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The conference was organized and directed by Carl de Boor (Madison), Helmut Pottmann
(Wien), and Ulrich Reif (Darmstadt). Researchers from various fields of mathematics, in-
cluding approximation theory, applied differential geometry, computer aided geometric
design, and numerical analysis discussed recent advances in geometric computing. Central
topics have been

e Partial differential equations for the solution of geometric optimization problems
e Multiscale methods
e Algebraic techniques in geometric design

It has been fascinating to see that communities (Computer Aided Geometric Design and
Approximation Theory, Computational Differential Geometry, Partial Differential Equa-
tions), which so far did not have much interaction, are addressing closely related problems
with partially different techniques or from different points of view. This has been a source
for fruitful discussions and the initialization of new cooperations. The addressed applica-
tions go far beyond geometric design and include areas such as Image Processing, Computer
Vision and Robotics.

Despite a larger number of volunteers, only a moderate number of talks had been sched-
uled in order to leave sufficient time for discussion and joint work during the conference.
The participants acknowledged this opportunity and made extensive use of it. On behalf
of all participants we would like to thank director Prof. Dr. G.-M. Greuel and his staff
for their hospitality and friendly support, which helped greatly to make this conference a
success.



Abstracts

A Clifford Algebra Approach to Pythagorean Hodograph Curves
H.I. CHOI
(joint work with N.-S. Wee)

The Pythagorean hodograph (PH) curves are characterized by certain Pythagorean n-tuple
identities that involve the derivatives of the curve coordinate functions in the polynomial
ring. It was originally pioneered by Farouki and Sakkalis, and later extended and studied
from many different perspectives by Pottmann, Peternell, Dietz, Hoschek, Jiittler, and
many others.

Such curves have advantageous properties in computer aided geometric design, the main
attraction being the rationality of many of the important geometric quantities. The state
of affairs was that each different context in 2- or 3-dimensional Euclidean and Minkowski
space gives rise to different combinations of polynomials, each of which again necessitates
a different setup and methodology.

With D.S. Lee and H.P. Moon, utilizing the Clifford algebra formalism, we were able
to unify the known incarnations of PH curves into a single coherent framework. More
specifically, we were able to extend the spin representation to a map, which we called the
PH representation map, defined on a suitable subspace of the Clifford algebra. (At a formal
level, it is identical to the Kustaanheimo-Stiefel transform in physics.)

In this lecture, we will briefly outline our approach to the PH curves as a way of intro-
duction, and then discuss about mathematical as well as practical aspects of this approach.
Finally, we will present our recent result with Chang Yong Han on the Euler-Rodriques
frame on the spatial PH curves, which will be useful in designing sweep surfaces.

Adaptive finite element schemes — how good can a-posteriori information be?
WOLFGANG DAHMEN
(joint work with P. Binev and R. DeVore)

This talk is concerned with adaptive finite element schemes where successive local mesh
refinements are based on a-posteriori error indicators. While a specific variant has only
recently been shown by Morin, Nochetto and Siebert to converge at all, there have been
no convergence rates relating the achieved target accuracy to the adaptively generated
number of degrees of freedom and the corresponding computational work. It can be shown
that a certain modification of the above scheme, involving an additional coarsening step,
exhibits asymptotically optimal convergence rates comparable to those of best N-term
approximation in the underlying finite element setting. Some ingredients of the analysis
are outlined, namely adaptive tree approximation and bounding the complexity of certain
refinement and completion strategies for triangulations based on newest vertex bisection.



Numerical methods for geometric flow problems
GERHARD DzI1Uk
(joint work with K. Deckelnick and R. Rusu)

Evolutionary geometric differential operators appear to be crucial for the treatment of
problems in mathematics and applications such as free boundary problems and image
processing.

The main geometric flow problems are mean curvature flow

V =H,
and Willmore flow .
V =-ArH + H(2K — 5H?).

Here T" is the moving surface with normal velocity V', mean curvature H, Gauss curvature
K, and Ar denotes the Laplace Beltrami operator on I'.

