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The 
onferen
e was organized and dire
ted by Carl de Boor (Madison), Helmut Pottmann

(Wien), and Ulri
h Reif (Darmstadt). Resear
hers from various �elds of mathemati
s, in-


luding approximation theory, applied di�erential geometry, 
omputer aided geometri


design, and numeri
al analysis dis
ussed re
ent advan
es in geometri
 
omputing. Central

topi
s have been

� Partial di�erential equations for the solution of geometri
 optimization problems

� Multis
ale methods

� Algebrai
 te
hniques in geometri
 design

It has been fas
inating to see that 
ommunities (Computer Aided Geometri
 Design and

Approximation Theory, Computational Di�erential Geometry, Partial Di�erential Equa-

tions), whi
h so far did not have mu
h intera
tion, are addressing 
losely related problems

with partially di�erent te
hniques or from di�erent points of view. This has been a sour
e

for fruitful dis
ussions and the initialization of new 
ooperations. The addressed appli
a-

tions go far beyond geometri
 design and in
lude areas su
h as Image Pro
essing, Computer

Vision and Roboti
s.

Despite a larger number of volunteers, only a moderate number of talks had been s
hed-

uled in order to leave suÆ
ient time for dis
ussion and joint work during the 
onferen
e.

The parti
ipants a
knowledged this opportunity and made extensive use of it. On behalf

of all parti
ipants we would like to thank dire
tor Prof. Dr. G.-M. Greuel and his sta�

for their hospitality and friendly support, whi
h helped greatly to make this 
onferen
e a

su

ess.
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Abstra
ts

A Cli�ord Algebra Approa
h to Pythagorean Hodograph Curves

H.I. Choi

(joint work with N.-S. Wee)

The Pythagorean hodograph (PH) 
urves are 
hara
terized by 
ertain Pythagorean n-tuple

identities that involve the derivatives of the 
urve 
oordinate fun
tions in the polynomial

ring. It was originally pioneered by Farouki and Sakkalis, and later extended and studied

from many di�erent perspe
tives by Pottmann, Peternell, Dietz, Hos
hek, J�uttler, and

many others.

Su
h 
urves have advantageous properties in 
omputer aided geometri
 design, the main

attra
tion being the rationality of many of the important geometri
 quantities. The state

of a�airs was that ea
h di�erent 
ontext in 2- or 3-dimensional Eu
lidean and Minkowski

spa
e gives rise to di�erent 
ombinations of polynomials, ea
h of whi
h again ne
essitates

a di�erent setup and methodology.

With D.S. Lee and H.P. Moon, utilizing the Cli�ord algebra formalism, we were able

to unify the known in
arnations of PH 
urves into a single 
oherent framework. More

spe
i�
ally, we were able to extend the spin representation to a map, whi
h we 
alled the

PH representation map, de�ned on a suitable subspa
e of the Cli�ord algebra. (At a formal

level, it is identi
al to the Kustaanheimo-Stiefel transform in physi
s.)

In this le
ture, we will brie
y outline our approa
h to the PH 
urves as a way of intro-

du
tion, and then dis
uss about mathemati
al as well as pra
ti
al aspe
ts of this approa
h.

Finally, we will present our re
ent result with Chang Yong Han on the Euler-Rodriques

frame on the spatial PH 
urves, whi
h will be useful in designing sweep surfa
es.

Adaptive �nite element s
hemes { how good 
an a-posteriori information be?

Wolfgang Dahmen

(joint work with P. Binev and R. DeVore)

This talk is 
on
erned with adaptive �nite element s
hemes where su

essive lo
al mesh

re�nements are based on a-posteriori error indi
ators. While a spe
i�
 variant has only

re
ently been shown by Morin, No
hetto and Siebert to 
onverge at all, there have been

no 
onvergen
e rates relating the a
hieved target a

ura
y to the adaptively generated

number of degrees of freedom and the 
orresponding 
omputational work. It 
an be shown

that a 
ertain modi�
ation of the above s
heme, involving an additional 
oarsening step,

exhibits asymptoti
ally optimal 
onvergen
e rates 
omparable to those of best N -term

approximation in the underlying �nite element setting. Some ingredients of the analysis

are outlined, namely adaptive tree approximation and bounding the 
omplexity of 
ertain

re�nement and 
ompletion strategies for triangulations based on newest vertex bise
tion.
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Numeri
al methods for geometri
 
ow problems

Gerhard Dziuk

(joint work with K. De
kelni
k and R. Rusu)

Evolutionary geometri
 di�erential operators appear to be 
ru
ial for the treatment of

problems in mathemati
s and appli
ations su
h as free boundary problems and image

pro
essing.

