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The meeting Groups and Geometries centered around simple groups, building geometry
and their interaction. One central topic of this meeting was the new classification proof of
(simple) groups of characteristic p-type proposed by U. Meierfrankenfeld, B. Stellmacher
and G. Stroth. The whole Monday morning (and some additional talks) were devoted to
this subject, with an introductory lecture of 90 minutes given by U. Meierfrankenfeld.

One further central topic of the conference were applications of the classification of the
finite simple groups to other branches of mathematics. Here the talk of B. Guralnick on
Genus Zero Groups in Positive Characteristic, in which the classification was applied to
algebraic geometry, should be mentioned.

Finally the theory of Moufang buildings has, thanks to the classification of Moufang
polygons by J. Tits and R. Weiss, taken a new boom. For this reason Tuesday afternoon
was completely devoted to Moufang buildings and the corresponding groups.



Abstracts

Small modules for groups of Lie type
BARBARA BAUMEISTER
(joint work with U. Meierfrankenfeld)

In the talk we discuss quadratic modules for the groups of Lie type in the defining
characteristic. We prove

Theorem: Let M be a quotient of “Gg(K), 0 < p = char K, V an irreducible, faithful
GF(p)M-module, D < M, |D| > 2 a p-subgroup and A < Z(D) such that M = (AM)D,
[V,A,D] =0, |®p| > 2. Then (M,V) are members of some well-known list.

There are the results of Thompson (p > 5), Premet & Suprunenko (p # 2) and Stroth
& Englund (p = 2) on quadratic modules. We give a uniform proof for all primes which
is based on the result of Curtis, that every irreducible module V'(\), A p-restricted, for a
group of Lie type, is also an irreducible module for the related Lie algebra.

Black Box Groups and the Andrews-Curtis Conjecture
ALEXANDRE V. BOROVIK
(joint work with E.I. Khukhro, A. Lubotzky and A.G. Myasnikov)

Experimental evidence suggests that the problem of generation of random elements in a
normal subgroup of a black box group can be efficiently solved by a version of the product
replacement algorithm. From the theoretical point of view, this algorithm is a random
walk over a certain graph associated with the group and its normal subgroup. The graph
can be defined for infinite groups, and in the case of the free group viewed as a normal
subgroup of itself, the well-known Andrews-Curtis Conjecture theoretical point of view,
this algorithm is a random walk over a certain graph associated with the group and its
normal subgroup. The graph can be defined for infinite groups, and in the case of the free
group viewed as a normal subgroup of itself, the well-known Andrews-Curtis Conjecture
says that the graph is connected. The talk discusses approaches to the Andrews-Curtis
Conjecture via finite group theory and possible implications for the theory of black box
finite groups.

Groups of rank 2 in local characteristic p
ANDREW CHERMAK
(joint work with U. Meierfrankenfeld)

Part of the Meierfrankenfeld program for understanding groups of local characteristic p
concerns the case where G contains a pair (P, f’) of minimal parabolic subgroups over a
fixed Sylow p-subgroup S, such that O,((P, P)) = 1. This talk consisted of a report on
progress on this case.

Theorem: Set Z = Q,(Z(S)) and assume that [Z, P] # 1 # [Z, P]. Assume also that
YpYp is normal in neither P nor P. Then one of the following holds:

1. p=2and F*(G) ~ L3(2"), Sp(4,2"), Ag or Myg,

2. p=3 and (P, P) determines a weak BN-pair of type G5(3"),



3. pis odd and O (P) ~ O¥(P) is of the formp®” : SL(2, p").

(The condition on YpYj in the statement of the Theorem may be dropped, once the
“Pushing Up Theorem” of Meierfrankenfeld is complete.) One may therefore assume,
henceforth, that [Z, P] # 1 and [Z, P] = 1.

The remainder of the report consisted in explaining how other parts of the Meierfranken-
feld program (the Theorems called E!, P!, and the Structure Theorem) provide the nec-
essary background information from which to complete the classification (in characteristic
2) or the determination of p-local structure (in odd characteristic) of the rank-2 groups.