There are several mathematical models for the geometric object which moves under
the respective geometric law of motion: parametric model, level set model and phase
field model. Depending on the type of the chosen model, numerical methods have been
developed. The main focus of the lecture is the parametric model, for which an efficient
method based on a finite element method on surfaces. For mean curvature flow we also
discuss the numerical approximation of viscosity solutions of the level set model.

This is joint work with K. Deckelnick (Magdeburg) and R. Rusu (Freiburg).

Top—Down View—Dependent Terrain Triangulation using the Octagon Metric
THOMAS GERSTNER

In this talk, we introduce the octagon metric as a very useful distance metric for the
interactive visualization of large—scale terrain data. Based on recursive bisection triangle
meshes, this metric automatically ensures valid triangular meshes without cracks or T—
junctions. We will show the octagon metric can be used for view—dependent refinement
at little computational cost and with no additional storage requirements. It can easily
be combined with a suitable geometric error metric to extract and render adaptive view—
dependent terrain meshes in an output—sensitive way. We will show the performance of
the whole system, which is straightforward to implement, in several examples.

Two Multisided Bernstein/Bezier-Barycentric Schemes: S-Patches and Toric
Bezier Patches

RoN GOLDMAN

Three sided and four sided parametric patches are typically used for freeform design,
but multisided patches are often required when it is necessary to fill an n-sided hole. Three
sided and four sided Bezier patches are currently standard tools in approximation theory
and computer aided geometric design. In this talk, we show how to extend the standard
three sided and four sided Bezier constructions to rational n-sided patches.

To construct three sided and four sided Bezier patches, we need three sided and four
sided arrays of control points and barycentric coordinate functions for the triangle and the
rectangle. Similarly, to construct multisided Bezier patches, we require multisided arrays
of control points and barycentric coordinate functions for multisided polygonal domains.



But what exactly are multisided arrays of control points and how precisely do we con-
struct barycentric coordinates for multisided polygons? There is no single answer to either
of these questions: different answers lead to different types of multisided Bezier schemes.
Based on two different answers to these questions, we develop two distinct, but related,
types of multisided Bezier patches: generalized S-patches, which extend the original S-
patch construction of Loop and DeRose, and toric Bezier patches, which have recently
been introduced by Krasauskas and have their origins in the theory of toric varieties from
algebraic geometry. Three common threads tie these schemes together: discrete convolu-
tion, Minkowski sum, and a general version the de Casteljau pyramid algorithm. This talk
focuses on basic properties — affine invariance, the convex hull property, interpolation of
boundary curves — and fundamental algorithms — evaluation, differentiation, blossoming —
for these multisided Bezier patches. We also compare and contrast the relative benefits
and limitations of these two n-sided Bezier schemes.

Optimization problems for curvatures
K. GROSSE-BRAUCKMANN

The goal of my talk was to present some real-world problems for interfaces governed by
curvature properties, and indicate how they can be modeled by discrete surfaces.

The problems I explained are the interfaces of satellite fuel tanks, the intermaterial
dividing surfaces of di-block copolymers, and amphiphilic monolayers.

To analyse such interfaces, I noted that surfaces are critical for area under a given
volume constraint iff they have constant mean curvature H = (k; + k2). Constant mean
curvature can also arise for the following reason: The area element of a parallel surface at
distance t grows like (1 + tH)dA, in highest order. Hence wedge-shaped molecules which
form a monolayer will have constant (“spontaneous”) mean curvature. The same growth
is observed for the line element in each principal curvature direction; hence for unequal
principal curvatures the cross-section of the molecule in the monolayer undergoes some
distortion. Such a distortion will cost energy, and so the energy functional for a monolayer
usually contains (k; — @)2 = 4H? — 4K, where K = Kk ky is Gauss curvature. Since
the topology of the interfaces is usually not prescribed, we cannot use the Gauss-Bonnet
theorem to ignore the contribution of [ K to the energy. Thus we are lead to consider
rather general energies like [a(H — ¢)? + bK (with a, b, ¢ constant).

The computation of constant mean curvature surfaces is usually straightforward and
efficient using the gradient flow of area. However, to compute the critical points of the
bending energy [ H? or other second order integrals is more complicated, and often leads
to numerical instabilities.