The main geometri
 
ow problems are mean 
urvature 
ow

V = H;

and Willmore 
ow

V = ��

�

H +H(2K �

1

2

H

2

):

Here � is the moving surfa
e with normal velo
ity V , mean 
urvature H, Gauss 
urvature

K, and �

�

denotes the Lapla
e Beltrami operator on �.

There are several mathemati
al models for the geometri
 obje
t whi
h moves under

the respe
tive geometri
 law of motion: parametri
 model, level set model and phase

�eld model. Depending on the type of the 
hosen model, numeri
al methods have been

developed. The main fo
us of the le
ture is the parametri
 model, for whi
h an eÆ
ient

method based on a �nite element method on surfa
es. For mean 
urvature 
ow we also

dis
uss the numeri
al approximation of vis
osity solutions of the level set model.

This is joint work with K. De
kelni
k (Magdeburg) and R. Rusu (Freiburg).

Top{Down View{Dependent Terrain Triangulation using the O
tagon Metri


Thomas Gerstner

In this talk, we introdu
e the o
tagon metri
 as a very useful distan
e metri
 for the

intera
tive visualization of large{s
ale terrain data. Based on re
ursive bise
tion triangle

meshes, this metri
 automati
ally ensures valid triangular meshes without 
ra
ks or T{

jun
tions. We will show the o
tagon metri
 
an be used for view{dependent re�nement

at little 
omputational 
ost and with no additional storage requirements. It 
an easily

be 
ombined with a suitable geometri
 error metri
 to extra
t and render adaptive view{

dependent terrain meshes in an output{sensitive way. We will show the performan
e of

the whole system, whi
h is straightforward to implement, in several examples.

Two Multisided Bernstein/Bezier-Bary
entri
 S
hemes: S-Pat
hes and Tori


Bezier Pat
hes

Ron Goldman

Three sided and four sided parametri
 pat
hes are typi
ally used for freeform design,

but multisided pat
hes are often required when it is ne
essary to �ll an n-sided hole. Three

sided and four sided Bezier pat
hes are 
urrently standard tools in approximation theory

and 
omputer aided geometri
 design. In this talk, we show how to extend the standard

three sided and four sided Bezier 
onstru
tions to rational n-sided pat
hes.

To 
onstru
t three sided and four sided Bezier pat
hes, we need three sided and four

sided arrays of 
ontrol points and bary
entri
 
oordinate fun
tions for the triangle and the

re
tangle. Similarly, to 
onstru
t multisided Bezier pat
hes, we require multisided arrays

of 
ontrol points and bary
entri
 
oordinate fun
tions for multisided polygonal domains.
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But what exa
tly are multisided arrays of 
ontrol points and how pre
isely do we 
on-

stru
t bary
entri
 
oordinates for multisided polygons? There is no single answer to either

of these questions: di�erent answers lead to di�erent types of multisided Bezier s
hemes.

Based on two di�erent answers to these questions, we develop two distin
t, but related,

types of multisided Bezier pat
hes: generalized S-pat
hes, whi
h extend the original S-

pat
h 
onstru
tion of Loop and DeRose, and tori
 Bezier pat
hes, whi
h have re
ently

been introdu
ed by Krasauskas and have their origins in the theory of tori
 varieties from

algebrai
 geometry. Three 
ommon threads tie these s
hemes together: dis
rete 
onvolu-

tion, Minkowski sum, and a general version the de Casteljau pyramid algorithm. This talk

fo
uses on basi
 properties { aÆne invarian
e, the 
onvex hull property, interpolation of

boundary 
urves { and fundamental algorithms { evaluation, di�erentiation, blossoming {

for these multisided Bezier pat
hes. We also 
ompare and 
ontrast the relative bene�ts

and limitations of these two n-sided Bezier s
hemes.

