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The subject of the conference was an analytic approach towards the proof of the geo-
metrization conjecture of Thurston, which states that any closed 3-manifold can be cut
along finitely many spheres and tori into domains, which carry a geometric structure.
This approach, which is essentially due to Michael Anderson, who was one of the orga-
nizers of this Arbeitsgemeinschaft relies on a profound understanding of certain curvature
functionals and their critical points.

The aim of the lectures was to unfold the main ideas and techniques included and developed
in this approach.



Abstracts

Geometrization Conjecture
BERNHARD LEEB

We outline the development in 3-dimensional topology leading to Thurston’s Geometriza-
tion Program, including the Kneser-Milnor prime decomposition, the Loop and Sphere
Theorems, the torus splitting, the Seifert Fibre Space Conjecture and the Jaco-Shalen-
Johannsen characteristic submanifold theory. Thurston’s Geometrization Conjecture states
that the pieces resulting from the topological decomposition process admit geometric struc-
tures, i.e. complete locally homogeneous metrics on their interiors.

We state the results by Gromov-Lawson on positive scalar curvature metrics on 3-manifolds.
A closed 3-manifold admits no metric of scal > 0 if it contains an aspherical prime factor.
The Hyperbolization Conjecture, one of the two open cases in the Geometrization Pro-
gram, follows from the geometrization of 3-manifolds with nonpositive Yamabe constant,
as proposed by Anderson.

Cheeger-Gromov theory (L*®case)
JOAN PORTI

We outline the proof of the following theorems, due to Cheeger and Gromov.

Theorem Let M? be an orientable closed 3-manifold, with a sequence of Riemannian
metrics g, such that vol =1 and |sec| < A, for some uniform A. Then one of the following
occurs (up to subsequence):

e Convergence Case.  There exists a metric go, on M of class C1* and a sequence
of diffeomorphisms ¢, : M3 — M3, such that ¢} g, — geo, in the CH topology,
0<dad <a.

e Collapse Case. inj,, — 0 and M has an F' structure, so that orbits are arbitrar-
ily short. In particular M is a graph manifold.

e Partial Collapse.  There are some regions of M where the injectivity radius goes
to zero (and they have an F—structure), and some regions where the g,, do not
collapse and converge to complete submanifolds for the pointed C*'-topology.

The second case has topological consequences on M: it is a graph manifold. However
the third case has no topology consequences, unless we have some control on the metric!

Cheeger-Gromov theory (L?-case)
BURKHARD WILKING

Following a paper of Anderson we show that in the 3-dimensional case many results of
Cheeger and Gromov (c.f. 2"¢ talk) remain valid if one replaces a priori L>®—bounds on R
by a priori L2—bounds on R. In this setting the volume radius plays an important role. It

is defined by

83

v(z) = maz{r|VB,(s) C B,(r),vol(B,(s)) > m}



One then divides the manifold (M3, g) into a thick and a thin part

M¢ ={ze Mlv(z) > €}
M, ={re My(z) <€}

The main goal of this talk is to prove the following theorem by Anderson.
Theorem Consider a sequence of (unit volume) metrics g; on a closed 3-manifold M
satisfying HRgH 2 < A. Then after passing to a subsequence one can choose ¢; > 0 with
€; — 0 such that

<M6i7 gl) - (Q? 900)
in the pointed Gromov Hausdorff topology.
There exist U; C 2 open such that U;eyU; = € and diffeomorphisms f : U; — M€ such
that (U;, f*g;) — (9, goo) in the weak L*»?—topology.
Moreover, for i large enough the thin part M., is contained in a graph manifold V' C M.

Curvature Integrals I: Einstein-Hilbert action.
BERNHARD HANKE

The Einstein-Hilbert action is the simplest, (most natural), curvature integral. Its Euler-
Lagrange equation is z = 0 and is of 2° order and lies at the foundation of general
relativity.

This lecture discussed Yamabe metrics, the space C of Yamabe metrics, min-max process
and definition of the Yamabe invariant o(M). The linearization L of scalar curvature and
its adjoint

L*u = D*u — Au — ur.
was introduced. The main aspects of the analysis of the scalar curvature functional on C
were discussed; in particular the two splittings of z.

It was shown that Yamabe metrics realizing o(M) are Einstein when o(M) < 0. The
last lecture by Rozoy shows that the same is true when (M) > 0; this is very recent
work. That the potential u is global was emphasized; it was demonstrated that u cannot
be determined from the local geometry.