The Web-Method
K. HOLLIG
(joint work with U. Reif and J. Wipper)

The web-method is a new finite element technique which uses weighted extended B-
splines (web-splines) as basis functions. It combines the computational advantages of
uniform splines on regular grids standard triangular finite elements:

No grid generation is required.

Boundary conditions are represented exactly.

Smoothness and order can be chosen arbitrarily.

Highly accurate approximations are possible with relatively few parameters.
Hierarchical bases permit adaptive refinement.

e Multigrid algorithms yield solution times proportional to the number of unknowns.

We discuss the basic features of the method, applications to typical boundary value prob-
lems, and, in more detail, the implementation of a multigrid scheme.

Geometry of wavelets: local and global features
PALLE JORGENSEN

The setting is compactly supported orthogonal wavelets in one or several dimension. The
multivariate case, is associated with a given expansive integral matrix. If the support is
fixed, two cases are considered, a variety consisting of all the orthogonal wavelets, contain-
ing a lower dimensional set of singular points corresponding to wavelets which are only
tight-frame wavelets, but not orthonormal. The points of non-uniqueness of the dominant
eigenvalue of the transfer operator is identified as the set of singular points within the
variety. An index theorem [1] is presented for the class of wavelets with Lipschitz filters, in
which the winding number of a unitary matrix function identifies connected components.
The wavelet variety carries a many-valued ”Gauss map”, a map which for scaling number
N = 2 takes values in a finite set of points on the two-sphere. This map, together with
spectrum of the transfer operator determines the wavelets , and their local properties.
The spectrum refers to a space of Lipschitz functions. A wavelet subdivision algorithm
is presented and illustrated. A quantum version of the wavelet algorithm is presented.
Using spectral theory and subdivision, it is proved that the wavelets depend continuously
on the masking coefficients: Specifically, if the reduced spectral radius is < 1, then the
difference between two wavelets, measures in the L?(R)-norm, is less than a constant times
the difference between the wavelet filters measured in the Lipschitz-norm. The constant
blows up when the reduced spectral radius goes to 1.

[1] O. Bratteli and P. Jorgensen, Wavelets through a looking glass: The world of the
spectrum. Birkhauser/Springer 2002.



Approximate algebraic methods for CAGD
BERT JUTTLER
(joint work with P. Chalmoviansky, A. Felis, J. Gahleitner, J. Schicho, and M. Shalaby)

So far, the implicit form of curves and surfaces has not found widespread use in CAGD.
This is mainly due to the fact that the conversion processes between implicit and parametric
form (implicitization and parameterization) have its problems. For instance, implicitization
may produce large data volumes (e.g., a bicubic patch has algebraic order 18, and is
described by a polynomial with 1330 coefficients), or unwanted branches of the curve may
pass through the region of interest. On the other hand, many computational problems,
such as surface-surface-intersection, get simpler if both representations are available.

Approximate algebraic methods may help to avoid the difficulties associated with the
conversion processes. A method for approximate implicitization has been proposed by
Dokken [1] in his PhD thesis. This talk describes two other methods for approximate
implicitization. The first one is based on surface fitting by simultaneously approximating
points (scattered data) and associated normals [2]. Tt can also be used for reconstructing
surfaces from point clouds in reverse engineering. The second one uses a direct construction
to generate a continuous or C'' spline implicitization of a quadratic spline curve [3]. In
addition we discuss variational design and approximate parameterization of algebraic curve
segments.

This talk is based on joint work with P. Chalmoviansky, A. Felis, J. Gahleitner, J. Schi-
cho, and M. Shalaby. The financial support by the Austrian Science foundation (FWF)
through project 15 of SFB F013 “Numerical and Symbolic Scientific Computing” is grate-
fully acknowledged.

[1] T. Dokken, Approzimate implicitization, in: Mathematical Methods in CAGD (eds.
T. Lyche, L. L. Schumaker), Vanderbilt University Press, Nashville & London 2001.

[2] B. Jiittler and A. Felis, Least—squares fitting of algebraic spline surfaces, Advances in
Computational Mathematics 17 (2002), 135-152.

[3] B.Jiittler, J. Schicho and M. Shalaby, Spline implicitization of planar curves, submit-
ted.