Optimization problems for 
urvatures

K. Grosse-Brau
kmann

The goal of my talk was to present some real-world problems for interfa
es governed by


urvature properties, and indi
ate how they 
an be modeled by dis
rete surfa
es.

The problems I explained are the interfa
es of satellite fuel tanks, the intermaterial

dividing surfa
es of di-blo
k 
opolymers, and amphiphili
 monolayers.

To analyse su
h interfa
es, I noted that surfa
es are 
riti
al for area under a given

volume 
onstraint i� they have 
onstant mean 
urvature H =

1

2

(�

1

+ �

2

). Constant mean


urvature 
an also arise for the following reason: The area element of a parallel surfa
e at

distan
e t grows like (1 + tH)dA

0

in highest order. Hen
e wedge-shaped mole
ules whi
h

form a monolayer will have 
onstant (\spontaneous") mean 
urvature. The same growth

is observed for the line element in ea
h prin
ipal 
urvature dire
tion; hen
e for unequal

prin
ipal 
urvatures the 
ross-se
tion of the mole
ule in the monolayer undergoes some

distortion. Su
h a distortion will 
ost energy, and so the energy fun
tional for a monolayer

usually 
ontains (�

1

� �

2

)

2

= 4H

2

� 4K, where K = �

1

�

2

is Gauss 
urvature. Sin
e

the topology of the interfa
es is usually not pres
ribed, we 
annot use the Gauss-Bonnet

theorem to ignore the 
ontribution of

R

K to the energy. Thus we are lead to 
onsider

rather general energies like

R

a(H � 
)

2

+ bK (with a; b; 
 
onstant).

The 
omputation of 
onstant mean 
urvature surfa
es is usually straightforward and

eÆ
ient using the gradient 
ow of area. However, to 
ompute the 
riti
al points of the

bending energy

R

H

2

or other se
ond order integrals is more 
ompli
ated, and often leads

to numeri
al instabilities.
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The Web-Method

K. H

�

ollig

(joint work with U. Reif and J. Wipper)

The web-method is a new �nite element te
hnique whi
h uses weighted extended B-

splines (web-splines) as basis fun
tions. It 
ombines the 
omputational advantages of

uniform splines on regular grids standard triangular �nite elements:

� No grid generation is required.

� Boundary 
onditions are represented exa
tly.

� Smoothness and order 
an be 
hosen arbitrarily.

� Highly a

urate approximations are possible with relatively few parameters.

� Hierar
hi
al bases permit adaptive re�nement.

� Multigrid algorithms yield solution times proportional to the number of unknowns.

We dis
uss the basi
 features of the method, appli
ations to typi
al boundary value prob-

lems, and, in more detail, the implementation of a multigrid s
heme.

Geometry of wavelets: lo
al and global features

Palle Jorgensen

The setting is 
ompa
tly supported orthogonal wavelets in one or several dimension. The

multivariate 
ase, is asso
iated with a given expansive integral matrix. If the support is

�xed, two 
ases are 
onsidered, a variety 
onsisting of all the orthogonal wavelets, 
ontain-

ing a lower dimensional set of singular points 
orresponding to wavelets whi
h are only

tight-frame wavelets, but not orthonormal. The points of non-uniqueness of the dominant

eigenvalue of the transfer operator is identi�ed as the set of singular points within the

variety. An index theorem [1℄ is presented for the 
lass of wavelets with Lips
hitz �lters, in

whi
h the winding number of a unitary matrix fun
tion identi�es 
onne
ted 
omponents.

The wavelet variety 
arries a many-valued "Gauss map", a map whi
h for s
aling number

N = 2 takes values in a �nite set of points on the two-sphere. This map, together with

spe
trum of the transfer operator determines the wavelets , and their lo
al properties.

The spe
trum refers to a spa
e of Lips
hitz fun
tions. A wavelet subdivision algorithm

is presented and illustrated. A quantum version of the wavelet algorithm is presented.

Using spe
tral theory and subdivision, it is proved that the wavelets depend 
ontinuously

on the masking 
oeÆ
ients: Spe
i�
ally, if the redu
ed spe
tral radius is < 1, then the

di�eren
e between two wavelets, measures in the L

2

(R)-norm, is less than a 
onstant times

the di�eren
e between the wavelet �lters measured in the Lips
hitz-norm. The 
onstant

blows up when the redu
ed spe
tral radius goes to 1.

