base point free for any integer

1,4 1 2
m2(e+§)n3+§n3+1,

where e & 2.71 is Euler’s constant.

Furthermore, as an interesting instance of (effective) 'boundedness and rigidity’-type
theorems, an estimate on the cardinality of certain finite sets of surjective maps between
polarized manifolds of arbitrary dimension is proven, generalizing (effectively) a theorem of
de Franchis-Severi for curves to arbitrary dimension. Then, based on the same philosophy,
uniform effective versions of the Shafarevich Conjecture over function fields (Theorem of
Parshin-Arakelov) and the Mordell Conjecture over function fields (Theorem of Manin) are
proven. The proofs rest on a number of new algebraic geometric results that should be of
independent interest.



Characterisation of cycle domains by Schubert calculus and Kobayashi
ALAN HUCKLEBERRY

A real form G of a complex semisimple Lie group G has only finitely many orbits
in any given GC flag manifold 7 = G€/Q. The complex geometry of these orbits is
of interest, e.g. for the associated representation theory. The open orbits D generally
possess only the constant holomorphic functions and the relevant associated geometric
objects are certain positive dimensional compact complex submanifolds of D which, with
certain well-understood exceptions, are parametrized by the Wolf cycle domains Qy (D)
in Q := G€/KC, where K is a maximal compact subgroup. Thus, for the various domains
D in the various ambient spaces Z, it is possible to compare the cycle spaces Qu (D).

The main result discussed in the lecture is that, with the few exceptions mentioned
above, for a fixed real form G all of the cycle spaces Qu (D) are the same. They are equal
to a universal domain €245 which is natural from the point of view of group actions and
which in essence, can be explicitly computed.

The inclusion Qg C Qw (D) follows from a Schubert intersection theory, which allows us
to construct supporting incidence hypersurfaces at every boundary point of Qy (D), along
with the identification of {244 with a domain of cycles which is defined by all possible
incidence hypersurfaces (joint work with J.A. Wolf together with recent results of the
lecturer).

The opposite direction is based on the following result (joint with G. Fels): If Q is
a G-invariant Stein domain in {2 which contains €245 and is Kobayashi hyperbolic, then
Q) = Quc. The inclusion then follows from the fact that Qw (D) is Kobayashi hyperbolic.
This is in turn proved by embedding it in projective space minus the appropriate number
of hyperplanes in general position.

Degree of Fano 4-folds
JUN-MUK HWANG

We show that the anti-canonical degree of a 4-dimensional Fano manifold of Picard
number 1 is bounded by 625 and when the degree is exactly 625 the Fano 4-fold is P*. The
proof uses the geometry of standard rational curves on the Fano 4-folds in combination
with Nadel’s product lemma.

MMP and derived categories
Y JIRO KAWAMATA

We discuss the K-equivalence and D-equivalence of smooth projective varieties.

Theorem 9. Assume X,Y are smooth projective of dimensionn and D*(CohX) ~ D*(CohY’).
If K(X) =n, then X and Y are birational and K -equivalent.

Theorem 10. Let X,Y be Q-factorial terminal projective 3-folds which are K -equivalent.
Then D*(CohX) ~ D*(CohY), where X and Y are canonical covering stacks of X and Y .
(An example shows that D°(CohX) and D"(CohY') are not necessarily equivalent).



Meromorphic functions on cycle spaces defined by integration
JORN MAGNUSSON

After a brief introduction to the theory of integration of meromorphic cohomology classes
on analytic families we state and explain the following theorems:

Theorem 11 (J.M., D. Barlet). Let Z be a compact manifold, Y an ample l.c.i. of codim
n+1in Z and (X5)ses an analytic family of n-cycles in 7 with S compact. For every
irreducible component 3 of the incidence divisor of Y and (X)ses there exists a rational
number K < 1 such that
i) for every & of order v in H[T;J]FI(Z, 0%) we have
order of p°(§) along ¥ < [vk],

ii) there exist an arbitrarily big integers v and &, of order v in HS/J}FI(Z, O%) such that

order of p°(§) along ¥ = vk.

Theorem 12 (J.M., D. Barlet). With the same hypothesis as in the previous theorem, let
Y be the union of the irreducible components of the incidence divisor having the biggest k
and let L be the line bundle associated to the incidence divisor. There exists a Zariski open
dense subset U of ¥ such that

i) For every s in U there exist j and z in H°(S, L7) with z(s) # 0.
ii) For every s,s' in U with |Y N X, N Xy| = 0 there exist j and z in H°(S, L7) such
that z(s) = 0 and z(s") # 0.

