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The meeting Groups and Geometries 
entered around simple groups, building geometry

and their intera
tion. One 
entral topi
 of this meeting was the new 
lassi�
ation proof of

(simple) groups of 
hara
teristi
 p-type proposed by U. Meierfrankenfeld, B. Stellma
her

and G. Stroth. The whole Monday morning (and some additional talks) were devoted to

this subje
t, with an introdu
tory le
ture of 90 minutes given by U. Meierfrankenfeld.

One further 
entral topi
 of the 
onferen
e were appli
ations of the 
lassi�
ation of the

�nite simple groups to other bran
hes of mathemati
s. Here the talk of B. Guralni
k on

Genus Zero Groups in Positive Chara
teristi
, in whi
h the 
lassi�
ation was applied to

algebrai
 geometry, should be mentioned.

Finally the theory of Moufang buildings has, thanks to the 
lassi�
ation of Moufang

polygons by J. Tits and R. Weiss, taken a new boom. For this reason Tuesday afternoon

was 
ompletely devoted to Moufang buildings and the 
orresponding groups.
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Abstra
ts

Small modules for groups of Lie type

Barbara Baumeister

(joint work with U. Meierfrankenfeld)

In the talk we dis
uss quadrati
 modules for the groups of Lie type in the de�ning


hara
teristi
. We prove

Theorem: Let M be a quotient of

�

G

�

(K), 0 < p = 
har K, V an irredu
ible, faithful

GF(p)M -module, D � M , jDj > 2 a p-subgroup and A � Z(D) su
h that M = hA

M

iD,

[V;A;D℄ = 0, j�

D

j � 2. Then (M;V ) are members of some well-known list.

There are the results of Thompson (p � 5), Premet & Suprunenko (p 6= 2) and Stroth

& Englund (p = 2) on quadrati
 modules. We give a uniform proof for all primes whi
h

is based on the result of Curtis, that every irredu
ible module V (�), � p-restri
ted, for a

group of Lie type, is also an irredu
ible module for the related Lie algebra.

Bla
k Box Groups and the Andrews-Curtis Conje
ture

Alexandre V. Borovik

(joint work with E.I. Khukhro, A. Lubotzky and A.G. Myasnikov)

Experimental eviden
e suggests that the problem of generation of random elements in a

normal subgroup of a bla
k box group 
an be eÆ
iently solved by a version of the produ
t

repla
ement algorithm. From the theoreti
al point of view, this algorithm is a random

walk over a 
ertain graph asso
iated with the group and its normal subgroup. The graph


an be de�ned for in�nite groups, and in the 
ase of the free group viewed as a normal

subgroup of itself, the well-known Andrews-Curtis Conje
ture theoreti
al point of view,

this algorithm is a random walk over a 
ertain graph asso
iated with the group and its

normal subgroup. The graph 
an be de�ned for in�nite groups, and in the 
ase of the free

group viewed as a normal subgroup of itself, the well-known Andrews-Curtis Conje
ture

says that the graph is 
onne
ted. The talk dis
usses approa
hes to the Andrews-Curtis

Conje
ture via �nite group theory and possible impli
ations for the theory of bla
k box

�nite groups.

Groups of rank 2 in lo
al 
hara
teristi
 p

Andrew Chermak

(joint work with U. Meierfrankenfeld)

Part of the Meierfrankenfeld program for understanding groups of lo
al 
hara
teristi
 p


on
erns the 
ase where G 
ontains a pair (P;

~

P ) of minimal paraboli
 subgroups over a

�xed Sylow p-subgroup S, su
h that O

p

(hP;

~

P i) = 1. This talk 
onsisted of a report on

progress on this 
ase.

Theorem: Set Z = 


1

(Z(S)) and assume that [Z; P ℄ 6= 1 6= [Z;

~

P ℄. Assume also that

Y

P

Y

~

P

is normal in neither P nor

~

P . Then one of the following holds:

1. p = 2 and F

�

(G) ' L

3

(2

n

), Sp(4; 2

n

), A

6

or M

23

,

2. p = 3 and (P;

~

P ) determines a weak BN -pair of type G

2

(3

n

),
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3. p is odd and O

p

0

(P ) ' O

p

0

(

~

P ) is of the formp

2n

: SL(2; p

n

).