[1℄ O. Bratteli and P. Jorgensen, Wavelets through a looking glass: The world of the

spe
trum. Birkhauser/Springer 2002.
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Approximate algebrai
 methods for CAGD

Bert J

�

uttler

(joint work with P. Chalmoviansk�y, A. Felis, J. Gahleitner, J. S
hi
ho, and M. Shalaby)

So far, the impli
it form of 
urves and surfa
es has not found widespread use in CAGD.

This is mainly due to the fa
t that the 
onversion pro
esses between impli
it and parametri


form (impli
itization and parameterization) have its problems. For instan
e, impli
itization

may produ
e large data volumes (e.g., a bi
ubi
 pat
h has algebrai
 order 18, and is

des
ribed by a polynomial with 1330 
oeÆ
ients), or unwanted bran
hes of the 
urve may

pass through the region of interest. On the other hand, many 
omputational problems,

su
h as surfa
e{surfa
e{interse
tion, get simpler if both representations are available.

Approximate algebrai
 methods may help to avoid the diÆ
ulties asso
iated with the


onversion pro
esses. A method for approximate impli
itization has been proposed by

Dokken [1℄ in his PhD thesis. This talk des
ribes two other methods for approximate

impli
itization. The �rst one is based on surfa
e �tting by simultaneously approximating

points (s
attered data) and asso
iated normals [2℄. It 
an also be used for re
onstru
ting

surfa
es from point 
louds in reverse engineering. The se
ond one uses a dire
t 
onstru
tion

to generate a 
ontinuous or C

1

spline impli
itization of a quadrati
 spline 
urve [3℄. In

addition we dis
uss variational design and approximate parameterization of algebrai
 
urve

segments.

This talk is based on joint work with P. Chalmoviansk�y, A. Felis, J. Gahleitner, J. S
hi-


ho, and M. Shalaby. The �nan
ial support by the Austrian S
ien
e foundation (FWF)

through proje
t 15 of SFB F013 \Numeri
al and Symboli
 S
ienti�
 Computing" is grate-

fully a
knowledged.

[1℄ T. Dokken, Approximate impli
itization, in: Mathemati
al Methods in CAGD (eds.

T. Ly
he, L. L. S
humaker), Vanderbilt University Press, Nashville & London 2001.

[2℄ B. J�uttler and A. Felis, Least{squares �tting of algebrai
 spline surfa
es, Advan
es in

Computational Mathemati
s 17 (2002), 135{152.

[3℄ B.J�uttler, J. S
hi
ho and M. Shalaby, Spline impli
itization of planar 
urves, submit-

ted.

Spline Quasi-interpolants

Tom Ly
he

Many appli
ations of splines make use of some approximation method to produ
e a

spline fun
tion from given dis
rete data. Popular methods in
lude interpolation and least

squares approximation. However, both of these methods require solution of a linear system

of equations with as many unknowns as the dimension of the spline spa
e, and are there-

fore not suitable for real-time pro
essing of large streams of data. For this purpose lo
al

methods, whi
h determine spline 
oeÆ
ients by using only lo
al information, are more

suitable. To ensure good approximation properties it is important that the methods repro-

du
e polynomials and maybe preferably the fun
tions in the given spline spa
e. Classi
al

methods of this kind were published in the seventies by de Boor and Fix using derivative

information and extended by S
humaker and the author. In order to reprodu
e the spline

spa
e, the lo
al information of the methods in the latter paper was restri
ted to lie in

one knot interval. This restri
tion was removed in a re
ent paper by Lee, M�rken, and

the author and a re
ipe for deriving lo
al spline approximation methods whi
h reprodu
e

the whole spline spa
e was given. The methods are obtained by solving a series of lo
al

approximation problems. Examples of spe
i�
 
ubi
 approximation methods will be given

and this leads to interesting methods of possible pra
ti
al use.
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En
losing Curved Geometry and Inverse Problems

J

�

org Peters

The presentation has four parts:

1. Basi
s of slefes (subdividable linear eÆ
ient fun
tion en
losures)

A slefe is an expli
it two-sided approximation f

+

; f

�

of a map f so that f

�

� f � f

+

over the domain of interest.