Artin groups, their representations and BMW algebras
ARJEH M. COHEN
(joint work with D. Gijsbers and D. Wales)

Let M be a spherical Coxeter diagram of type A, D, E and of rank n. The BMW algebra
of type M (where B=Birman, M=Murahami, W=Wenzl) is the algebra B over Z[I*, m*]
generated by g¢i,..., g, subject to the relations

(BL) gigj = g;9: if i # j,

(B2) 9i9;9: = g59i9; if i ~ j,

) ei :=m~(g? +mg; — 1),
(R,l) gi€; = l_lei,

) eigje; = le; when i ~ j.

For M = A, this gives the known BMW algebra, corresponding to the braid group
on n braids. There is a homomorphism from the Artin group of type M on generators
S1,...,Sp to the group of invertible elements in B, determined by s; — ¢;. Since Krammer’s
representation occurs in B, this homomorphism is faithful. We prove that B is finite
dimensional, and determine the group of type M on generators sq,...,s, to the group of
invertible elements in B, determined by s; — ¢;. Since Krammer’s representation occurs in
B, this homomorphism is faithful. We prove that B is finite dimensional, and determine the
structure of I, /I, where I is the two sided ideal of B generated by all products e;,, ..., e;
with {i1,...,7;} a coclique of M. By the way B/I; is (close to) the Hecke algebra of type
M.

Genus Zero Actions of Finite Groups
DANIEL FROHARDT
(joint work with R.M. Guralnick and K. Magaard)

G is a genus g group [in characteristic 0] if G is isomorphic to the monodromy group of
(X, ¢) where X is a compact Riemann surface of genus g and ¢ : X — P'C is a cover.
The associated permutation action is a genus g action of G.

In a 1990 paper in the Journal of Algebra, Guralnick and Thompson conjectured that
for every g > 0 there is a finite set £, consisting of the nonabelian finite simple groups S
such that S is not an alternating group and S is a composition factor of a genus g group.
They also conjectured that & would be of © manageable’ size.

The finiteness of &, for all g has now been established by the combined work of many
authors, culminating in a 2001 paper by Frohardt and Magaard in Annals of Mathematics.

Current efforts are directed to finding not only the precise list of groups lying in &,
but also all of the actions and generating tuples that lead to primitive genus 0 groups



with classical composition factors. In work that appears in the von Neumann Conference
Proceedings (AMS, 2002), the authors did this for the groups of Lie rank 1. It is believed
that there are precisely 16 groups of larger Lie rank lying in &y, and that, in particular, all
of the actions have degree smaller than 300.

The key ingredients in the analysis are combining the Cauchy-Frobenius formula with
the Riemann-Hurwitz formula, a careful analysis of the fixed point ratios of classical groups
on 1-spaces of their natural modules, and Scott’s Theorem on the size of the commutators
of generators of matrix groups.

Groups acting on locally recognizable graphs
RALF GRAMLICH
(joint work with A.M. Cohen and H. Cuypers)

A graph T is called locally homogeneous, if for any vertices x,y € T we have I'(z) ~ I'(y).
An example of a locally homogeneous graph is the graph H,(IF) on the nonincident point-
hyperplane pairs of the projective space of dimension n over the division ring FF; the local
structure of H, () is isomorphic to H,_ (F).

Conversely, for sufficiently large n, any connected graph that is locally H,(F), is iso-
morphic to H,1(F). This allows for a characterization of the group PSL,,o(F) using its
natural action on the graph H, ().

Generalizations to other graphs and groups are possible.

Genus Zero Groups in Positive Characteristic
ROBERT M. GURALNICK

Let k£ be an algebraically closed field of characteristic p > 0. Let X, Y be curves defined
over k and ¢ : X — Y, a separable rational map of degree n. We are interested in
determining the possibilities for the monodromy group G of the cover if we fix g, the genus
of X. In characteristic 0, much progress has been made on this problem over the past 12
years. Until 1999, there had not been a single example of a simple group that could be
eliminated as being a composition factor of such a group (even for g = 0).