(The 
ondition on Y

P

Y

~

P

in the statement of the Theorem may be dropped, on
e the

\Pushing Up Theorem" of Meierfrankenfeld is 
omplete.) One may therefore assume,

hen
eforth, that [Z; P ℄ 6= 1 and [Z;

~

P ℄ = 1.

The remainder of the report 
onsisted in explaining how other parts of the Meierfranken-

feld program (the Theorems 
alled E!, P!, and the Stru
ture Theorem) provide the ne
-

essary ba
kground information from whi
h to 
omplete the 
lassi�
ation (in 
hara
teristi


2) or the determination of p-lo
al stru
ture (in odd 
hara
teristi
) of the rank-2 groups.

Artin groups, their representations and BMW algebras

Arjeh M. Cohen

(joint work with D. Gijsbers and D. Wales)

LetM be a spheri
al Coxeter diagram of type A;D;E and of rank n. The BMW algebra

of type M (where B=Birman, M=Murahami, W=Wenzl) is the algebra B over Z[l

�

; m

�

℄

generated by g

1

; : : : ; g

n

subje
t to the relations

(B1) g

i

g

j

= g

j

g

i

if i 6� j,

(B2) g

i

g

j

g

i

= g

j

g

i

g

j

if i � j,

(D1) e

i

:= m

�1

l(g

2

i

+mg

i

� 1),

(R1) g

i

e

i

= l

�1

e

i

,

(R2) e

i

g

j

e

i

= le

i

when i � j.

For M = A

n�1

this gives the known BMW algebra, 
orresponding to the braid group

on n braids. There is a homomorphism from the Artin group of type M on generators

s

1

; : : : ; s

n

to the group of invertible elements in B, determined by s

i

7! g

i

. Sin
e Krammer's

representation o

urs in B, this homomorphism is faithful. We prove that B is �nite

dimensional, and determine the group of type M on generators s

1

; : : : ; s

n

to the group of

invertible elements in B, determined by s

i

7! g

i

. Sin
e Krammer's representation o

urs in

B, this homomorphism is faithful. We prove that B is �nite dimensional, and determine the

stru
ture of I

1

=I

2

, where I

j

is the two sided ideal of B generated by all produ
ts e

i

1

; : : : ; e

i

j

with fi

1

; : : : ; i

j

g a 
o
lique of M . By the way B=I

1

is (
lose to) the He
ke algebra of type

M .

Genus Zero A
tions of Finite Groups

Daniel Frohardt

(joint work with R.M. Guralni
k and K. Magaard)

G is a genus g group [in 
hara
teristi
 0℄ if G is isomorphi
 to the monodromy group of

(X; �) where X is a 
ompa
t Riemann surfa
e of genus g and � : X ! P

1

C is a 
over.

The asso
iated permutation a
tion is a genus g a
tion of G.

In a 1990 paper in the Journal of Algebra, Guralni
k and Thompson 
onje
tured that

for every g � 0 there is a �nite set E

g


onsisting of the nonabelian �nite simple groups S

su
h that S is not an alternating group and S is a 
omposition fa
tor of a genus g group.

They also 
onje
tured that E

0

would be of ` manageable' size.

The �niteness of E

g

for all g has now been established by the 
ombined work of many

authors, 
ulminating in a 2001 paper by Frohardt and Magaard in Annals of Mathemati
s.

Current e�orts are dire
ted to �nding not only the pre
ise list of groups lying in E

0

but also all of the a
tions and generating tuples that lead to primitive genus 0 groups
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with 
lassi
al 
omposition fa
tors. In work that appears in the von Neumann Conferen
e

Pro
eedings (AMS, 2002), the authors did this for the groups of Lie rank 1. It is believed

that there are pre
isely 16 groups of larger Lie rank lying in E

0

, and that, in parti
ular, all

of the a
tions have degree smaller than 300.