2. Sleves (subdividable linear eÆ
ient variety en
losures)

A sleve is a pair of linear approximations that sandwi
h the surfa
e. In parti
ular, we

are interested in eÆ
iently 
onstru
ting two triangulations, so that mat
hed triangle pairs

en
lose a pie
e of the 
urved surfa
e. The width of the en
losure, i.e. the distan
e between

inner and outer hull, 
an be easily measured, be
ause it is taken on at a vertex. En
losures

are therefore approximate impli
itizations with known error.

3. Midpaths and midpat
hes and duality with the 
urve

A midpath or midpat
h is the average of a sleve. It yields a better surfa
e approximation

than sampling the surfa
e.

4. Inverse Channel and Cover problems.

The Channel problem for fun
tions: given two lo
ally non{interse
ting input polygons


 < 
, 
onstru
t a spline fun
tion b that stays between 
 and 
 and 
onsists of a small

number of pie
es.

The Cover problem is a 1-sided �tting problem. Both problems are solved by �tting a

sleve into the 
hannel and thus redu
ing a hard 
ontinuous optimization problem to a

linear program.

Possible appli
ations are 
onversion between representations, 
ollision dete
tion, root

�nding, best pie
ewise linear approximation for rendering, and �tting and layout.

Spe
tral Theory for the Convergen
e of the Subdivision Operator

Amos Ron

The 
urrent theory for the 
onvergen
e of the iteration of the stationary subdivision op-

erator is based on the notion of joint spe
tral radius. Unfortunately there exists no viable

understanding of this notion in analyti
 terms.

We provide instead a new approa
h, based on the notion of quasi-interpolation, that

redu
es the problem to

(1) the smoothness properties of the limit surfa
e,

(2) the spe
tral properties of a �nite-rank linear operator.

Geometri
 evolutions problems in image and surfa
e pro
essing

Martin Rumpf

Morphologi
al images pro
essing and general surfa
e pro
essing are 
losely related topi
s.

Thereby, the geometry of images is represented by the set of level sets. Methods based on

partial di�erential equations turn out to be 
exible and powerful tools in both areas. The

talk outlines PDE based nonlinear �ltering, subdivision and restauration methods. The

noise redu
tion �lter te
hnique 
onsist of a lo
al 
lassi�
ation and a geometri
 evolution

problem steered by this 
lassi�
ation. Based on image pro
essing methodology and the

theory of geometri
 evolution problems novel multi s
ale methods for surfa
es, textured
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surfa
es and 3D level sets are presented. The aim is the fairing of the noisy surfa
es while

preserving features su
h as edges and 
orners. In 
ase of textured surfa
es an appropriate


oupling of the fairing pro
esses for the surfa
e geometry and the texture is presented. Here,

one 
an espe
ially take advantage of the frequently present strong 
orrelations between edge

features in the texture and on the surfa
e edges. As an alternative approa
h a method based

on 
rystalline 
urvature motion 
ombined with a 
lassi�
ation based on the zero moment

of the surfa
es is 
onsidered. Furthermore it is dis
ussed how a 
ertain 
lass of subdivision

methods 
an be understood as a 
as
adi
 multi grid method for a fully nonlinear time step

of a geometri
 evolution problem. Finally, a method for the restauration of surfa
es based

on Willmore 
ow is presented.

Sum rules, ideals and bases

Thomas Sauer

(joint work with H. M. M�oller)

A fun
tion � : R

s

! R is 
alled re�nable provided there exists a �nitely supported

sequen
e a, 
alled the mask, su
h that

� =

X

�2Z

s

a(�)� (M � ��) ;

where M 2 Z

s�s

is an expanding matrix, that is, all its eigenvalues are > 1 in modulus.

Instead of 
onsidering the fun
tion � itself whi
h is most often only given impli
itly as the

solution of the above fun
tional equation, one tries to 
onsider properties of the stationary

subdivision operator S

a

de�ned for any sequen
e 
 as

S

a


 :=

X

�2Z

s

a (� �M�) 
(�):

A 
ru
ial 
ondition for the fun
tion � to provide a 
ertain approximation order or to be

smooth is (under suitable additional 
onditions, of 
ourse) that S

a

maps all polynomial

sequen
es of a 
ertain total degree to a polynomial sequen
e of (at most) the same total

degree.