We discuss the various methods used in reducing this problem to the case of almost
simple groups — including the Riemann-Hurwitz formula, the Tate module and fixed point
ratios. The main result we discuss is that if L is a type of Chevalley group (in particular
has fixed rank), then the minimal genus of any group containing L(g) as a composition
factor grows linearly with ¢ as long as ¢ is not a power of p. Abhyankar has shown that
the classical groups in characteristic p are genus zero groups. This gives strong evidence
for the conjecture that there are only finitely many cross characteristic groups of a given
genus.



Amalgams determined by locally projective actions
ALEXANDER A. IvANOV
(joint work with S.V. Shpectorov and V.I. Trofimov)

Let T" be a regular tree of valency 2" — 1 for some n > 3 and G be a locally finite,
vertex-transitive automorphism group of T, such that for every edge {z,y} of ' we have

G(2)/0(G(2)) ~ Ln(2),  G{x,y}/O2(G{x, y} N G(x)) > Ln_1(2) x 2

(where G(z) and G{z,y} are stabilizers in G of the vertex x and the edge {z,y}, respec-
tively). We show that the amalgam {G(z), G{z,y}} either belongs to one of two infinite
series associated, respectively with the action of AGL,(2) on the set of vectors in an n-
dimensional GF(2)-space and with the action of the orthogonal group O (2) on its dual
polar space graph; or is one of twelve explicitly described exceptional examples. For each
of the exceptional examples we have n = 3,4 or 5 and most of them are related one way
or another to flag-transitive Petersen geometries.

Groups of both even and p-type type
INNA KORCHAGINA
(joint work with R. Lyons and R. Solomon)

and [.LK.: The result is related to the part of classification of finite simple groups which
deals with the characterization of groups of both even and p-types with e(G) = 3. For the
purpose of the talk, we consider slightly modified situation:

Theorem: Let G be a finite simple K-proper group of simultaneously 2- and p-type
(where p is an odd prime). Suppose

that e(G) = may,(G) = 3 and the following conditions hold:

1. There exists a 2-local subgroup H of G with m,(H) =3 and F*(H) = Oy(H); and

2. If z € G is an involution with m,(Cs(2)) = 3, then F, := F*(Cg(2)) = O2(Cq(2)).

Then the following hold:

1. p=3;

2. There exists the unique class of 2-central involutions 2% with m3(Cg(2)) = 3. More-
over, F, & QL where [ € {3,4};

3. H = Cg(t) for some t € 2; and

4. If B & Ey; is a subgroup of Cg(z) and b € B is a nontrivial element with Cr, (b) & Q32,
then L, := E(Cg(b)) # 1 and is isomorphic to one of the following groups: PSp4(3), G2(3),
35(U4(3)). Such b exist.

Moreover, if [ = 3, then Cg(2)/F, = Qg (2), Ly = 32U4(3) and G ~ Suz, while if | = 4,
then Cq(2)/F, = Ay, Ly, = G5(3) and G ~ Th.

Outer control
Ross LAWTHER

Let G be a simple algebraic group over an algebraically closed field. The conjugacy class
structure of GG is well understood, thanks to Jordan decomposition and nice properties of
centralizers of semisimple elements. Now assume G has a non-trivial graph automorphism
7, and form the disconnected group (G, 7); in this talk we seek control over the class
structure in the outer coset GG.7. We find that there is a construction, beginning with root
systems and proceeding through root data, which gives a group G and amap ¢ : T — T



of maximal tori, such that ¢ induces a bijective correspondence between G-classes meeting
T.7 and G-classes meeting T (i.e. semisimple classes of G'); moreover, the correspondence
behaves well with respect to taking fixed points of appropriate Frobenius maps. In the case
where the order of 7 is prime to the field characteristic, ordinary Jordan decomposition
may be applied to complete the picture; using Steinberg’s notion of quasi-semisimplicity,
we conjecture a generalized Jordan

decomposition may be applied to complete the picture; using Steinberg’s notion of quasi-
semisimplicity, we conjecture a generalized Jordan decomposition which would cover all
cases uniformly.