The key ingredients in the analysis are 
ombining the Cau
hy-Frobenius formula with

the Riemann-Hurwitz formula, a 
areful analysis of the �xed point ratios of 
lassi
al groups

on 1-spa
es of their natural modules, and S
ott's Theorem on the size of the 
ommutators

of generators of matrix groups.

Groups a
ting on lo
ally re
ognizable graphs

Ralf Gramli
h

(joint work with A.M. Cohen and H. Cuypers)

A graph � is 
alled lo
ally homogeneous, if for any verti
es x; y 2 � we have �(x) ' �(y).

An example of a lo
ally homogeneous graph is the graph H

n

(F) on the nonin
ident point-

hyperplane pairs of the proje
tive spa
e of dimension n over the division ring F; the lo
al

stru
ture of H

n

(F) is isomorphi
 to H

n�1

(F).

Conversely, for suÆ
iently large n, any 
onne
ted graph that is lo
ally H

n

(F), is iso-

morphi
 to H

n+1

(F). This allows for a 
hara
terization of the group PSL

n+2

(F) using its

natural a
tion on the graph H

n+1

(F).

Generalizations to other graphs and groups are possible.

Genus Zero Groups in Positive Chara
teristi


Robert M. Guralni
k

Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0. Let X; Y be 
urves de�ned

over k and � : X ! Y , a separable rational map of degree n. We are interested in

determining the possibilities for the monodromy group G of the 
over if we �x g, the genus

of X. In 
hara
teristi
 0, mu
h progress has been made on this problem over the past 12

years. Until 1999, there had not been a single example of a simple group that 
ould be

eliminated as being a 
omposition fa
tor of su
h a group (even for g = 0).

We dis
uss the various methods used in redu
ing this problem to the 
ase of almost

simple groups { in
luding the Riemann-Hurwitz formula, the Tate module and �xed point

ratios. The main result we dis
uss is that if L is a type of Chevalley group (in parti
ular

has �xed rank), then the minimal genus of any group 
ontaining L(q) as a 
omposition

fa
tor grows linearly with q as long as q is not a power of p. Abhyankar has shown that

the 
lassi
al groups in 
hara
teristi
 p are genus zero groups. This gives strong eviden
e

for the 
onje
ture that there are only �nitely many 
ross 
hara
teristi
 groups of a given

genus.
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Amalgams determined by lo
ally proje
tive a
tions

Alexander A. Ivanov

(joint work with S.V. Shpe
torov and V.I. Tro�mov)

Let � be a regular tree of valen
y 2

n

� 1 for some n � 3 and G be a lo
ally �nite,

vertex-transitive automorphism group of �, su
h that for every edge fx; yg of � we have

G(x)=O

2

(G(x)) ' L

n

(2); Gfx; yg=O

2

(Gfx; yg \G(x)) ' L

n�1

(2)� 2

(where G(x) and Gfx; yg are stabilizers in G of the vertex x and the edge fx; yg, respe
-

tively). We show that the amalgam fG(x); Gfx; ygg either belongs to one of two in�nite

series asso
iated, respe
tively with the a
tion of AGL

n

(2) on the set of ve
tors in an n-

dimensional GF(2)-spa
e and with the a
tion of the orthogonal group O

+

2n

(2) on its dual

polar spa
e graph; or is one of twelve expli
itly des
ribed ex
eptional examples. For ea
h

of the ex
eptional examples we have n = 3; 4 or 5 and most of them are related one way

or another to 
ag-transitive Petersen geometries.

Groups of both even and p-type type

Inna Kor
hagina

(joint work with R. Lyons and R. Solomon)

and I.K.: The result is related to the part of 
lassi�
ation of �nite simple groups whi
h

deals with the 
hara
terization of groups of both even and p-types with e(G) = 3. For the

purpose of the talk, we 
onsider slightly modi�ed situation:

Theorem: Let G be a �nite simple K-proper group of simultaneously

~

2- and ~p-type

(where p is an odd prime). Suppose

that e(G) = m

2;p

(G) = 3 and the following 
onditions hold:

1. There exists a 2-lo
al subgroup H of G with m

p

(H) = 3 and F

�

(H) = O

2

(H); and

2. If z 2 G is an involution with m

p

(C

G

(z)) = 3, then F

z

:= F

�

(C

G

(z)) = O

2

(C

G

(z)).

