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The oÆial program onsisted of 18 letures, the talks overed a wide range of new

researhs of "Fundamental groups in Geometry". There were plenty of time for questions

and many informal disussions among smaller groups.

The organizers and partiipants thank the "Mathematishes Forshungsinstitut Ober-

wolfah" to make the onferene possible in the usual omfortable and inspiring setting.
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Abstrats

Braid monodromy and topology of onjugate plane urves

Enrique Artal Bartolo

(joint work with J. Carmona and J.I. Cogolludo)

We are interesting in studying the spaes M whih are obtained as the quotient by the

projetive group of the spae of omplex plane projetive urves with the same ombina-

torial type (essentially, the degree of the irreduible omponents and topologial type of

singularities). The main problems are related with existene and onnetedness of suh

spaes. The topology of the embedding of the urves in the projetive plane P

2

is an

invariant of the onneted omponents of M.

We have found examples of disrete spaes M (for sexti urves) suh that the repre-

sentatives of the points in M have onjugate equations in some number �eld K . In order

to understand the embedding of this urves in P

2

we have to �nd invariants whih go be-

yond the algebrai struture. This invariant is braid monodromy of urves; we extend the

lassial de�nition of this invariant by allowing the projetion point to be in the urve and

we �nd that some speial braid monodromy is di�erent for two onjugate urves having

equations in Q(

p

2). Braid monodromy is an orbit in B

r

d

by an ation of B

d

� B

r

(by

Hurwitz moves and onjugation) where B

n

is the braid group on n strings; we �nd these

braid monodromies to be di�erent by means of a representation of B

d

onto a �nite group.

Using a ommon result of the three authors we prove that, after adding some straight lines

to the urves, there are onjugate urves in Q (

p

2) of degree 12 having non-homeomorphi

embeddings.

Fundamental groups of omplements of plane urves and sympleti invariants

Denis Auroux

(joint work with S. Donaldson, L. Katzarkov and M. Yotov)

Given a ompat sympleti manifold (X

2n

; !) for whih [!℄ is an integral ohomology

lass, its topology an be studied by means of the approximately holomorphi tehniques

introdued by Donaldson in the mid-90's: �xing an almost-omplex struture, a omplex

line bundle L with 

1

(L) = [!℄ behaves like an ample line bundle, in the sense that suitable

setions of L


k

for k � 0 an be used to de�ne hyperplane setions, Lefshetz penils, et.

Three well-hosen setions of L


k

de�ne a projetion map to C P

2

with generi loal

models; this onstrution is anonial up to isotopy for k � 0. In the ase of a sympleti

4-manifold, we obtain a branhed overing whose branh urve D is sympleti, with

omplex (2,3)-usps and nodes of either orientation as only singularities. The urve D an

be studied using the braid monodromy tehniques introdued by Moishezon and Teiher

in algebrai geometry.

Braid monodromy is a omplete sympleti invariant: it determines D up to isotopy and,

together with the monodromy morphism � : �

1

(C P

2

�D)! S

N

of the overing, allows one

to reover (X;!) up to sympletomorphism. However there is no algorithm for omparing

braid monodromies.

An easier invariant is �

1

(C P

2

� D) itself. In the sympleti ase, we need to allow for

reations or anellations of pairs of nodes, so the atual invariant is a ertain quotient

G = �

1

(C P

2

� D)=K, where K is generated by ommutators [; 

0

℄, where , 

0

are

onjugates of standard generators suh that �() and �(

0

) are disjoint transpositions.
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There is an exat sequene 1 ! G

0

! G ! S

N

� Z

d

! Z

2

! 1, where the map

G ! S

N

� Z

d

is given by the monodromy � and by the abelianization map Æ : G ! Z

d

sending generators to 1.

In the ase �

1

(X) = 1, we have a struture theorem for the kernel G

0

: there exists a

natural surjetive homomorphism � : G

0

! (Z

2

=�)

N�1

, where � = f(L


k

�C;K

X

�C); C 2

H

2

(X;Z)g.

Moreover, the available examples wherefore high degree projetions (k � 0), i.e. C P

2

,

C P

1

� C P

1

, some Del Pezzo or K3 omplete intersetions, Hirzebruh surfaes, and double

overs of C P

1

� C P

1

(by work of Moishezon, Teiher, Robb, A-D-K-Y, ...), suggest a muh

stronger onjeture when X is a simply onneted omplex surfae and k � 0: namely,

one expets that:

1) K = f1g (i.e. G = �

1

),

2) Ker� = [G

0

; G

0

℄ (i.e. Ab(G

0

) = (Z

2

=�)

N�1

),

3) [G

0

; G

0

℄ is a quotient of Z

2

� Z

2

.

Equivariant re�ned Seiberg-Witten theory

Stefan Bauer

The monopole map an be de�ned for a K-oriented losed Riemannian 4-manifold. It is

used to de�ne (joint with M. Furuta) an element in some equivariant stable ohomotopy

group, whih is independent of the hosen metri. The Hurwitz homomorphism relates

this element to the integer valued Seiberg Witten invariant.

Some strutural results were presented:

1. There is a onneted sum theorem. In ontrast to Seiberg-Witten theory or Donaldson

theory the invariants of onneted sums need not vanish, but are torsion elements.