Bases for primitive permutation groups
MARTIN W. LIEBECK
(joint work with Y. Shalev)

Let G be a transitive permutation group on a finite set {2 of size n. A subset B of 2 is a
base for G if its pointwise stabilizer in G is trivial. The minimal size of a base is denoted
by b(G). Tt is very easy to see that

log, |G| < b(G) < log |G|/ logn.

Pyber conjectured that there is a constant ¢ such that for any primitive group G' we have
b(G) < clog|G|/logn. Seress has shown that it suffices to prove this for G either almost
simple or of affine type.

For G almost simple, Liebeck and Shalev have proved that either b(G) < ¢, or F*(G)
is an alternating group acting on an orbit of subsets or partitions, or F*(G) is a classical
group acting on an orbit of subspaces. In the latter two cases, Benbenishty has shown tha
t b(G) < 3log |G|/ logn.

For the affine case, Liebeck and Shalev have proved the following: if H < GL(V) is irre-
ducible and primitive (as a linear group), then either b(H) < ¢, or b(H) < 18log |H|/logn+
27 (where b(H) is the minimal base size for the action of H on vectors). However, the im-
primitive linear case of the conjecture remains open.

Finite groups of local characteristic p
ULRICH MEIERFRANKENFELD

(joint work with B. Baumeister, A. Chermak, A. Hirn, M. Mainardis,
C.W. Parker, G. Parmeggiani, P. Rowley, B. Stellmacher and G. Stroth)

Let p be a prime and G a finite group. G is of characteristic p if C(O,(G)) < O,(G).
And G is of local characteristic p if every p-local subgroup of G is of characteristic p.
In my talk I described the current status of the project to understand and classify the
finite groups of local characteristic p. This project is joint work with Barbara Baumeister,
Andy Chermak, Andreas Hirn, Mario Mainardis, Chris Parker, Gemma Parmeggiani, Peter
Rowley, Bernd Stellmacher and Gernot Stroth.



Moufang buildings
BERNHARD MUHLHERR

In this talk the classification of 2-spherical Moufang buildings with no small residues
was described.

By a generalization of the Curtis-Tits theorem any such building is determined by its
local structure, which is a Moufang foundation. Hence the classification reduces to the
classification of the Moufang foundations and a criterion for deciding whether a given
Moufang foundation is integrable (i.e. the local part of a Moufang building).

The first problem reduces to the isomorphism problem of Moufang sets which are residues
in Moufang polygons. This is dealt by using Jordan algebras.

The second question is answered first in the rank 3 case and then we use a rank 3
criterion.

A 5-local identification of the Lyons sporadic group
CHRISTOPHER W. PARKER

In this talk I briefly considered how K-groups of local characteristic p will be identified
when p is an odd prime. It is expected that most of these groups will be identified via
the geometry of their p-local subgroups. However, when the group doesn’t have a sim-
ply connected geometry (for example when the rank is 2), different methods need to be
exploited.

Using the Lyons sporadic simple group as an example, I demonstrated how the local
characteristic p property and the existence of an elementary abelian subgroup of order
p? in the centralizer of some involution can be used to determine the centralizer of an

involution. Using this information the group is identified.

Permutation groups and normal subgroups
CHERYL E. PRAEGER

Primitive and quasiprimitive groups were proposed as alternative choices for ‘basic’
finite permutation groups. Different choices are required in different applications. The
structure of the two classes, their overgroups, and applications to edge-transitive graphs
were discussed, together with several new results about finite simple groups.

This lecture was a repeat of an invited lecture presented last week at the ICM2002 in
Beijing.