Then the following hold:

1. p = 3;

2. There exists the unique 
lass of 2-
entral involutions z

G

with m

3

(C

G

(z)) = 3. More-

over, F

z

�

=

Q

l

8

where l 2 f3; 4g;

3. H = C

G

(t) for some t 2 z

G

; and

4. If B

�

=

E

27

is a subgroup of C

G

(z) and b 2 B is a nontrivial element with C

F

z

(b)

�

=

Q

2

8

,

then L

b

:= E(C

G

(b)) 6= 1 and is isomorphi
 to one of the following groups: PSp

4

(3), G

2

(3),

3

2

(U

4

(3)). Su
h b exist.

Moreover, if l = 3, then C

G

(z)=F

z

�

=




�

6

(2), L

b

�

=

3

2

U

4

(3) and G � Suz, while if l = 4,

then C

G

(z)=F

z

�

=

A

9

, L

b

�

=

G

2

(3) and G � Th.

Outer 
ontrol

Ross Lawther

Let G be a simple algebrai
 group over an algebrai
ally 
losed �eld. The 
onjuga
y 
lass

stru
ture of G is well understood, thanks to Jordan de
omposition and ni
e properties of


entralizers of semisimple elements. Now assume G has a non-trivial graph automorphism

� , and form the dis
onne
ted group hG; �i; in this talk we seek 
ontrol over the 
lass

stru
ture in the outer 
oset G:� . We �nd that there is a 
onstru
tion, beginning with root

systems and pro
eeding through root data, whi
h gives a group

�

G and a ma p � : T !

�

T
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of maximal tori, su
h that � indu
es a bije
tive 
orresponden
e between G-
lasses meeting

T:� and

�

G-
lasses meeting

�

T (i.e. semisimple 
lasses of

�

G); moreover, the 
orresponden
e

behaves well with respe
t to taking �xed points of appropriate Frobenius maps. In the 
ase

where the order of � is prime to the �eld 
hara
teristi
, ordinary Jordan de
omposition

may be applied to 
omplete the pi
ture; using Steinberg's notion of quasi-semisimpli
ity,

we 
onje
ture a generalized Jordan

de
omposition may be applied to 
omplete the pi
ture; using Steinberg's notion of quasi-

semisimpli
ity, we 
onje
ture a generalized Jordan de
omposition whi
h would 
over all


ases uniformly.

Bases for primitive permutation groups

Martin W. Liebe
k

(joint work with Y. Shalev)

Let G be a transitive permutation group on a �nite set 
 of size n. A subset B of 
 is a

base for G if its pointwise stabilizer in G is trivial. The minimal size of a base is denoted

by b(G). It is very easy to see that

log

2

jGj � b(G) � log jGj= logn:

Pyber 
onje
tured that there is a 
onstant 
 su
h that for any primitive group G we have

b(G) < 
 log jGj= logn. Seress has shown that it suÆ
es to prove this for G either almost

simple or of aÆne type.

For G almost simple, Liebe
k and Shalev have proved that either b(G) < 
, or F

�

(G)

is an alternating group a
ting on an orbit of subsets or partitions, or F

�

(G) is a 
lassi
al

group a
ting on an orbit of subspa
es. In the latter two 
ases, Benbenishty has shown tha

t b(G) < 3 log jGj= logn.

For the aÆne 
ase, Liebe
k and Shalev have proved the following: if H < GL(V ) is irre-

du
ible and primitive (as a linear group), then either b(H) < 
, or b(H) < 18 log jHj= logn+

27 (where b(H) is the minimal base size for the a
tion of H on ve
tors). However, the im-

primitive linear 
ase of the 
onje
ture remains open.

Finite groups of lo
al 
hara
teristi
 p

Ulri
h Meierfrankenfeld

(joint work with B. Baumeister, A. Chermak, A. Hirn, M. Mainardis,

C.W. Parker, G. Parmeggiani, P. Rowley, B. Stellma
her and G. Stroth)

Let p be a prime and G a �nite group. G is of 
hara
teristi
 p if C

G

(O

p

(G)) � O

p

(G).