Spline Quasi-interpolants
ToMm LYCHE

Many applications of splines make use of some approximation method to produce a
spline function from given discrete data. Popular methods include interpolation and least
squares approximation. However, both of these methods require solution of a linear system
of equations with as many unknowns as the dimension of the spline space, and are there-
fore not suitable for real-time processing of large streams of data. For this purpose local
methods, which determine spline coefficients by using only local information, are more
suitable. To ensure good approximation properties it is important that the methods repro-
duce polynomials and maybe preferably the functions in the given spline space. Classical
methods of this kind were published in the seventies by de Boor and Fix using derivative
information and extended by Schumaker and the author. In order to reproduce the spline
space, the local information of the methods in the latter paper was restricted to lie in
one knot interval. This restriction was removed in a recent paper by Lee, Mgrken, and
the author and a recipe for deriving local spline approximation methods which reproduce
the whole spline space was given. The methods are obtained by solving a series of local
approximation problems. Examples of specific cubic approximation methods will be given
and this leads to interesting methods of possible practical use.



Enclosing Curved Geometry and Inverse Problems
JORG PETERS

The presentation has four parts:

1. Basics of slefes (subdividable linear efficient function enclosures)
A slefe is an explicit two-sided approximation f*, f~ of a map f so that f~ < f < f*
over the domain of interest.

2. Sleves (subdividable linear efficient variety enclosures)
A sleve is a pair of linear approximations that sandwich the surface. In particular, we
are interested in efficiently constructing two triangulations, so that matched triangle pairs
enclose a piece of the curved surface. The width of the enclosure, i.e. the distance between
inner and outer hull, can be easily measured, because it is taken on at a vertex. Enclosures
are therefore approximate implicitizations with known error.

3. Midpaths and midpatches and duality with the curve
A midpath or midpatch is the average of a sleve. It yields a better surface approximation
than sampling the surface.

4. Inverse Channel and Cover problems.
The Channel problem for functions: given two locally non-intersecting input polygons
¢ < ¢, construct a spline function b that stays between ¢ and ¢ and consists of a small
number of pieces.
The Cover problem is a 1-sided fitting problem. Both problems are solved by fitting a
sleve into the channel and thus reducing a hard continuous optimization problem to a
linear program.

Possible applications are conversion between representations, collision detection, root
finding, best piecewise linear approximation for rendering, and fitting and layout.

Spectral Theory for the Convergence of the Subdivision Operator
AMos RonN

The current theory for the convergence of the iteration of the stationary subdivision op-
erator is based on the notion of joint spectral radius. Unfortunately there exists no viable
understanding of this notion in analytic terms.

We provide instead a new approach, based on the notion of quasi-interpolation, that
reduces the problem to

(1) the smoothness properties of the limit surface,
(2) the spectral properties of a finite-rank linear operator.

Geometric evolutions problems in image and surface processing
MARTIN RUMPF

Morphological images processing and general surface processing are closely related topics.
Thereby, the geometry of images is represented by the set of level sets. Methods based on
partial differential equations turn out to be flexible and powerful tools in both areas. The
talk outlines PDE based nonlinear filtering, subdivision and restauration methods. The
noise reduction filter technique consist of a local classification and a geometric evolution
problem steered by this classification. Based on image processing methodology and the
theory of geometric evolution problems novel multi scale methods for surfaces, textured



surfaces and 3D level sets are presented. The aim is the fairing of the noisy surfaces while
preserving features such as edges and corners. In case of textured surfaces an appropriate
coupling of the fairing processes for the surface geometry and the texture is presented. Here,
one can especially take advantage of the frequently present strong correlations between edge
features in the texture and on the surface edges. As an alternative approach a method based
on crystalline curvature motion combined with a classification based on the zero moment
of the surfaces is considered. Furthermore it is discussed how a certain class of subdivision
methods can be understood as a cascadic multi grid method for a fully nonlinear time step
of a geometric evolution problem. Finally, a method for the restauration of surfaces based
on Willmore flow is presented.