2. There is a universal invariant de�ned by the parametrized monopole map over the

spae of all hoies (metris and onnetions). A �xed point map relates this universal

element to theDiff(X)-equivariant stable ohomotopy Euler lass of theH

2

+

(X;R)-bundle

over the spae of metris. This gives restritions on the possible elements whih may arise

as (universal) invariants. It also leads to an understanding of the "hamber struture"

phenomenon for the Seiberg-Witten invariants.

3. (Report on results of M. Szymik) If X omes with a free ation of a �nite group G,

one gets a G-equivariant invariant. It ontains all information on the (non-equivariant)

invariants of quotients X=H for subgroups H < G. M. Szymik showed that already in the

ase of a group of prime order the omparison map is neither surjetive nor injetive. This

leads to relations amongst the Seiberg-Witten invariants of the quotients X=H on the one

hand and on the other hand (potentially) to an invariant of the ation itself.

Speial varieties, orbifolds, and lassi�ation theory

Frederi Campana

We desribe two struture theorems in the birational geometry of omplex projetive man-

ifolds, analogues of the struture theorems for Lie algebras, reduing these �rst to semi-

simple and solvable ones, the solvable being iterated extensions of abelian ones. The roles

of semi-simple, solvable and abelian are respetively played here by the orbifolds of general

type, speial manifolds, and third: manifolds either rationally onneted or with � = 0.

This deomposition is deeply linked with other aspets of lassi�ation theory: we indeed

onjeture, and show in some few ases, that speial manifolds have an almost abelian

fundamental group, and are exatly the ones having zero Kobayashi metri, or a potentially
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dense set of rational points over any �eld of de�nition �nitely generated over Q . This

immediately leads to a natural extension of Lang's onjetures to arbitrary X's (and even

to orbifolds).

This deomposition gives a simple syntheti view of the struture of arbitrary X's, and

indiates that the natural frame of lassi�ation theory is the ategory of orbifolds, to

whih our observations should be extended.

Orbifold fundamental groups

Fabrizio Catanese

(joint work with P. Frediani)

Sope of the leture was to illustrate various appliations of the notion of �

orb

1

, (rest. of

a �bration). For Y a normal C -spae, B losed analyti, with B

1

,...,B

r

the divisorial

omponents of B,

�!

m = (m

1

; : : : ; m

r

) 2 N

r

+

one de�nes

�

orb

1

(Y;B;

�!

m) := �

1

(Y � B)=� 

i

�

m

i



i

being a geometri loop around B

i

.

For Y = X=G (X: manifold), we letB the branh lous and

�!

m the vetor of multipliities

of inertia groups, thus we get

1! �

1

(X)! �

orb

1

(Y;B;

�!

m)! G! 1

The �rst appliation is for surfaes (varieties) etale quotients of produts of urves, S =

C

1

� C

2

=G. Here, 1! �

1

(C

1

)� �

1

(C

2

)! �

1

(S)! G! 1 and moding out by �

1

(C

2

) we

get the orbifold sequene of the quotient map C

1

! C

1

=G. This method plus the isotropi

subspae method leads to the

Theorem. Let S = C

1

� C

2

=S, S

0

with �

1

(S

0

)

�

=

�

1

(S), e(S

0

) = e(S) (e: Euler number).

Then S

0

is di�eo to S and the moduli spae is either irreduible, or it has 2 irreduible

omponents M

1

, M

2

with M

2

=M

1

, M

1

\M

2

= ;. There are in�nite examples of the

seond alternative.

After disussing other ounter-example to the Freidman-Morgan onjeture that S dif-

feo to S

0

implies S, S

0

belong to the same onneted omponent of the moduli spae, I

introdued the orbifold fundamental group sequene of a �bration: �

1

(F ) ! �

1

(X

0

) !

�

orb

1

(Y

0

)! 1 and explained an appliation

Theorem A (-,Keum,Oguiso). Let Y be a normal ellipti K3 surfae, Y

0

the smooth

lous. Then either

(1) j�

1

(Y

0

)j < +1 or

(2) There exits T ! Y etale in od. 1, �nite, T is torus.

Without the assumption \Y ellipti" then is a onjeture of D.Q.Zhang. I also mentioned

Theorem B (-,Keum,Oguiso). Let Y be as in Theorem A, S its minimal resolution, Y

0

=

S [

r

i=1

E

i

. Then if r � 15 then j�

1

(Y

0

)j < +1.

I �nally mentioned that one an de�ne the orbifold fundamental group sequene of a

real variety (X; �),

1! �

1

(X)! �

orb

1

((X; �))! Z=2! 1

and that this notion has revealed itself as very useful.

4



Non-ompat representations of surfae groups

Osar Gar

�

�a-Prada

(joint work with Steven B. Bradlow and Peter B. Gothen)

Using the L

2

norm of the Higgs �eld as a Morse funtion, we study the moduli spaes of

U(p; q)-Higgs bundles over a Riemann surfae. We require that the genus of the surfae

be at least two, but plae no onstraints on (p; q). A key step is the identi�ation of

the funtion's loal minima as moduli spaes of holomorphi triples. We prove that these

moduli spaes of triples are non-empty and irreduible.