Curvature Integrals II: Scalar curvature.
BERND AMMANN

The discussion of this lecture related to integrals involving scalar curvature s which are
bounded below, so one can try to seek minima. There are several reasons for preferring
such integrals, but one reason is the difficulty of understanding the global nature of the
potential u in the case of the Einstein-Hilbert action, (the horizon problem).

Thus integrals of the form 8% &%, 8P, the L?*(LP) norm of s or of s~ = min(s,0) were
introduced. The proof that the infimum of such functionals equals |o(M )|, when o(M) < 0
was discussed. Conjectures I-II were restated in terms of minimizing S2.

The Euler-Lagrange equations for S? and 8% were stated - they are of 4th order. All
critical points of 8% are of constant curvature; this is unknown for S? when the scalar
curvature changes sign. The relation of these equations with that for Einstein-Hilbert
action was discussed. The (now local) potential —2-, (or —2), in the Euler-Lagrange
equation corresponds to u from the previous lecture.

In general it is very difficult to minimize scalar curvature integrals - one has very little
control on the behaviour of a general minimizing sequence. One needs to find a “controlled”
minimizing sequence.



Curvature integral III: Full Curvature
LAURENT BESSIERES

On M? closed oriented manifold, one studies minimizing sequences in M; = {g Riemannian
metric on M, vol,M =1 } for the functional |Ry|p~ or |Ry|p2.

inf |Ry|1e is closely related to the minimal volume defined by Gromov: MinVol(M) =
inf{vol, M : |K,| < 1}. By the isolation theorem (Cheeger-Gromov, Rong) 3¢y > 0 such
that MinVol(M) < &o if and only if M is graph manifold (collapse case). In the non
collapse case MinVol(M) > eg, the Cheeger-Gromov theory provides for any minimizing
sequences (M, g;), convergence in the pointed C**-topology to a limit (€2, g), Q a domain in
M, g € CY® complete, v < 1. The domain  has finite number of connected components,
vol, 2 < MinVol(M)(=). For hyperbolic manifolds, MinV ol is uniquely realized by the
hyperbolic metric. But a minimizing sequence for MinVol(M#M), M closed hyperbolic,
does not realize geometrization because MinVol(M#M) > 2MinV ol(M).

The case of R*(g) = [,, |Ry|*dV} is very similar: there is a collapse / noncollapse dichotomy
according to existence of point z; € M such that v;(z;) > ¢ > 0, (v; = volume radius of g;),
for all g; of the minimizing sequence. Graph structure in the collapse case. The Cheeger-
Gromov L?—theory (Anderson) provides in the non collapse case (€, g), Q2 C M with g
complete C> (regularization obtained from Euler-Lagrange equation for R?(g), elliptic
theory) and

vol, = 1,0 = Oy U+ UQp, k < k(M) / 7, = i R(g)
9] 1

It is conjectured that hyperbolic metric realizes inf r4, Rf] if Q) hyperbolic. But on M#M,
M closed hyperbolic, this process does not give geometrization: the limit is complete C'*°,
but the metrics g; cannot crush the essential S? in the limit, with limit hyperbolic closed
metric in each M. Which implies we need to pass to scalar curvature functional, regularized
by R2.

The functionals [_~
UWE ABRESCH

The purpose of this lecture was to introduce the functionals I.~(g) = S2(g)"/? + ¢ - 2%(g)
that are used in order to analyze the structure of the 3-manifold M in the cases where
o(M) := max u(g) < 0. Here pu(g) := infgery S(9), S(g) := vol(g)'/? [, scydv The basic
motivation for setting up such a penalty method is to get some a priori regularity for a
minimizing sequence g. for S>. We explained that functionals like R?(g) that guarantee
pointwise bounds on curvature are not appropriate for the geometrization program either;
its Euler equation are of fourth order and are too complicated to yield any reasonable
information about the structure of its solutions. The example of the connected sum M;# M,
of two hyperbolic spaces shows that there exist (likely a lot of) non-trivial solutions. But
in order to be helpful with the proof of the geometrization conjecture it will be necessary
that

(1) the structure of the minimizers can be understood and related to the homogeneous
geometries

(2) the minimizing sequence develops singularities and non-compact limits in order to
cope respectively with the prime (or sphere) decomposition and the torus decom-
position theorem



The goal is to get this information about M from the variational problem. Strong conver-
gence of minimizing sequences is a must in order to have Euler equations, get regularity,
understand collapse, and show that there are no spurious degeneracies.