Finally we give an application concerning algebraic dimension of compact manifolds.

From Severi varieties to exceptional groups
LAURENT MANIVEL

Severi varieties were classified ~ 1980 by F. Zak, and more generally Serca varieties a
few years later. The first part of the talk presents two theorems of P.C.Chaput which allow
to simplify greatly the classification:

Theorem 13. Any Severi variety is homogeneous.

Theorem 14. The ambient space of any Serca variety is the projectivisation of a simple
Jordan algebra.

These Jordan algebras are the algebras .J,,(A) of Hermition n X n matrices with coeffi-
cients in a division algebra, including the exceptional J3(O).

The relation between .J3(O) and the exceptional Lie algebras is classical. Surprising
recent results have been obtained by P. Vogel and P. Deligne concerning the representa-
tions of exceptional Lie algebras, using methods coming from knot theory. We explain
and expand Deligne’s results by using a variant of the Tits-Freudenthal construction of
exceptional Lie algebras, whose main ingredient is triality.



Holomorphic Vector Fields on Fano Manifolds and Applications to
Deformation Rigidity

NGAIMING MOK

In a series of articles Jun-Muk Hwang and the speaker have been developing a program of
study on the geometry of uniruled projective manifolds X . Fixing an irreducible component
IC of the Chow space of X consisting of minimal rational curves as general members,
we consider at a general point x of X its variety of minimal rational tangents (VMRT)
C CcPT.X.

In a recent work, motivated in part by the difficult cases of deformation rigidity of
rational homogeneous spaces S = G/P of Picard number 1 as projective manifolds, we
have studied holomorphic vector fields on X particularly for X of Picard number 1.

As guiding problems we formulate two conjectures: (1) at a general point z € X there
is no non-trivial global holomorphic vector field vanishing at = to the order > 3, (2)
dim(Aut(X)) < n?+ 2n, n = dim X, with equality iff X =2 P".

We prove special cases of those conjectures under additional geometric assumptions on
the VMRT’s. The results and methods of proof are then applied to deformation rigidity.
Given a regular family 7 : X — A whose general fibre is S = G/P we consider over the
central fibre X, the Lie algebra g, of global holomorphic vector fields belonging to the
direct image of the relative tangent bundle.

In the difficult cases including the isotopic Grassmannians S, ; of isotropic k-planes in a
2n-dimensional symplectic vector space, 1 < k < n, we show that g is isomorphic to the
Lie algebra g of the simple Lie group G.

The first difficulty is the degeneration of the Lie algebra g; = aut(X;) as ¢ — 0, for
instance the existence of non-trivial holomorphic vector fields on X vanishing to the order
> 3 at a given general point xg € Xy. We can apply our results and methods on holomor-
phic vector fields to Xy by showing that X satisfies the additional geometric assumptions
on VMRT’s which we imposed. The Lie algebra gy = g is reconstructed from the symbol
algebra of leading terms at zy of holomorphic vector fields in g.

In the analogous case of Hermitian symmetric spaces the Lie algebra structure can be
determined by the VMRT and by the Taylor coefficients of the leading terms.

Enhanced gauge symmetry for Calabi—Yau threefolds
BALAZS SZENDROI

Let T be a finite subgroup of SL(2,C) and let Y — C?/T" be the minimal resolution
of the quotient surface with exceptional lines {F;}. Let f : X — B be a fibration over a
smooth curve B with all fibres isomorphic to Y. Over the curve B, the lines F; may or
may not undergo monodromy. Accordingly, the exceptional surfaces in X are in one-to-one
correspondence with nodes of a Dynkin diagram A which is of ADE type in case there is
no monodromy, or of quotient type B, C, F or G if there is monodromy.

Let B(A) denote the (generalized) braid group corresponding to the Dynkin diagram A;
by definition, it is the group generated by

{z; : i a node of A}
subject to relations of the form
Lyl e .. = TjLil5 ...

with m;; terms on both sides, where m,; is the index of the edge ij.



Theorem There is a homomorphism
B(A) — Auteq(D"(X))

where D?(X) is the bounded derived category of coherent sheaves of X and Auteq(D"(X))
is its autoequivalence group.