Sum rules, ideals and bases
THOMAS SAUER
(joint work with H. M. Moller)

A function ¢ : R® — R is called refinable provided there exists a finitely supported
sequence a, called the mask, such that

6= ala)(M-—a),

Qa€EZS

where M € Z°*° is an expanding matriz, that is, all its eigenvalues are > 1 in modulus.
Instead of considering the function ¢ itself which is most often only given implicitly as the
solution of the above functional equation, one tries to consider properties of the stationary
subdivision operator S, defined for any sequence c as

SaC 1= Z a(-— Ma) ca).

€S

A crucial condition for the function ¢ to provide a certain approximation order or to be
smooth is (under suitable additional conditions, of course) that S, maps all polynomial
sequences of a certain total degree to a polynomial sequence of (at most) the same total
degree.

It is well known how to describe this property in terms of linear identities or in terms
of zero conditions for the symbol a*(z) := > a(a)z® which is a Laurent polynomial.
The talk introduces another description, namely that a* is contained in the quotient ideal
<zM — 1> : (z = 1) and explains how the theory of Grébner- and in particular H-bases
can be used to obtain differenced representations of the subdivision operator as well as
minimally supported masks of a given order.

[1] H. M. Madller and T. Sauer, Multivariate refinable functions of high approzimation
order via quotient ideals of Laurent polynomials, Advances Comput. Math. (2002), to
appear.

[2] T. Sauer, Grébner bases, H-bases and interpolation, Trans. Amer. Math. Soc. 353
(2001), 2293-2308.

3] , Polynomial interpolation, ideals and approximation order of refinable func-
tions, Proc. Amer. Math. Soc. 130 (2002), 3335-3347.




Geometric conditions on free boundaries
REINER SCHATZLE

The Stefan problem with Gibbs Thomson law is a model for melting and solidification
of materials. The Gibbs Thomson law determines the melting temperature on the free
boundary between the liquid and solid phase in geometrical data of the free boundary
namely the mean curvature.

Existence of solutions for the Stefan problem with Gibbs Thomson law was proved in
[1] by Luckhaus 1991 using a time-discrete approximation and an absolute minimization
process at each time step. From the thermodynamical point of view, this absolute mini-
mization is difficult to justify.

In 2002 Matthias Roger, Phd-student of H-W. Alt and mine, succeeded in proving ex-
istence of solutions for the Stefan problem with Gibbs-Thomson law using only a local
minimization process. The difficulty is that area may be lost when passing to the limit.
The limit procedure relies on an identity recently established in [3] which writes the weak
mean curvature in the context of geometric measure theory in terms of approximate dif-
ferentials of the height function.

[1] S. Luckhaus, The Stefan Problem with Gibbs Thomson law, Sezione di Analisi Matem-
atica e Probabilitita, Universita di Pisa, 2.75 (591), 1991.

[2] R. Schétzle, Hypersurfaces with mean curvature given an ambient Sobolev function,
Journal of Differential Geometry, 58, No. 3, 371-420, 2001.

3] ,Quadratic tilt-excess decay and strong mazximum principle for varifolds, sub-
mitted, 2000.

Subdivision for Modeling and Simulation
PETER SCHRODER

Subdivision surfaces are now solidly established as a major modeling primitive for free-
form design. As it turns out they also have very favorable qualities when it comes to
solving 4th order PDEs such as the thin-shell equations. The latter describe the behavior
of thin flexible structures as they appear in all areas of engineering design. In this way
subdivision surfaces are highly suited for integrated engineering design, removing the usual
troubles associated with converting geometric representations to a form more suitable for
finite element analysis.

My talk covers two subjects from this area. In a first part I will describe some recent
developments in the construction of subdivision schemes based on repeated averaging. As
it turns out, primal/dual mesh averaging operators are sufficient to build large families
of classical as well as new subdivision schemes for a variety of possible topological split
operators. Among them primal and dual quad schemes and more exotic dual v/3 schemes
(among many others). In the second part I will review some of the work on thin-shell
modeling with the Subdivision Element Method and discuss strategies for the simple (in
terms of data structures) construction of adaptive solvers.