The Euler Lagrange equations of I, ™ are VI~ = 5-VZ§E +L;(g)+x-g. A brief discussion of
this equation has been given. We explained why it is advantages to work with the negative
part of scalar curvature rather than the full scalar curvature. We stated (without proof)
that the principal term L7 (u) in the Euler-Lagrange equations gives a direct connection to
static solutions of the vacuum Einstein equations.

Proof of Conjectures I-II for Tame 3-Manifolds.
JOSEPH AYOUB

The definition of tame 3-manifolds. M? tame implies that

p(x) > po,

for all x € (., g-) as € — 0, where p, = p,(M) depends only on M. The basic idea of the
proof of this was sketched.

In brief, one applies the L? Cheeger-Gromov theory. As e — 0, metrics either converge to
compact limit metric on M, form cusps in M, or collapse. The smoothness and convergence
to limits were discussed. All limits (compact or cusps) are of constant curvature.

The proof that tori in cusps are incompressible in M was studied in some detail; this is
the analogue of the Thurston cusp closing theorem. The geometrization of graph manifolds,
via the geometry of the collapse was discussed.

Outline and Overview of the Program
MICHAEL ANDERSON

This lecture gave an overview of the previous lectures, motivating and bringing together
the various themes and issues.

Curvature functionals on the space of metrics on a given 3-manifold can be divided into
two basic classes.

(1) Full curvature R : For example |Rp| = L* norm of full or Ricci curvature, MinV ol
of Gromov. L? or L? norms of R, or of z = Ric — 39, etc.

(2) Scalar curvature functionals S : For example - Einstein-Hilbert functional, L? or
L? norms of s, L? or L” norms of s~ = min(0, s), etc.

These two classes each have their own advantages/disadvantages which turn out to be
essentially complementary.

(1) R-functionals:
Good Side: One can control the geometry of minimizing sequences via the
Cheeger-Gromov theory and related compactness theorems.
Bad Side: Limits are typically not of constant curvature, but instead only sat-
isfy very complicated equations. Thus, limits are not related to the Thurston or
geometric decomposition of M.



(2) S—functionals:
Good Side:  Minimizers, when they exist, are typically of constant curvature
and reflect the geometric decomposition of M (sphere / torus decomposition, etc.)
Bad Side: One has no control on geometry of minimizing sequences, and so no
possibility of obtaining existence of limits.
These constructions motivate the choice of seemingly complicated functional

I~ = 5(1}0[)1/3/ |2 + (voll/?’/ (s7)%)1/2
M M

combining features of both classes.

We reviewed the existence and geometry of minimizers of I.~, namely (€2, ¢.), and
discussed some basic estimates on the geometry as e — 0, referring in particular to
the results of lectures 7 and 8 (Abresch and Ayoub).

The static vacuum Einstein equation in General Relativity
BERND SIEBERT

Under the presence of a hypersurface orthogonal time-like Killing field the vacuum Einstein
equations Ricy = 0 (for (N, g) Lorentzian) reduce to the system of equations on a 3-
manifold (M, g).

Ricy =0,Au=0
where v > 0. These are the static vacuum Einstein equations on M. In Anderson’s
geometrization program solutions to these equations occur at various places as limits of
rescaled metrics and a good understanding in particular of the asymptotics of such solutions
is central.
In the talk I discussed the most symmetric solution of this system with one end; the
Schwarzschild solution, and its characterization by asymptotic flatness and smoothness
up to horizon. There are many more solutions by a construction due to Weyl, that are
S1—symmetric. I mentioned a few special cases showing the necessity of the assumptions
in the mentioned characterization at the Schwarzschild metric (“black hole uniqueness”.
Another important result is the triviality of complete solutions (generalized Lichnerowicz
theorem), which by contradiction with a blow-up construction also gives important a priori
estimates for the curvature and the gradient of the potential function u. Similarly one also
obtains a priori estimates for (the L?—curvature radius of) Yamabe metrics.



Introduction to Curvature Blow-up
FABIAN ZILTENER

Given a sequence of metrics g; on M3 that satisfy some non collapse assumption and
whose scalar curvature is uniformly bounded in the L?—norm, but whose Ricci curvature
is unbounded, one can find a solution (g,u) on By C R? of the static vacuum Einstein
equations

D?*u = Ricyu,

Agﬂ/ - 0,
g is obtained as the weak L*? limit of a suitably rescaled subsequence of the g;’s (modulo
diffeomorphisms) and @ is constructed from the sequence u; € L*»?(M,R), where u; satisfies

* Si
Liui+§& = —3 9

for some &; € kerLy,. There are some obvious solutions of the static vacuum Einstein equa-
tions. Under some additional hypotheses one can construct non trivial solutions (g, @).