The theoretical physics literature discusses a certain connection between Calabi—Yau
manifolds and Lie algebras under the name of enhanced gauge symmetry. The manifold
X is a local quasiprojective model for the simplest case of enhanced gauge symmetry. The
theorem shows that (a cover of) the Weyl group of the appropriate Lie algebra acts on
the derived category of X. This fits into, and has connections with, the framework of
mirror symmetry, and via Kontsevich’ homological mirror symmetry conjecture, also with
symplectic geometry (of the mirror of X).

A counterexample to the Hodge conjecture for Kahler varieties
CLAIRE VOISIN

The Hodge conjecture concerns Hodge classes, namely degree 2p rational cohomology
classes which are of Hodge type (p,p), on projective complex varieties. It asks whether
such classes are generated over Q by classes of algebraic subsets of codimension p.

For a Kahler compact manifold X, one has the notion of Hodge class, but there are
known examples where the Hodge classes are not generated by classes of analytic subsets.
The reason is that there is a more general construction of Hodge classes, which consists in
defining the Chern classes of analytic coherent sheaves.

We show that still the last classes do not necessarily generate the set of Hodge classes
in the Kahler case. We also show that the Chern classes of holomorphic vector bundles
do not necessarily generate the same set of Hodge classes as those of coherent analytic
sheaves. A consequence is that coherent analytic sheaves on compact Kahler manifolds do
not necessarily admit a locally free resolution.

Modularity questions of Calabi-Yau varieties
NORIKO YUI

The main theme of this talk is the modularity of Calabi—Yau varieties defined over
number fields (e.g.,Q) in dimensions d = 1,2 and 3. Here by the modularity, we mean a
Galois representation p : Gal(Q/Q) — GL(H%(X, Q) associated to a Calabi-Yau variety
X of dimension d is modular. We define the L-series of a Calabi-Yau variety X over Q of
dimension d by L(X,s) = L(HL(X,Qy), s).

For dimension 1 Calabi-Yau varieties (namely, elliptic curves) over Q, the modularity
conjecture has been established by the celebrated efforts of Wiles et. al. For any elliptic
curve X over Q, there exists a cusp form f of weight 2 on some T'o(N) such that L(X,s) =
L(f,s).

For dimension 2, the modularity has been known for extremal (=singular) K3 surfaces
by Shioda and Inose, and Livné. Let X be an extremal K3 surface over Q, and assume
that the 20 algebraic cycles generating the Neron-Severi group NS(X) are all defined over
Q. Then L(X,s) = ((s — 1)*°L(g, s) where ((s) is the Riemann zeta-function and g is a
cusp form of weight 3 on some congruence subgroup of PSLy(Z).



From here on, my talk is focused on the modularity question of Calabi-Yau threefolds
defined over Q. We classify Calabi-Yau threefolds into two classes. A Calabi-Yau threefold
X is rigid if h*'(X) = 0 (so B3(X) = 2), non-rigid otherwise.

For rigid Calabi-Yau threefolds over Q, there is a well-formulated conjecture that every
rigid Calabi—Yau threefold X over Q is modular, that is, there exists a cusp form f of
weight 4 on some I'y(N) such that L(X,s) = L(f,s). Here N is divisible only by primes
of bad reduction. This conjecture is a special case of the conjecture of Serre, and that of
Fontaine and Mazur.

Theorem 15. Up to date, there are at least 30 rigid Calabi-Yau threefolds over Q for
which the modularity conjecture has been established. (Some of these 30 rigid Calabi-Yau
threefolds may be birationally equivalent over Q.)

The modularity question of non-rigid Calabi-Yau threefolds is also addressed. We con-
sider non-rigid Calabi-Yau threefolds fibred by semi-stable K3 surfaces. The existence of
these non-rigid Calabi-Yau threefolds is proved in the paper of Sun, Tan and Zuo entitled
Families of K3 surfaces over curves satisfying the equality of Arakelov-Yau type and mod-
ularity. However, we are not able to give explicit formulation of the modularity conjecture
nor its proof for these non-rigid Calabi-Yau threefolds. As Galois representations associ-
ated to these non-rigid Calabi-Yau threefolds are highly reducible, it is our hope that the
modularity may be established sooner or later for these non-rigid Calabi-Yau threefolds.

Edited by Michael Lénne
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