Normalizers of primitive groups
LASzrLO PYBER
(joint work with M. Abért and R.M. Guralnick)

We discuss the following

Theorem: Let G be a primitive subgroup of S, and N its normalizer in S,,. Then
IN/G| <n—1if n > ng. In fact we have |Out(G)| < n — 1 for large n.

The statement of the theorem does not hold for n € {81, 6561, 43046721}.



Exceptionality
JAN SAXL

Let A be a primitive permutation group on the finite set X, let G be a normal subgroup of
A. At present we assume that A/G is cyclic. We say that the triple (A, G, X) is exceptional
if no non-diagonal G-orbit on X x X is A-invariant. In a joint work with Guralnick and
Muller, we obtained a classification of exceptional triples.

Exceptional triples came up in the work with Fried and Guralnick on exceptional poly-
nomials. A slightly more general situation arose in our paper with Guralnick and Muller,
where we considered a variation on a problem of Schur and investigated rational functions
which give rise to a bijection on infinitely many residue fields.

Other applications are concerned with homogeneous partitions of complete graphs, and
with line-transitive linear spaces.

Maximal subgroups of algebraic groups of exceptional type
GARY SEITZ
(joint work with M.W. Liebeck)

Let GG be a simple algebraic group of exceptional type over an algebraically closed field.
Martin Liebeck and I have determined the maximal subgroups of GG having positive dimen-
sion. We make no assumption on the characteristic of the underlying field, thus completing
the classification which began with Dynkin (char 0) and followed by Seitz (char p > 7).
We also show how tilting modules and certa in variants appear naturally in the restrictions
of the adjoint module of G’ to maximal subgroups.

Primitive groups of squarefree degree
AKOSs SERESS
(joint work with Cai Heng Li)

We classify all primitive groups of squarefree degree, and all primitive groups of square-
free degree that contain a regular subgroup. Applications of these results are the determi-
nation of all vertex-primitive non-Cayley graphs of squarefree order, all vertex-primitive
Cayley graphs of squarefree order, and all Burnside groups of squarefree order. (A group
is called a Burnside group if all primitive groups containing it as a regular subgroup are
2-transitive.)

On Curtis-Tits amalgams
SERGEY V. SHPECTOROV
(joint work with J. Dunlap)

While reproving the first Phan’s theorem, C. Bennett and the speaker had to deal with
the problem of the uniqueness of the related group amalgam. In dealing with the problem
we introduced a method that may have much more general applications. In particular, at
present, speaker’s Ph.D. student J. Dunlap is applying this method to the amalgams arising
in the Curtis-Tits theorem. Although the uniqueness of those amalgams can be obtained



indirectly using work of F. Timmesfeld and J. Tits’ classification of spherical buildings, the
results of Dunlap will be the first direct proof of the uniqueness.

In the talk we discussed our proof of Phan’s theorem and how it works in the Curtis-Tits
situation.

Characterizations of Lie incidence geometries by a class of maximal
singular subspaces

ERNEST SHULT

Throughout I' is a parapolar space and M is a class of maximal singleton subspaces
such that every line is a member of M.

Theorem 1: Suppose the following:

1. For every point z € P — M, M € M: (i) z- N M has finite projective dimension and
(ii) if y € 2+ — M, y* N M properly contained in - N M implies y= N M = ().

2. There is a pair (p, M) € P x M, p not in M such that p* N M contains a plane, and
M has finite projective rank.

Then I' is a polar space or a homomorphic image of a half-spin geometry.

Theorem 2: Suppose some line lies in two members of M, and some member of M has
finite rank. For (p, M) € P x M with p € P — M, p- N M is empty or is a line.

Then T is a polar space or a Grassmannian of d-spaces of a vector space V, d > 1 (dim V'
need not be finite), or I' ~ Ay, 1/(0), where o is a polarity of Witt index at most n — 5.