Structure of blow up limits
THOMAS SCHICK

In previous talks, metrics (2. CC M, g.)(e > 0) were constructed, minimizing the func-
tional /. We assume that o(M) < 0 and fﬂs 2|2 —._¢ 0o. The limiting behaviour has
to be studied.

We pick appropriate z. € Q. with p(z.) — 0 and study the blow ups (Q2.,g9. =
p= ()G, w2).

Theorem If {z.} is chosen correctly,
(2, g%, z.) converges in the strong L*»?—topology to a complete limit (Q, g, ).
The limiting metric is locally L3P, and smooth outside a (possibly empty) junction set
Y C Q.

It satisfies (weakly) one of three partial differential equations, either:

(1) VZ2=0
(2) aV2Z+L*(1)=0 a#0,7<0,7#0
(3) L*(r) =0, <0
with trace equations
(1) As = —3|z|?
(2") AT+ &s) = —alz]?
(3") AT =

To get from uniform L?*?—bounds (given by the curvature radius p'(z.) = 1) to uniform
L3?—bounds (which give by compactness of L3? — [%?2 strong convergence), uniform
elliptic estimates are used. They work only because 7 < 0, i.e. because we use the cutoff
functional 7.



Blow-Up-Limits II: Non-Existence Results
MATTHIAS SCHWARZ

;From the previous talk No. 11 (Schick) the possible blow-up limits for a sequence of
minimizers (§2., ¢g.) for the functional I_~, have been classified to be of at most one of the
following types:

(N, goo) is a complete, non-flat, 3-manifold with potential function 7 < 0, scalar curvature
s > 0 such that s-7=0

satisfying either

(1) Z? —eq: VZ2(g) =0 s>0,7=0
As = =3|z|%, s
(2) Z? —eq: aVZ*g)+ L*(1)=0, s>0,7<0,7#£0,s7=0
AT+ &s) = —1alz]?
(3) static vacuum : L*(t) =0, 7<0,5=0
AT =0

The subject of this talk was to rule out cases (1) and (3) and any limit metric which
carries together with 7 a free isometric S'—action.
Proofs for this were sketched, in case (1) for the analogous case of the R? - eq, in case (3)
under the additional assumption that —\ < 7 < 0 for some A > 0.
Based on this, the Theorem B in Anderson’s work (M. Anderson: Scalar curvature, metric
degenerations and the static vacuum Einstein equations on 3-manifolds, II, Geom. &
Funct. Analysis, 11, (2001), 273-381) was completed, ruling out any collapse which would
lead to a free isometric S'—action.

Asymptotically flat ends I
JANKO LATSCHEV

In this talk, we continued the discussion of blow-up limits for sequences of minimizers
(., g-) of the functionals I.~. We introduced the

Sphere Conjecture: There exists a blow-up limit (N, ¢/, ) with an asymptotically flat
end £ C N ie. E~R?*\ B, and on F the metric ¢’ has the form

2m
=1+
gz] <+T’)]+

with m > 0 and |h| = O(r=2),|Dh| = O(r=3),|DR?*| = O(r~%)
In the main part of the talk, we discussed how the sphere conjecture implies the main
conjectures I and II. This is based on showing that the natural 2-spheres in the end are es-
sential in M. Assuming this were not the case, we derive a contradiction to the minimizing
properties of g. by constructing suitable comparison metrics.

Asymptotically Flat Manifolds 11
FRANK LOOSE

The topic of this talk was to explain M. Anderson’s generalization of the so-called “Black
Hole Uniqueness Theorem” (see M. Anderson: On the structure of solutions of the static
vacuum Einstein equations, Ann. Henri Poincaré 1(2002),995 — 1042), which studies the
asymptotic topology and geometry of the static vacuum Einstein equations on a 3-manifold.
As it turns out the techniques used there are also applicable to prove the existence of
asymptotically flat ends for solutions of the Z?-equations which occur as limit manifolds



of rescaled minimizers for the functional /7, under certain compactness conditions on
the level sets of the potential (see M. Anderson: Scalar curvature, metric degenerations,
and the static vacuum Einstein equations on a 3-manifold II, Geom. & Funct. Analysis

11(2001), 273 — 381; in particular §7).