And G is of lo
al 
hara
teristi
 p if every p-lo
al subgroup of G is of 
hara
teristi
 p.

In my talk I des
ribed the 
urrent status of the proje
t to understand and 
lassify the

�nite groups of lo
al 
hara
teristi
 p. This proje
t is joint work with Barbara Baumeister,

Andy Chermak, Andreas Hirn, Mario Mainardis, Chris Parker, Gemma Parmeggiani, Peter

Rowley, Bernd Stellma
her and Gernot Stroth.
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Moufang buildings

Bernhard M

�

uhlherr

In this talk the 
lassi�
ation of 2-spheri
al Moufang buildings with no small residues

was des
ribed.

By a generalization of the Curtis-Tits theorem any su
h building is determined by its

lo
al stru
ture, whi
h is a Moufang foundation. Hen
e the 
lassi�
ation redu
es to the


lassi�
ation of the Moufang foundations and a 
riterion for de
iding whether a given

Moufang foundation is integrable (i.e. the lo
al part of a Moufang building).

The �rst problem redu
es to the isomorphism problem of Moufang sets whi
h are residues

in Moufang polygons. This is dealt by using Jordan algebras.

The se
ond question is answered �rst in the rank 3 
ase and then we use a rank 3


riterion.

A 5-lo
al identi�
ation of the Lyons sporadi
 group

Christopher W. Parker

In this talk I brie
y 
onsidered how K-groups of lo
al 
hara
teristi
 p will be identi�ed

when p is an odd prime. It is expe
ted that most of these groups will be identi�ed via

the geometry of their p-lo
al subgroups. However, when the group doesn't have a sim-

ply 
onne
ted geometry (for example when the rank is 2), di�erent methods need to be

exploited.

Using the Lyons sporadi
 simple group as an example, I demonstrated how the lo
al


hara
teristi
 p property and the existen
e of an elementary abelian subgroup of order

p

2

in the 
entralizer of some involution 
an be used to determine the 
entralizer of an

involution. Using this information the group is identi�ed.

Permutation groups and normal subgroups

Cheryl E. Praeger

Primitive and quasiprimitive groups were proposed as alternative 
hoi
es for `basi
'

�nite permutation groups. Di�erent 
hoi
es are required in di�erent appli
ations. The

stru
ture of the two 
lasses, their overgroups, and appli
ations to edge-transitive graphs

were dis
ussed, together with several new results about �nite simple groups.

This le
ture was a repeat of an invited le
ture presented last week at the ICM2002 in

Beijing.

Normalizers of primitive groups

Laszlo Pyber

(joint work with M. Ab�ert and R.M. Guralni
k)

We dis
uss the following

Theorem: Let G be a primitive subgroup of S

n

and N its normalizer in S

n

. Then

jN=Gj � n� 1 if n � n

0

. In fa
t we have jOut(G)j � n� 1 for large n.

The statement of the theorem does not hold for n 2 f81; 6561; 43046721g.
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Ex
eptionality

Jan Saxl

Let A be a primitive permutation group on the �nite setX, letG be a normal subgroup of

A. At present we assume that A=G is 
y
li
. We say that the triple (A;G;X) is ex
eptional

if no non-diagonal G-orbit on X � X is A-invariant. In a joint work with Guralni
k and

Muller, we obtained a 
lassi�
ation of ex
eptional triples.

Ex
eptional triples 
ame up in the work with Fried and Guralni
k on ex
eptional poly-

nomials. A slightly more general situation arose in our paper with Guralni
k and Muller,

where we 
onsidered a variation on a problem of S
hur and investigated rational fun
tions

whi
h give rise to a bije
tion on in�nitely many residue �elds.

Other appli
ations are 
on
erned with homogeneous partitions of 
omplete graphs, and

with line-transitive linear spa
es.

Maximal subgroups of algebrai
 groups of ex
eptional type

Gary Seitz

(joint work with M.W. Liebe
k)

Let G be a simple algebrai
 group of ex
eptional type over an algebrai
ally 
losed �eld.