A similar theorem for which z-NM = (), a point or a PG(d),d > 3 when (z, M) € PxM
and x € P — M, implies d = 3 and IT" is a homomorphic image of a building with diagram
Y5.1,m, m > 1, or else I'' is a polar space.

Connections of finite group geometries with algebraic topology
STEPHEN D. SMITH

Algebraic topologists, especially those working in cohomology of finite groups, are in-
creasingly using (in effect) group geometries and related techniques — for similar as well as
different reasons from the ones we are familiar with.

The talk gives an informal survey of progress in several active areas:

1. Explicit computation of cohomology for sporadic groups (Adem, Milgram, Tezuka,
Yagita and others).

2. “Homology approximations” (Webb, Dwyer, Grodal and others); applications (Ryba,
Smith, Yoshiara, Sawabe).

3. Topological constructions modelling finite group aspect - “p-local finite groups”
(Oliver, Grodal and others).

4. Group actions — developments continuing the spirit of P.A. Smith theory — actions
on spaces of prescribed homology, with restrictions on fixed points, e.g. results of Oliver,
Segev.



Generalized hexagons regularly embedded in a projective space
ANJA STEINBACH
(joint work with H. Van Maldeghem)

For a generalized hexagon T', we defined a regular embedding in a projective space (over
a skew field).

It turns out that ' admits a regular embedding in P(V') if and only if T' is Moufang
with its little projective group induced by GL(V') such that [V, A] is 2-dimensional and
[V, A], A] = 0, for any long root subgroup A.

Using the classification of Moufang hexagons due to Tits and Weiss, regular embeddings
have been classified completely:

For the hexagons of type Gy and 3Dy, 5Dy, there is a unique embedding (in orthogonal
space). But for the hexagons of mixed type G5 in characteristic 3, we found several new
embeddings (in unbounded dimension), which are quotients of some universal embedding.

Split BN-pairs of rank 2
KATRIN TENT

If G is a group with a split BN-pair of rank 2 (i.e. there is a nilpotent U < B with
B =U(BNN)) then G is a group of Lie type.

The proof uses the geometric interpretation of such a BN -pair as a generalized polygon.
This generalizes the corresponding result for finite groups due to Fong and Seitz, and easily
extends to split BN-pairs of rank > 2.

Parts of this are joint work with H. Van Maldeghem and B. Miihlherr, respectively.

Low dimensional representations of finite quasisimple groups and
applications

PuAM Huu TIEP

Recently there has been considerable interest in finding the smallest degree d;(G) of
faithful irreducible representations of finite quasisimple groups G in characteristic /, and in
classifying representations of G of degree less than (d;(G))?* . We report on recent results
concerning this problem.

In the case of G = A, (and §n), the results are joint with Kleshchev, and these results
have allowed us to make substantial progress on (i) describing modular spin representations
of G that are irreducible over a proper subgroup, and (ii) proving that in general the tensor
product of modular representations of G are reducible if [ # 2,3. The results on SL,(q)
and Sp,,(q), ¢ even, are joint with Guralnick; and the results on SU,(¢) and Sp,,(q), ¢
odd, are joint with Guralnick, Magaard and Saxl.

We outline the main ideas behind the proofs, including results using Deligne-Lusztig
theory, study of local properties, gluing method. We also discuss some recent applications,
including (i) a new approach to k(GV')-problem and (ii) Larsen’s conjecture (joint work
with Guralnick).
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The Curtis Tits presentation
FrANZ GEORG TIMMESFELD

Let B be an irreducible spherical Moufang building of rank [ > 2 with root system &
and fundamental system II. For each r € ® let A, be the root-group corresponding to r
(in the sense of Tits), X, := (A, A_,) and let G := (A, | r € ®) < Aut(B). For r # s € I
let X,s := (X, X;). Then the following is known as Curtis-Tits presentation of G:

-~

Let G be tb\e amalgamated product of the X, ; r,s € II, amalgamated over the X,
r € I1. Then G is a perfect central extension of G.