Where Things Stand and What Remains: Sigma -Tame manifolds
MICHAEL ANDERSON

After discussion of the basic items and results from the previous two Lectures , we focus
on the value distribution theory of the potential function u = —7 from earlier lectures.
The Sphere Conjecture from Lecture 13 (Latschev) is hard to prove, since one has no global
mass bound on the potential u. On the other hand, one has an explicit mass bound on the
potential u on the “original” unscaled (€2, g.). One then combines this with uniform local
lower mass bounds. This leads to the following definition and theorem.

1
Definition Let 6(g) = o(g) — |o(M)],0(g9) = ([,,(s7)*)2. Then M is o—tame if there
exists a sequence of unit volume metrics g; on M such that

5(gi) — 0
and constants K, Ky < oo such that
[5(9:)]"" - 22(g:) < K

Theorem Conjectures I and II are true for c—tame 3-manifolds.
It is conjectured that any 3-manifold (closed, oriented) is o —tame.

Scalar Curvature and Black-holes
Luc Rozoy

Theorem Let (M, g, f) be such that (M, g) is a compact, analytic Riemannian 3-manifold,
f € C¥M) and L*(f) = z(= Ricci — *2g)

Then M is Einstein

Proof Step 1 0L*(f)=0z= (f+1— 25)d(Scal) =0so s = R = constant

Step 2 Cotton tenor: Set S = Ricci—%g. Then C(zAy,¢) = D,S(y,¢)—D,S(z, )
is a symmetric traceless, divergence free tensor and if § = €??¢, then C' = e=3°C

At p € M with f(p) # —1 and V f(p) # 0 take (1, e, %) with (€1, 2) unit vectors giving

the curvature direction and ki, k3 the corresponding principal curvature:
1 0 2w(k‘2 — k’l) —DE2W

C=—| * 0 D, W with W = |df |?
(f+12 i 0

Step 3 Conformally flat case:
2
In a open set where df # 0, ds?* = % +2gap(zt,n?, f)dztdz®. Then C =0= W = W(f)
and ds? = da? + a*(x)go; go is of constant curvature uy.
Write L*(f) = 2, d'f" —a"f =a" + Za, f"+ 22 + Bf =0, a?8 4 0% + 200" =
We get Lafontaine’s seesaw (a/)? = € — £4? = L*(d/) = 0

Yamabe’s swing f = —1+ \d’ + Pr(ﬁ)a%

a u3/2duy
In case ¢ <0, f'(n3) — f'(m) # 0 <= [.° ((u_a,)(a2—u)(Z+a,+a2))3/2 # 0

and we are done



Step 4 If f > -1, L*(f) = z = [, |2[’duy = [ < L*(f),z >= [,, [L(2)dw, =
— [y flzlPdwgy. So [,,(1+ f)|z]*dw, = 0 and we are done.

Step 5 If {f < -1} #0 weget {f < —1} = (U2 Sk) U (Up2o{ Pr}) where S is an em-
bedded surface on which (df) # 0 and P, a Morse singular point of f (df(Pk) =0, Hess (P) = %g).
If | J{P} # 0 easy (same argument but more simple) if | J{P.} =0 ~~

Step 6  Jko such that x(Sg) >0

Proof: With g = ﬁ, one has Ag(W+% f2) = 2(f+1)*z[*. So maximum of W+ £ f2
on {|f + 1| > e} at + M. If ¢ — 0 at least one S, = Sy give the max of W + £ f? on M.
Let W(Sp) =A, WH+Ef2<A+Ef2.. /... — Gauss (S) > &+ (";)Q,h second
fundamental form of f on the f-level.

Step 7 In a neighbourhood of Sy , x(f — level) > 0. If the f—level are totally umbilical
it is easy. If not, expand the field of curvature directions in a field with only finite singular
points where index # 0 But ) (index) = x(Sp) > 0. We get a one dimensional strata
transverse to the f—levels of umbilic with index > 0.

Step 8 index (umbilic) # 0 = Cotton=D Cotton=0 (See Caratheodory conjecture +
meromorphic Lagrange preparation theorem).

Step 9  Wy(f) = W (umbilic) give WO% + 3(f—}il) = W(Wg + %)(Wo + Rf) in the

3
0
conformally flat case. Sy give the maximum =— ¢ < 0, ¢ = 0 easy. If ¢ < 0 solve
f
3

[ not globally with step 3 with f. < f < —1,Wo(fi) = 0 and take Wy(f) = 0 if
f < fAGW = Wo) = ()7 + (00-(W = Wo) = 22(f + (B + S(f + 1)) (W — W) but
BrS(f+1)=0= f=-1%

Step 10 O connected component of

(57}

such that C C O. Inside © maximum principle give Cotton = 0 !

Edited by Joachim Lohkamp
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