Beause of the relation between at bundles and fundamental group representations, we

an interpret our onlusions as results about the number of onneted omponents in the

moduli spae of semi-simple PU(p; q)-representations. The topologial invariants of the at

bundle are used to label omponents. These invariants are bounded by a Milnor{Wood

type inequality. For eah allowed value of the invariants satisfying a ertain oprimality

ondition, we prove that the orresponding omponent is non-empty and onneted. If the

oprimality ondition does not hold, our results apply to the irreduible representations.

Generalized triangle inequalities in symmetri spaes and buildings with

appliations to algebra

Misha Kapovih

(joint work with B.Leeb and J.Millson)

Everybody knows how to onstrut triangles with the presribed side-lengths �

1

, �

2

, �

3

in

the Eulidean plane: the neessary and suÆient onditions for this are the usual triangle

inequalities �

i

� �

j

+ �

k

. In this talk I will explain how to solve (in a uni�ed fashion)

the analogous problem for other geometries X: non-positively urved symmetri spaes

(and their in�nitesimal analogues) and Eulidean buildings. The notion of \side-length"

in this generality beomes more subtle: side-lengths are elements of the appropriate Weyl

one �. One of the surprising results is that the \generalized triangle inequalities" for

X determine a polyhedral one D

3

(X) � �

3

, whih depends on X and on the type of

geometry only weakly: D

3

(X) is ompletely determined by the �nite Coxeter group W

orresponding to X. (The polyhedra D

3

provide omplete solutions to algebra problems

Q1, Q2 below, solutions to the algebra problems Q3, Q4 are ertain lattie points in D

3

.)

The linear inequalities desribing X are determined by the \Shubert alulus" (omputing

the integer ohomology ring) in the assoiated generalized ag varieties. Our tehniques

are purely geometri (with a bit of dynamis). One relates and solves these problems using

weighted on�gurations \at in�nity" orresponding to the triangles.

Here are some algebra problems whih one an solve (at least to some extent) using the

geometri results about triangles. Reall that the singular values of an m � m matrix A

are the square-roots of the eigenvalues of the matrix AA

�

. For a matrix A 2 GL(m;Q

p

),

the double oset

GL(m;Z

p

) � A �GL(m;Q

p

) � GL(m;Z

p

)

is represented by a diagonal matrix D = Diag(p

e

1

; :::; p

e

m

). (Here Q

p

are the p-adi num-

bers and Z

p

are the p-adi integers.) The invariant fators of a matrix A are the integers

e

i

arranged in the dereasing order.

Let �, � and  be m-tuples of real numbers arranged in dereasing order. In the Problem

P4 we will assume that �, � and  are dominant weights of GL(m; C ) (i.e. they are vetors
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in Z

m

) and that V

�

, V

�

and V



are the irreduible representations of GL(m; C ) with these

highest weights.

� P1. Give neessary and suÆient onditions on �, � and  in order that there exist

Hermitian matries A, B and C suh that the sets of eigenvalues of A, B and C are �, �

and  respetively, and

A+B + C = 0:

� P2. Give neessary and suÆient onditions on �, � and  in order that there exist

matries A, B and C in GL(m; C ) the logarithms of whose singular values are �; � and ,

respetively, so that

ABC = 1:

� P3. Give neessary and suÆient onditions on the integer vetors �, � and  in

order that there exist matries A, B and C in GL(m;Q

p

) with invariant fators �; � and

, respetively, so that

ABC = 1:

� P4. Give neessary and suÆient onditions on �, � and  in order that

(V

�


 V

�


 V



)

GL(m;C )

6= 0:

These problems have a long history and their omplete solution and the relation between

them were established only reently due to the e�orts of several people: Klyahko, Tao

and Knutson, et al., their proofs where based on algebrai geometry and ombinatoris.

Our main ontribution is to the extension of the above problems to other redutive

groups. Let F be either the �eld R or C ; for simpliity, let G be a split redutive group

over Z (think of something like Sp(n)) and let K be a maximal ompat subgroup of

G(F). Instead of working with p-adis one an onsider other �elds with nonarhimedian

valuations.

� Q1. Let g be the Lie algebra of G(F), and let g = k + p its Cartan deomposition.

Give neessary and suÆient onditions on �; �;  2 p=Ad(K) in order that there exist

elements A;B;C 2 p whose projetions to p=Ad(K) are �; � and , respetively, so that

A+B + C = 0:

� Q2. Give neessary and suÆient onditions on �; �;  2 KnG(F)=K in order that

there exist elements A;B;C 2 G(F) whose projetions to KnG(F)=K are �; � and ,

respetively, so that

ABC = 1:

� Q3. Same as above for A;B;C 2 G(Q

p

) and �; �;  2 G(Z

p

)nG(Q

p

)=G(Z

p

).

� Q4. Let G

_

be the Langlands' dual group of G. Give neessary and suÆient ondi-

tions on highest weights �; �;  of irreduible representations V

�

, V

�

, V



of G

_

(C ) in order

that

(V

�


 V

�


 V



)

G

_

(C )

6= 0:
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Braid monodromy invariants of Hurwitz urves

Viktor S. Kulikov

(joint work with V. Kharlamov)

Let F

N

be a relatively minimal ruled rational surfae, N � 1, p : F

N

! P

1

the ruling.