Now in this generality there is no proof for this theorem in the literature. In my talk I
presented the following

Theorem: Let ® and II be as above and let G be a group generated by rank one groups
X,, r € 11, satisfying:

(1) [X,, X,] =1 if r and s are not connected in the Dynkindiagram A of II.

(2) If r,s € TII are connected in A, then there exists a surjective homomorphism
¢ (X, Xs) = R, where R, is a group of Lie type of rank two in the above sense,
with ker p < Z((X,, X)), mapping Ay, and Ay, onto corresponding fundamental root
groups of R,;.

Then G is a perfect central extension of a group of Lie type B in the above sense.

This theorem contains the Curtis Tits presentation as a special case.

Affine Moufang buildings
HENDRIK VAN MALDEGHEM
(joint work with B. Miihlherr)

In this talk we comment on some difficulties arising in the proof of the following

Theorem: All Moufang buildings of type Cy are known.

We point out the equivalence of a Moufang building of type C, with valuations on root
groups of Moufang quadrangles satisfying certain conditions. We then address the question
of how to identify the local

In this talk we comment on some difficulties arising in the proof of the following

Theorem: All Moufang buildings of type C are known.

We point out the equivalence of a Moufang building of type 52 with valuations on root
groups of Moufang quadrangles satisfying certain conditions. We then address the question
of how to identify the local structure of the 52—building.

The general curve covers P! with monodromy group A4,
HELMUT VOLKLEIN
(joint work with Gerhard Frey and Kay Magaard)

Let C be a general curve of genus g > 2. Then C has a cover to P! of degree n if and
only if 2(n — 1) > g. This is a classical fact of algebraic geometry. If C has a cover to P!
of degree n then there is such a cover that is simple, i.e., has monodromy group S, and
all inertia groups are generated by transpositions. The question arises whether C' admits
other types of covers to P!.

If there is a cover C' — P! branched at r points of P! then » > 3¢. Zariski used this to
show that if ¢ > 6 then there is no such cover with solvable monodromy group.
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The condition r > 3¢g was further used by Guralnick and various co-authors to restrict
the possibilities for the monodromy group. Let C — P! be a cover of degree n. Its
monodromy group G is a transitive subgroup of S,,. If G is a primitive subgroup and g > 4
then G =S, or G = A,,.

It was not known whether the case G = A,, actually occurs. This is answered to the
positive in this talk.

The classification of thick irreducible spherical buildings of rank at
least three

RICHARD WEISS
(joint work with J. Tits)

The classification of Moufang polygons can be used to give a new proof of the classifica-
tion of thick irreducible spherical buildings of rank at least three. Let A be such a building.
It is a consequence of 4.1.2 of Tits’ Lecture Notes that A is Moufang. Hence each residue
of rank two is a Moufang polygon and therefore determined by a “root group sequence,” a
certain sequence of root groups of A. It follows that the building A is uniquely determined
by a “root group labeling” of the Coxeter diagram IT of A which consists of labellings
which assign

(i) to each vertex u of IT a group v(u),
(ii) to each directed edge (u,v) of II the root group sequence ©,, associated with the
residue of type {u, v} of A containing a fixed chamber ¢ so that ©,, is the sequence
O in reverse order and
(iii) to each directed edge (u,v) of IT an isomorphism 6, from v(u) to the first term of
Oup-

We describe a proof of the classification of thick irreducible spherical buildings of rank
at least three based on the classification of Moufang polygons and the concept of a root
group labelled Coxet er diagram. For details see J.Tits & R.Weiss, “Moufang Polygons,”
Springer, 2002.

Minimal polynomials of elements of prime order in complex
representations of quasi-simple groups

ALEXANDRE E. ZALESSKII

Let G be a quasi-simple group and g € GG be an element of prime order p. We list all
complex irreducible representations ¢ of G such that the number of distinct eigenvalues of
©(g) is strictly less than p.

Edited by Sergei Haller
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