Martin Liebe
k and I have determined the maximal subgroups of G having positive dimen-

sion. We make no assumption on the 
hara
teristi
 of the underlying �eld, thus 
ompleting

the 
lassi�
ation whi
h began with Dynkin (
har 0) and followed by Seitz (
har p > 7).

We also show how tilting modules and 
erta in variants appear naturally in the restri
tions

of the adjoint module of G to maximal subgroups.

Primitive groups of squarefree degree

�

Akos Seress

(joint work with Cai Heng Li)

We 
lassify all primitive groups of squarefree degree, and all primitive groups of square-

free degree that 
ontain a regular subgroup. Appli
ations of these results are the determi-

nation of all vertex-primitive non-Cayley graphs of squarefree order, all vertex-primitive

Cayley graphs of squarefree order, and all Burnside groups of squarefree order. (A group

is 
alled a Burnside group if all primitive groups 
ontaining it as a regular subgroup are

2-transitive.)

On Curtis-Tits amalgams

Sergey V. Shpe
torov

(joint work with J. Dunlap)

While reproving the �rst Phan's theorem, C. Bennett and the speaker had to deal with

the problem of the uniqueness of the related group amalgam. In dealing with the problem

we introdu
ed a method that may have mu
h more general appli
ations. In parti
ular, at

present speaker's Ph.D. student J. Dunlap is applying this method to the amalgams arising

in the Curtis-Tits theorem. Although the uniqueness of those amalgams 
an be obtained
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indire
tly using work of F. Timmesfeld and J. Tits' 
lassi�
ation of spheri
al buildings, the

results of Dunlap will be the �rst dire
t proof of the uniqueness.

In the talk we dis
ussed our proof of Phan's theorem and how it works in the Curtis-Tits

situation.

Chara
terizations of Lie in
iden
e geometries by a 
lass of maximal

singular subspa
es

Ernest Shult

Throughout � is a parapolar spa
e and M is a 
lass of maximal singleton subspa
es

su
h that every line is a member of M.

Theorem 1: Suppose the following:

1. For every point x 2 P �M;M 2 M: (i) x

?

\M has �nite proje
tive dimension and

(ii) if y 2 x

?

�M , y

?

\M properly 
ontained in x

?

\M implies y

?

\M = ;.

2. There is a pair (p;M) 2 P �M, p not in M su
h that p

?

\M 
ontains a plane, and

M has �nite proje
tive rank.

Then � is a polar spa
e or a homomorphi
 image of a half-spin geometry.

Theorem 2: Suppose some line lies in two members of M, and some member of M has

�nite rank. For (p;M) 2 P �M with p 2 P �M , p

?

\M is empty or is a line.

Then � is a polar spa
e or a Grassmannian of d-spa
es of a ve
tor spa
e V , d > 1 (dimV

need not be �nite), or � ' A

2n�1

=h�i, where � is a polarity of Witt index at most n� 5.

A similar theorem for whi
h x

?

\M = ;, a point or a PG(d); d � 3 when (x;M) 2 P�M

and x 2 P �M , implies d = 3 and � is a homomorphi
 image of a building with diagram

Y

2;1;m

, m � 1, or else � is a polar spa
e.

Conne
tions of �nite group geometries with algebrai
 topology

Stephen D. Smith

Algebrai
 topologists, espe
ially those working in 
ohomology of �nite groups, are in-


reasingly using (in e�e
t) group geometries and related te
hniques { for similar as well as

di�erent reasons from the ones we are familiar with.

The talk gives an informal survey of progress in several a
tive areas:

1. Expli
it 
omputation of 
ohomology for sporadi
 groups (Adem, Milgram, Tezuka,

Yagita and others).

2. \Homology approximations" (Webb, Dwyer, Grodal and others); appli
ations (Ryba,

Smith, Yoshiara, Sawabe).

3. Topologi
al 
onstru
tions modelling �nite group aspe
t - \p-lo
al �nite groups"

(Oliver, Grodal and others).