R a �bre of p and E

N

the exeptional setion, E

2

N

= �N . By de�nition, the image

H = f(�) � F

N

of a smooth map f : �! F

N

of oriented losed real surfae � is alled a

Hurwitz urve of degree m if

(i) f is an embedding exept for a �nite number of points s

1

; : : : ; s

n

2 �;

(ii) for eah s

i

there is a neighbourhood U

i

� F

N

of f(s

i

) and loal omplex analyti

oordinates (x

i

; y

i

) s.t. H \ U

i

is a germ of omplex analyti urve and the omplex

orientation on H \ U

i

n ff(s

i

)g oinides with the orientation transported from � by f ;

(iii) for s 6= s

i

, i = 1; : : : ; n, H and the �bre R

p

(f(s)) of p meet at f(s) transversally with

positive intersetion number;

(iv) H \ �

N

= ; and the restrition of p to H is a �nite map of degree m.

A Hurwitz urve H is alled uspidal if in (ii) the intersetion H \U

i

is given by y

2

i

= x

k

i

for some k � 1. A Hurwitz urve H is alled almost algebrai if there is a dis D � P

1

ontaining the images of f(s

i

) and s.t. H \ (p

�1

(D) n E

N

) an be given by P (z; w) = 0,

where P 2 C [z; w℄, deg

w

(P ) = m. For any Hurwitz urve H � F

N

, degH = m, one an

assoiate a fatorization �

2n

m

= b

1

: : : b

n

, where �

m

2 B

m

is so alled Garside's element in

the braid group B

m

, and eah b

i

is a braid of a germ of polynomial of degree m over 0.

Suh a fatorization is alled braid monodromy fatorization (bmf). The group B

n

� B

m

ats on the set of the fatorizations of �

2n

m

of length n and the orbits under this ations

are alled braid monodromy types (bmt). We proved the following results.

Theorem 1.Two uspidal Hurwitz urves H

1

and H

2

� F

N

are H-isotopi i� bmt(H

1

) =

bmt(H

2

).

Theorem 2.For any uspidal braid monodromy fatorization � of �

2n

m

there is an almost

algebrai Hurwitz urve H � F

N

s.t. bmf(H) = �.

Similarly, if S � C P

2

is a singular sympleti surfae, i.e., S is a J-holomorphi urve

for some almost omplex struture J on C P

2

, one an de�ne bmf(S) w.r.t. a generi penil

of J-lines.

Theorem 3.Two sympleti uspidal surfaes S

1

; S

2

2 C P

2

are sympletially isotopi i�

bmt(S

1

) = bmt(S

2

).

Holomorphi mappings of ertain on�guration spaes

Vladimir Lin

The n

th

on�guration spae C

n

(X) of a spae X onsists of all n point subsets Q =

fq

1

; :::; q

n

g � X. It may be viewed as the regular orbit spae C

n

(X) = E

n

(X)=S(n),

E

n

(X)

def

== fq = (q

1

; :::; q

n

) 2 X

n

j q

i

6= q

j

8 i 6= jg and S(n) is the symmetri group. C

n

(X)

is a omplex manifold if X is so.

How to onstrut holomorphi self-maps of C

n

(X)? What an one say of the automorphism

group Aut C

n

(X) and its orbit spae C

n

(X)=Aut C

n

(X)?

The AutX ation in X indues the diagonal AutX ation in X

n

; thus, any A 2 AutX

produes the automorphism fq

1

; :::; q

n

g 7! fAq

1

; :::; Aq

n

g of C

n

(X). Moreover, for any map
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T : C

n

(X)! AutX one may de�ne the map

f

T

: C

n

(X)! C

n

(X) ; where f

T

(Q) = T (Q)Q

def

== fT (Q)q

1

; :::; T (Q)q

n

g

for all Q = fq

1

; :::; q

n

g � X. If AutX is a omplex Lie group

1

and T is holomorphi, f

T

is

holomorphi, too; suh a map f = f

T

is alled tame.

2

For T as above, pik up a point Q

�

= fq

�

1

; :::; q

�

n

g 2 C

n

(X) and de�ne

f

T;Q

�

: C

n

(X)! C

n

(X) ; f

T;Q

�

(Q) = T (Q)Q

�

def

== fT (Q)q

�

1

; :::; T (Q)q

�

n

g

for allQ = fq

1

; :::; q

n

g � X; suh a map f = f

T;Q

�

is alled orbit like. Its image is ontained

in one (AutX)-orbit; if the stabilizer of Q

�

in AutX is trivial (or at least onneted), then

the image of the indued endomorphism of the fundamental group

3

(f

T;O

�

)

�

: �

1

(C

n

(X))!

�

1

(C

n

(X)) is abelian.

C

n

(X) may admit \sporadi" holomorphi self-maps, whih are neither tame nor orbit like.

But I believe that in \simple" ases a holomorphi map C

n

(X)! C

n

(X) must be tame if

its topology is suÆiently ompliated.

One form of the latter requirement involves the fundamental groups. A ontinuous map

f : Y ! Z of arwise onneted spaes is alled non-abelian if the image of the indued

homomorphism f

�

: �

1

(Y ) ! �

1

(Z) is a non-abelian group.

4

It was proven in the 1970's

that if n > 4 and X = C or X = C

�

then every non-abelian holomorphi map f : C

n

(X)!

C

n

(X) is tame.