Approximate Duals of Bernstein polynomials and B-splines for the
Construction of Tight Frames

JOACHIM STOCKLER
(joint work with C. Chui, W. He, and K. Jetter)

The dual basis of the B-spline basis consists of functions of full support. We develop new
relations for certain quasi-interpolants of B-splines that generalize the quasi-interpolants
of Bernstein-Durrmeyer type for the Bernstein polynomials. These relations give rise to
the definition of approximate duals of B-splines of order m, which are a linear combination
of only m — 1 B-splines and reproduce all polynomials of degree m — 1. The approximate
duals satisfy the same uniform stability estimate that was conjectured by C. de Boor
and shown by A. Shadrin for the dual B-splines. They play an important role in the
construction of tight frames of compactly supported splines on bounded intervals. Our
explicit characterization of spline frames with arbitrary knots includes the cases of multiple
non-uniform knots as well.

An extension of the Bernstein-Durrmeyer quasi-interpolants to the multivariate case is
also mentioned in this talk. Parts of this work are joint work with C. Chui, W. He, and
K. Jetter.

Curvature Measures for Discrete Surfaces
JOHN M. SULLIVAN

There is a well-known interpretation of Gaussian curvature for discrete (triangulated)
surfaces. It is natural because it preserves the Gauss—Bonnet theorem, which equates
the integral of Gaussian curvature to a boundary integral. Less familiar are analogous
boundary integral relations for mean curvature, including the equation

/ nds:/ yxdx:2//HydA:2//HdA,
oD oD D D

which can be understood as a balance of physical forces.

We will show how to use such relations to guide the proper interpretation of mean
curvature (and other geometric quantities) for discrete surfaces. This new understanding
helps to explain the theory of discrete minimal surfaces. It also elucidates why, in early
work on simulations of Willmore energy (W = [ H?dA), certain discretizations were better
than others.

Similarly, for space curves, some quantities, like total curvature or even writhe, have
natural interpretations for polygons. We examine further cases, like knot energies and
ropelength, where a proper consideration of the geometry involved can lead to a natural
discretization.
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Distance functions, active curves, and motion design
J. WALLNER
(joint work with H. Pottmann)

We assume that a collection of feature points xi,...,x, in R" depends affinely on a
set of control points by,...,b; — an example is provided by evaluating a B-spline curve
b(t) at prescribed parameter values x; = b(t;) — and that a geometric object T allows
computing the distance d(x,T) of a point x from 7. Then the so-called iterative closest
point algorithm may be used to let the collection of feature points converge towards 7. It
works by iteratively finding control points which minimize a certain nonnegative quadratic
function determined by T’s distance field. In the case that T has smooth boundary, we
present an extension of the ICP algorithm which uses refined quadratic approximants and
appears to substantially increase the rate of convergence.

An especially important application of this method is the design of near-Euclidean affine
spline motions. A one-parameter affine spline motion (i.e., a spline curve b(¢) in the affine
space R™™ " of affine transformations) is moved towards the Euclidean motion group T.
An affine transformation’s footpoint on 7" is computed via an SVD-type decomposition of
its linear part.

Near-Euclidean near-gliding motions may be designed by moving b(t) towards the con-
figuration manifold of surface-surface contact, which is, in general, a 1-codimensional sub-
manifold of the Euclidean motion group.

Self-tuning algorithms for surface fitting
VOLKER WEISS
(joint work with T. Varady)

Fitting parametric surfaces with tight tolerances is a crucial element in the process of
reverse engineering complex shapes. The point cloud to be approximated typically contains
a large number of noisy data points over an irregular domain. The created surfaces need
to be fair and extendable, and must be generated by minimal amount of user assistance.

The majority of classical least-square surface fitting methods is based on fixed config-
urations of several mathematical entities, such as the knot-vectors, the parametric values
associated with the data points, and a ”well chosen” smoothness factor. These entities
can hardly be set in advance and iterative methods are needed to find their optimum.
Self-tuning surface fitting is based only on a tolerance value, everything else is computed
by the algorithm itself.

Four related problems are discussed:

(1) Generating valid ”B-spline-like” initial parameterization.
(2) Setting automatically smoothness weights.

(3) Handling ”weak” control points.

(4) Inserting knots according to a shape dependent strategy.

Edited by Georg Umlauf
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