4. Group a
tions { developments 
ontinuing the spirit of P.A. Smith theory { a
tions

on spa
es of pres
ribed homology, with restri
tions on �xed points, e.g. results of Oliver,

Segev.
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Generalized hexagons regularly embedded in a proje
tive spa
e

Anja Steinba
h

(joint work with H. Van Maldeghem)

For a generalized hexagon �, we de�ned a regular embedding in a proje
tive spa
e (over

a skew �eld).

It turns out that � admits a regular embedding in P(V ) if and only if � is Moufang

with its little proje
tive group indu
ed by GL(V ) su
h that [V;A℄ is 2-dimensional and

[[V;A℄; A℄ = 0, for any long root subgroup A.

Using the 
lassi�
ation of Moufang hexagons due to Tits and Weiss, regular embeddings

have been 
lassi�ed 
ompletely:

For the hexagons of type G

2

and

3

D

4

,

6

D

4

, there is a unique embedding (in orthogonal

spa
e). But for the hexagons of mixed type G

2

in 
hara
teristi
 3, we found several new

embeddings (in unbounded dimension), whi
h are quotients of some universal embedding.

Split BN-pairs of rank 2

Katrin Tent

If G is a group with a split BN -pair of rank 2 (i.e. there is a nilpotent U C B with

B = U(B \N)) then G is a group of Lie type.

The proof uses the geometri
 interpretation of su
h a BN -pair as a generalized polygon.

This generalizes the 
orresponding result for �nite groups due to Fong and Seitz, and easily

extends to split BN -pairs of rank � 2.

Parts of this are joint work with H. Van Maldeghem and B. M�uhlherr, respe
tively.

Low dimensional representations of �nite quasisimple groups and

appli
ations

Pham Huu Tiep

Re
ently there has been 
onsiderable interest in �nding the smallest degree d

l

(G) of

faithful irredu
ible representations of �nite quasisimple groups G in 
hara
teristi
 l, and in


lassifying representations of G of degree less than (d

l

(G))

2�"

. We report on re
ent results


on
erning this problem.

In the 
ase of G =

b

A

n

(and

b

S

n

), the results are joint with Klesh
hev, and these results

have allowed us to make substantial progress on (i) des
ribing modular spin representations

of G that are irredu
ible over a proper subgroup, and (ii) proving that in general the tensor

produ
t of modular representations of G are redu
ible if l 6= 2; 3. The results on SL

n

(q)

and Sp

2n

(q), q even, are joint with Guralni
k; and the results on SU

n

(q) and Sp

2n

(q), q

odd, are joint with Guralni
k, Magaard and Saxl.

We outline the main ideas behind the proofs, in
luding results using Deligne-Lusztig

theory, study of lo
al properties, gluing method. We also dis
uss some re
ent appli
ations,

in
luding (i) a new approa
h to k(GV )-problem and (ii) Larsen's 
onje
ture (joint work

with Guralni
k).
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The Curtis Tits presentation

Franz Georg Timmesfeld

Let B be an irredu
ible spheri
al Moufang building of rank l � 2 with root system �

and fundamental system �. For ea
h r 2 � let A

r

be the root-group 
orresponding to r

(in the sense of Tits), X

r

:= hA

r

; A

�r

i and let G := hA

r

j r 2 �i � Aut(B). For r 6= s 2 �

let X

rs

:= hX

r

; X

s

i. Then the following is known as Curtis-Tits presentation of G:

Let

b

G be the amalgamated produ
t of the X

rs

; r; s 2 �, amalgamated over the X

r

,

r 2 �. Then

b

G is a perfe
t 
entral extension of G.

Now in this generality there is no proof for this theorem in the literature. In my talk I

presented the following

Theorem: Let � and � be as above and let G be a group generated by rank one groups

X

r

, r 2 �, satisfying:

(1) [X

r

; X

s

℄ = 1 if r and s are not 
onne
ted in the Dynkindiagram � of �.

(2) If r; s 2 � are 
onne
ted in �, then there exists a surje
tive homomorphism

' : hX

r

; X

s

i ! R

rs

, where R

rs

is a group of Lie type of rank two in the above sense,

with ker' � Z(hX

r

; X

s

i), mapping A

�r

and A

�s

onto 
orresponding fundamental root

groups of R

rs

.