5

Reently I proved the following theorem:

Theorem. LetX = C P

1

and n > 4. Then every non-abelian holomorphi map f : C

n

(X)!

C

n

(X) is tame.

My student Yoel Feler proved that for n > 4 and any torus X = C =(aZ + bZ) (a; b 2 C

�

,

Im(a=b) 6= 0) every automorphism of C

n

(X) is tame.

These results imply:

Corollary 1. Let X be an irreduible smooth non-hyperboli algebrai urve and n >

4. Then every automorphism of C

n

(X) is tame. The orbits of the natural Aut C

n

(X)

ation in C

n

(X) oinide with the orbits of the diagonal AutX ation, and the orbit

spae C

n

(X)=Aut(C

n

(X)) oinides with the orbit spae C

n

(X)=AutX. In partiular, for

X = C P

1

the orbit spae C

n

(X)=Aut(C

n

(X)) may be identi�ed with the moduli spae

M(0; n) of the Riemann sphere with n puntures.

Corollary 2. Let n > 4 and X be either C or C

�

or C P

1

. Then the homotopy lassi�a-

tion of non-abelian holomorphi mappings C

n

(X)! C

n

(X), up to a homotopy in the lass

of holomorphi mappings, oinides with the homotopy lassi�ation of holomorphi map-

pings C

n

(X) ! AutX. Moreover, aording to the lassial Grauert theorem, the latter

oinides with the homotopy lassi�ation of all ontinuous mappings C

n

(X)! AutX.

1

By the lassial Bohner-Montgomery theorem, this is ertainly the ase whenever X is a ompat

omplex manifold (AutX may have in�nite number of onneted omponents or/and be disrete).

2

This onstrution may be slightly generalized, by onsidering a map T of C

n

(X) to the spae of all

maps X ! X that satis�es the following ondition: #[T (Q)Q℄ = n for eah Q 2 C

n

(X) and the map

C

n

(X) 3 Q 7! T (Q)Q 2 C

n

(X) is holomorphi.

3

From now on, we suppose that X is arwise onneted.

4

Every automorphism of C

n

(X) is non-abelian if dim

C

X > 0 and n � 3.

5

I proved this for X = C in 1972; for X = C

�

it was proven by V. Zinde in 1977.

8



Corollary 3. For n > 4 the orbit spae C

n

(C P

1

)=Aut C

n

(C P

1

) is isomorphi to the

orbit spae C

n

(C P

1

)=PSL (2; C )

�

=

M(0; n), where M(0; n) is the moduli spae of the

n-puntured Riemann sphere.

To prove the theorem, we establish ertain algebrai properties of the braid groups B

n

and

B

n

(S

2

), whih provide us with an equivariant lifting of a non-yli self-mapping of the

spae C

n

(X) to its Galois S(n) overing E

n

(X), and then apply the appropriate analyti

tehniques to study the equivariant holomorphi self-mappings of E

n

(X).

The birational geometry of omplex orbifold

Steven Shin-Yi Lu

A �bration f : X ! Y naturally imposes an orbifold struture on Y whose divisorial

part has the form D(f) =

P

i

(1 � 1=m

i

)D

i

on Y . Here, m

i

is the minimum of the

multipliities of the omponents of f

�

(D

i

) that dominates D

i

as opposed to the lassial

gd de�nition of the multipliity. This hoie of multipliity is naturally imposed on us by

our onsiderations in holomorphi geometry and by the anonially assoiated Bogomolov

sheaf of the �bration. This latter sheaf, de�ned as the saturation L

f

of f

�

K

Y

in 


p

X

, is a

natural birational invariant of f at least in the sense that �(Y; f) := �(L

f

) is. This then

allows us to de�ne the same for any meromorphi �bration or even map. By the attening

theorem, one an always arrange, replaing f by a birationally equivalent one, to have

�(Y; f) := �(L

f

). After Campana, f is said to be of general type if �(Y; f) = p := dimY ,

X speial if X has no meromorphi map of general type. By solving an orbifold version

of the theorems of Kawamata and Viehweg on the additivity of Kodaira dimension, we

show that any ompat omplex manifold X has a meromorphi �bration of general type

that is proper and holomorphi on an open subset and whose general �bres are speial.

It is de�ned by the Iitaka �bration of the highest Bogomolov sheaf, the one with the

highest p whih is neessarily unique by this theorem. Using this, we show that the ore



X

onstruted by Campana is the same �bration and hene resolves his onjeture that



X

is of general type. This also resolves in a weak sense a problem that is entral to Mori's

lassi�ation program. Furthermore, we work out the above in the very general setting of

orbifolds with arbitrary rational multipliities and in the ompat omplex ategory.

Weak Lefshetz Theorems

George Marinesu

Napier and Ramahandran generalized the weak Lefshetz theorems of Nori to the ase of

higher odimensional subvarieties with positive normal bundle. Their method works even

when the subvariety doesn't move in the ambient manifold. (In the ase when it moves,

the weak Lefshetz theorem was proved by Campana and Koll�ar). We propose here the

following di�erential-geometri variant.

Theorem A. Let (X;!) a omplete hermitian manifold, suh that the torsion operator of

! is bounded on X. Let E �! X be a line bundle whih is uniformly positive outside a

proper ompat set. Assume moreover that

Z

X(61)

�(E)

n

> 0

where �(E) is the urvature of E and X(6 1) is the open set where �(E) is non{degenerate

and has at most 1 negative eigenvalue. Let i : Y ,! X be a ompat omplex spae, with

9



a fundamental system of neighbourhoods fV g, suh that dimH

0

(V;E

k

) < 1 for k >> 1.

Assume moreover that i

�

�

1

(Y ) � �

1

(X) is a normal subgroup. Then the index of i

�

�

1

(Y )

in �

1

(X) is �nite.

The theorem an be applied to the ase of Zariski open sets in Moishezon manifolds

as well as for some q-onave projetive manifolds. A spae Y satis�es the property in

Theorem A if, for example, �(N

Y

) has at least one positive eigenvalue (in ase odimY =

1), or �(N

Y

) is positive in the sense of GriÆths (for general odimension).

For the proof of Theorem A we annot use the solution of the �-equation as in Napier

and Ramahandran, sine ! is not K�ahler. We resort in turn to the following variant of

the asymptoti Morse inequalities of Demailly for overing manifolds. We denote the von

Neumann dimension of a �-module by dim

�

.

Theorem B. Let p :

e

X �! X be a Galois overing of X of group � and let

e

E = p

�

E.

Denote by H

0

(2)

(

e

X;

e

E

k

) the spae of holomorphi setions of

e

E

k

whih are L

2

with respet

to the pull-bak metris on

e

E

k

and

e

X. Set n = dimX. Then,

dim

�

H

0

(2)

(

e

X;

e

E

k

) > k

n

Z

X(61)

�(E)

n

+ o(k

n

); k �!1:

The proof of Theorem is based on the spetral analysis of the laplaian on the overing

e

X, and uses tehnial elements borrowed from the proof of the Novikov -Shubin inequalities

(usual Morse inequalities for overings). The results of this talk were obtained jointly with

R. Todor and I. Chiose in a paper from Nagoya Math. J., 163(2001), 145 -165.

Sympleti strutures of moduli spae of Higgs bundles over a urve and

Hilbert sheme of points on the anonial bundle

Avijit Mukherjee

(joint work with I.Biswas)

The moduli spae of triples of the form (E; �; s) are onsidered, where (E; �) is a Higgs

bundle on a �xed hyperboli Riemann surfae X, and s is a (non-zero) holomorphi setion

of E. Suh a moduli spae admits a natural map to the moduli spae of Higgs bundles

simply by forgetting s. If (Y; L) is the spetral data for the Higgs bundle (E; �), then s

de�nes a setion of the line bundle L over Y . The divisor of this setion gives a point of a

Hilbert sheme parametrizing 0-dimensional subshemes of the total spae of the anonial

bundle K

X

, sine Y is a urve on K

X

. The main result of this work says that the pullbak

of the sympleti form on the moduli spae of Higgs bundles to the moduli spae of triples

oinides with the pullbak of the natural sympleti form on the Hilbert sheme Hilb

l

(K

X

),

using the map that sends any triple (E; �; s) to the divisor of the orresponding setion of

the line bundle on the spetral urve.

Seiberg-Witten invariants and normal surfae singularities

Andras Nemethi

(joint work with Liviu Niolaesu)

In the talk I presented a very general onjeture formulated by Liviu Niolaesu and me

whih relates the analytial invariants of a normal surfae singularity to the Seiberg-Witten

invariants of the link of the singularity, provided that the link is a rational homology sphere.

The talk ontained a historial presentation of the bakground as well.

10



The onjeture an be formulated as follows. First we de�ne in a topologial way a

\anonial" spin



struture of the link. The �rst part of the onjeture provides a topo-

logial upper bound (expressed in terms of the Seiberg-Witten invariant of the \anonial"

spin



struture) for the geometri genus of the singularity. The seond part states that for

Q -Gorenstein singularities this upper bound is optimal; in partiular, it gives a topologial

desription of the geometri genus in terms of the link for these singularities. Finally, for

a smoothing of a Gorenstein singularity, the last part gives a topologial haraterization

of some smoothing invariants, like the signature and the Euler harateristi of the Milnor

�bre.

As supporting evidene for this onjeture, I disussed some ases when the validity

was veri�ed: singularities with good C

�

ations, suspension hypersurfae singularities, and

some rational and minimally ellipti singularities.

These results extend previous work of Artin, Laufer and S. S.-T. Yau, respetively of

Fintushel-Stern and Neumann-Wahl.

Alexander polynomials and Zariski pairs of sexti urves

Pho Du Tai

(joint work with S.Kaplan, H.Maakestad and M.Teiher)

Following Artal Bartolo, we reall that a pair of irreduible plane urves (C

1

; C

2

) is a Zariski

pair if they have the same degree and there is a 1-1 orrespondene between singular points

of C

1

and C

2

preserving topologial types but C P

2

nC

1

is not homeomorphi to C P

2

nC

2

.

Let us denote Z(n) the set of all Zariski pairs of degree n, Z(n; �

1

) (resp. Z(n;�

1

)) the

set of all Zariski pairs (C

1

; C

2

) of degree n suh that �

1

(C P

2

n C

1

) 6

�

=

�

1

(C P

2

n C

2

) (resp.

�

1

(C

1

) 6= �

1

(C

2

)). Thus Z(n) � Z(n; �

1

) � Z(n;�

1

).