Then G is a perfe
t 
entral extension of a group of Lie type B in the above sense.

This theorem 
ontains the Curtis Tits presentation as a spe
ial 
ase.

AÆne Moufang buildings

Hendrik Van Maldeghem

(joint work with B. M�uhlherr)

In this talk we 
omment on some diÆ
ulties arising in the proof of the following

Theorem: All Moufang buildings of type

e

C

2

are known.

We point out the equivalen
e of a Moufang building of type

e

C

2

with valuations on root

groups of Moufang quadrangles satisfying 
ertain 
onditions. We then address the question

of how to identify the lo
al

In this talk we 
omment on some diÆ
ulties arising in the proof of the following

Theorem: All Moufang buildings of type

e

C

2

are known.

We point out the equivalen
e of a Moufang building of type

e

C

2

with valuations on root

groups of Moufang quadrangles satisfying 
ertain 
onditions. We then address the question

of how to identify the lo
al stru
ture of the

e

C

2

-building.

The general 
urve 
overs P

1

with monodromy group A

n

Helmut V

�

olklein

(joint work with Gerhard Frey and Kay Magaard)

Let C be a general 
urve of genus g � 2. Then C has a 
over to P

1

of degree n if and

only if 2(n� 1) � g. This is a 
lassi
al fa
t of algebrai
 geometry. If C has a 
over to P

1

of degree n then there is su
h a 
over that is simple, i.e., has monodromy group S

n

and

all inertia groups are generated by transpositions. The question arises whether C admits

other types of 
overs to P

1

.

If there is a 
over C ! P

1

bran
hed at r points of P

1

then r � 3g. Zariski used this to

show that if g > 6 then there is no su
h 
over with solvable monodromy group.

11



The 
ondition r � 3g was further used by Guralni
k and various 
o-authors to restri
t

the possibilities for the monodromy group. Let C ! P

1

be a 
over of degree n. Its

monodromy group G is a transitive subgroup of S

n

. If G is a primitive subgroup and g � 4

then G = S

n

or G = A

n

.

It was not known whether the 
ase G = A

n

a
tually o

urs. This is answered to the

positive in this talk.

The 
lassi�
ation of thi
k irredu
ible spheri
al buildings of rank at

least three

Ri
hard Weiss

(joint work with J. Tits)

The 
lassi�
ation of Moufang polygons 
an be used to give a new proof of the 
lassi�
a-

tion of thi
k irredu
ible spheri
al buildings of rank at least three. Let � be su
h a building.

It is a 
onsequen
e of 4.1.2 of Tits' Le
ture Notes that � is Moufang. Hen
e ea
h residue

of rank two is a Moufang polygon and therefore determined by a \root group sequen
e," a


ertain sequen
e of root groups of �. It follows that the building � is uniquely determined

by a \root group labeling" of the Coxeter diagram � of � whi
h 
onsists of labellings

whi
h assign

(i) to ea
h vertex u of � a group �(u),

(ii) to ea
h dire
ted edge (u; v) of � the root group sequen
e �

uv

asso
iated with the

residue of type fu; vg of � 
ontaining a �xed 
hamber 
 so that �

vu

is the sequen
e

�

uv

in reverse order and

(iii) to ea
h dire
ted edge (u; v) of � an isomorphism �

uv

from �(u) to the �rst term of

�

uv

.

We des
ribe a proof of the 
lassi�
ation of thi
k irredu
ible spheri
al buildings of rank

at least three based on the 
lassi�
ation of Moufang polygons and the 
on
ept of a root

group labelled Coxet er diagram. For details see J.Tits & R.Weiss, \Moufang Polygons,"

Springer, 2002.

Minimal polynomials of elements of prime order in 
omplex

representations of quasi-simple groups

Alexandre E. Zalesskii

Let G be a quasi-simple group and g 2 G be an element of prime order p. We list all


omplex irredu
ible representations ' of G su
h that the number of distin
t eigenvalues of

'(g) is stri
tly less than p.

Edited by Sergei Haller
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