The equisingular families of onis, ubis, quartis and quintis are irreduible, i.e.

Z(n) = Z(n; �

1

) = Z(n;�

1

) = ; for n < 6. For degree � 6 this is not true, the �rst

example, is a pair of sextis (with 6 usps) was given by Zariski.

Using results of Oka on the omputation of Alexander polynomials of sextis (math.AG-

0205092), we desribe the method to list up all of the Zariski pairs of degree 6 whih an be

distinguished by their Alexander polynomials, i.e. the set Z(6;�

1

). We prove that for any

(C

1

; C

2

) 2 Z(6;�

1

), one of them is of torus type and the other is of non-torus type, and

the Alexander polynomial are �

1

(t) = t

2

� t + 1 (for sexti of torus type) and �

1

(t) = 1

(for sexti of non-torus type).

A haraterization of Shimura urves in moduli staks of abelian varieties and

Calabi-Yau manifolds

Ekart Viehweg

(joint work with Kang Zuo)

Let f : X ! Y be a semi-stable family of omplex abelian varieties over a urve Y of genus

q, and smooth over the omplement of s points. If F

1;0

denotes the non-at 1; 0 part of

the orresponding variation of Hodge strutures, the Arakelov inequalities say that

2 deg(F

1;0

) � rank(F

1;0

)(2q � 2 + s):

We study families for whih this inequality beomes an equality, or equivalently families

whose Higgs �eld

�

1;0

: F

1;0

! F

0;1


 


1

Y

(logS)
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is an isomorphism. As it turns out, this property is reeted in the existene of \too many"

Hodge yles of a general �bre of f , and it fores Y to be a Shimura urve. As a byprodut

one obtains an expliit desription of all possible examples.

For other semistable families of n dimensional varieties one onsiders the indued vari-

ation of Hodge strutures of weight n and the orresponding Higgs bundle (E; �) on Y .

Then � is maximal, if (roughly speaking) (E; �) is the diret sum of sub Higgs bundles

(F

i

; �

i

) of length i, for whih

�

p;q

i

: F

p;q

i

! F

p�1;q+1

i


 


1

Y

(logS)

are isomorphisms, as soon as both sheaves are non zero. This de�nition is not the most

general one. Contrary to the ase of abelian varieties, we exlude here the existene of

unitary parts. The maximality of the Higgs �eld implies that the families are rigid, and

that the speial Mumford Tate group of a general �bre F is the smallest algebrai subgroup

of Sl(H

n

(F;Q)) whih ontains the image of the monodromy representation.

For K3 surfaes, X. Sun, S.L. Tan and K. Zuo have shown, that the maximality of the

Higgs �eld implies that the Piard number of a general �bre is 19, and that the family is

onstruted from a produt of modular families of ellipti urves.

The latter also seems to be true for families of Calabi-Yau threefolds.

Artin groups and geometri monodromy

Bronislaw Wajnryb

Let f(x; y) = 0 be a polynomial equation whih de�nes an algebrai urve in a neigh-

bourhood of (0; 0) in C

2

, with an isolated singular point at (0; 0). A versal deformation

of this singularity indues a �bration V ! B(�) whih is loally trivial over the omple-

ment U = B(�)� � of the singular set � (the disriminant) and whose �bre is a ompat

orientable surfae S with a boundary. The �bration indues the geometri monodromy

representation � : �

1

(U) ! M(S), where M(S) is the mapping lass group of S, the

group of the isotopy lasses of the orientation preserving di�eomorphisms of S pointwise

�xed on the boundary. Dennis Sullivan asked around 1975 whether � is always injetive.

For simple singularities A

n

; D

n

; E

6

; E

7

; E

8

the group �

1

(U) is isomorphi to Artin group

of type A

n

; D

n

; E

6

; E

7

; E

8

respetively and � is a geometri homomorphism, it takes stan-

dard generators of Artin group onto Dehn twists inM(S). Any Artin group orresponding

to Coxeter matrix with entries 2 and 3 only has an essentially unique geometri homo-

morphism � into the suitable mapping lass group whih oinides with � for the groups

A

n

; D

n

; E

6

; E

7

; E

8

. In 1992 Perron and Vannier proved that � is injetive for the groups

A

n

and D

n

. In 1997 Labruere proved that � is not injetive for any Artin group orre-

sponding to Dynkin diagram whih is not a tree or a Dynkin diagram whih is a tree with

more than 3 ends. The groups E

6

; E

7

; E

8

belong to the missing ases. In this work we

show that � is not injetive for all other Artin groups. In partiular � is not injetive

for singularities E

6

; E

7

; E

8

so the question of Sullivan has the negative answer already for

simple singularities.
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Cohomology of variations of Hodge strutures over quasi-ompat K�ahler

manifolds and appliations to algebrai geometry

Yihu Yang

(joint work with J. Jost and K. Zuo)

Let U = Y n S; smooth quasi-ompat K�ahler surfae, S is a normal rossing divisor in Y ;

let V be a polarized variation of Hodge struture de�ned over R over U , with unipotent

loal monodromies around S. Let

E =

M

p+q=m

E

p;q

; �

p;q

: E

p;q

! E

p�1;q+1


 


1

Y

(logS)

denote the Higgs bundle orresponding to V (afterwards, we briey write E

p;q

by E

p

).

Using the Pionar�e-like metri on U and the Hodge metri on V, we an de�ne an L

2

�

subomplex of the above omplex by taking the sheaves of loal setions satisfying the

L

2

-integrable ondition:

E

(2)

�

! (E 
 


1

Y

(logS))

(2)

�

! (E 
 


2

Y

(logS))

(2)

� � � :

Then, we an prove the following

Main Theorem There exists a natural isomorphism

H

�

DR

(�([Gr

�

F

A

0

(E)℄

(2)

)

D

00

! �([Gr

�

F

A

1

(E)℄

(2)

) � � � )

' H

�

(E

(2)

�

! (E 
 


1

Y

(logS))

(2)

� � � ):

In another diretion, one also has the theorem duo to E. Cattani, A. Kaplan and W.

Shmid (for this, see Inventiones Math., 87, 1987, 217-252).

The Main Theorem together with the Cattani-Kaplan-Shmid's theorem and the K�ahler

identity of the Laplaians for the situation of VHS gives rise to

Corollary 2. There exists a natural isomorphism

H

�

int

(Y;V) ' H

�

(E

(2)

�

! (E 
 


1

Y

(logS))

(2)

� � � ):

In this talk, we also give some appliations to algebrai geometry.

Log Terminal Algebrai Varieties and the Fundamental Groups of Their

Smooth Loi

De-Qi Zhang

We work over C . We are interested in algebrai varieties X with log terminal singularities,

espeially the topologial fundamental group �

1

(X

0

), where for variety V , V

0

:= V �

SingV .

From the minimal model program we know that a minimal model will inevitably ontain

some terminal singularities. Also a degenerate �bre of a family of varieties will have some

singularities. So we an not help but onsidering varieties with some mild singularities.

Motivation: If �

1

(V

0

) has an index-m normal subgroup, then we have a orresponding

Galois Z=(m)-over U ! V unrami�ed over V

0

. So the study of V may be redued to that

of U whose singularities should be better. See also [Keum- Zhang, Pro. Alg. Geom. in

East Asia, Kyoto, 2001, A. Ohbuhi (ed.)℄

Below, V is Q -Fano (resp. weak Q -Fano) if the anti-anonial divisor �K

V

is Q -ample

(resp. nef and big). Aording to the min.model program (ompleted in dim � 3), every

13



proj.variety is birational to either a min.terminal variety or a Fano �bration. This is the

reason why we onsider Fano varieties.

Conjeture A. Let V be a log terminal Q -Fano variety. Then the topologial fundamental

group �

1

(V

0

) of the smooth lous V

0

of V is �nite. (see results below to support it).

Theorem B [Gurjar-Zhang (Tokyo 1994-95), Zhang (Osaka 1995), Fujiki-Kobayashi-Lu,

Keel-MKernan℄. Conjeture A is true if either dimV � 2 or the Fano index r(X) >

dimX � 2.

Theorem C [Takayama℄. Suppose that V is a log terminal weak Q-Fano variety. Then

�

1

(X) = (1).

Remark D. "Log terminal" in Conj.A an not be weakened to "log anonial" [Zhang,Trans

A.M.S.(1996)℄.

Aording to the Iitaka �bration theorem, every proj. variety is birational to a �bration

where a general �bre is of Kodaira dim. 0 and the base variety has dim. equal to the

Kodaira dim. of the soure variety. This is a motivation for us to onsider varieties V of

Kodaira dim. 0. If further, V is minimal and assume the abundane onjeture (proved

when dim � 3) then mK

V

� 0 for some m � 1.

De�nition E [Zhang, Kyoto, 1991-93℄. A log terminal proj. surfae Y is log Enriques

if mK

Y

� 0 for some m � 1 and if H

1

(Y;O

Y

) = 0. The I = I(X) := minfmjm �

1; mK

X

� 0g is alled the index of Y .

The one below was formulated, when X is Du ValK3, in [Catanese-Keum-Oguiso, Math.

Ann. 2002?℄.

Conjeture F. Let Y be a log Enriques surfae. Then either �

1

(Y

0

) is �nite, or there is

a quasi-etale (= etale in o-dim 1) morphism X ! Y with X an abelian surfae.

Let

e

Y ! Y the min.resolution, D =

P

D

i

the exeptional divisor and #D the number of

irred.omp. of D.

Theorem G (1) [Shimada-Zhang, Nagoya 2001℄When Y is Du Val K3, we have �

1

(Y

0

) =

(1) if the lattie Z[[

i

D

i

℄ is primitive in H

2

(

e

Y ;Z), if #D � 18 and if the disriminant

group (Z[[

i

D

i

℄)

_

=(Z[[

i

D

i

℄) is generated by no more than minf#D; 20 � #Dg elements

(the last two onditions due to Nikulin are to guarantee the uniqueness of a primitive

lattie embedding).

(2) [Keum-Zhang JPAA 2002℄When Y is either Du Val K3 or Du Val Enriques, Conjeture

F is true if Y has a few singularities of type A

p�1

and no others, where p is a prime number.

(3) [Catanese-Keum-Oguiso℄ When Y is Du Val K3, Conjeture F is true if either Y has

an ellipti �bration, or the exeptional divisor of the minimal resolution of Y has at most

15 omponents.

Edited by Pho Du Tai
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