It is well known how to des
ribe this property in terms of linear identities or in terms

of zero 
onditions for the symbol a

�

(z) :=

P

a(�) z

�

; whi
h is a Laurent polynomial.

The talk introdu
es another des
ription, namely that a

�

is 
ontained in the quotient ideal




z

M

� 1

�

: hz � 1i and explains how the theory of Gr�obner- and in parti
ular H{bases


an be used to obtain di�eren
ed representations of the subdivision operator as well as

minimally supported masks of a given order.

[1℄ H. M. M�oller and T. Sauer, Multivariate re�nable fun
tions of high approximation

order via quotient ideals of Laurent polynomials, Advan
es Comput. Math. (2002), to

appear.

[2℄ T. Sauer, Gr�obner bases, H{bases and interpolation, Trans. Amer. Math. So
. 353

(2001), 2293{2308.

[3℄ , Polynomial interpolation, ideals and approximation order of re�nable fun
-

tions, Pro
. Amer. Math. So
. 130 (2002), 3335{3347.
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Geometri
 
onditions on free boundaries

Reiner S
h

�

atzle

The Stefan problem with Gibbs Thomson law is a model for melting and solidi�
ation

of materials. The Gibbs Thomson law determines the melting temperature on the free

boundary between the liquid and solid phase in geometri
al data of the free boundary

namely the mean 
urvature.

Existen
e of solutions for the Stefan problem with Gibbs Thomson law was proved in

[1℄ by Lu
khaus 1991 using a time-dis
rete approximation and an absolute minimization

pro
ess at ea
h time step. From the thermodynami
al point of view, this absolute mini-

mization is diÆ
ult to justify.

In 2002 Matthias R�oger, Phd-student of H.W. Alt and mine, su

eeded in proving ex-

isten
e of solutions for the Stefan problem with Gibbs-Thomson law using only a lo
al

minimization pro
ess. The diÆ
ulty is that area may be lost when passing to the limit.

The limit pro
edure relies on an identity re
ently established in [3℄ whi
h writes the weak

mean 
urvature in the 
ontext of geometri
 measure theory in terms of approximate dif-

ferentials of the height fun
tion.

[1℄ S. Lu
khaus, The Stefan Problem with Gibbs Thomson law, Sezione di Analisi Matem-

ati
a e Probabilitita, Universita di Pisa, 2.75 (591), 1991.

[2℄ R. S
h�atzle, Hypersurfa
es with mean 
urvature given an ambient Sobolev fun
tion,

Journal of Di�erential Geometry, 58, No. 3, 371-420, 2001.

[3℄ ,Quadrati
 tilt-ex
ess de
ay and strong maximum prin
iple for varifolds, sub-

mitted, 2000.

Subdivision for Modeling and Simulation

Peter S
hr

�

oder

Subdivision surfa
es are now solidly established as a major modeling primitive for free-

form design. As it turns out they also have very favorable qualities when it 
omes to

solving 4th order PDEs su
h as the thin-shell equations. The latter des
ribe the behavior

of thin 
exible stru
tures as they appear in all areas of engineering design. In this way

subdivision surfa
es are highly suited for integrated engineering design, removing the usual

troubles asso
iated with 
onverting geometri
 representations to a form more suitable for

�nite element analysis.

My talk 
overs two subje
ts from this area. In a �rst part I will des
ribe some re
ent

developments in the 
onstru
tion of subdivision s
hemes based on repeated averaging. As

it turns out, primal/dual mesh averaging operators are suÆ
ient to build large families

of 
lassi
al as well as new subdivision s
hemes for a variety of possible topologi
al split

operators. Among them primal and dual quad s
hemes and more exoti
 dual

p

3 s
hemes

(among many others). In the se
ond part I will review some of the work on thin-shell

modeling with the Subdivision Element Method and dis
uss strategies for the simple (in

terms of data stru
tures) 
onstru
tion of adaptive solvers.
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Approximate Duals of Bernstein polynomials and B-splines for the

Constru
tion of Tight Frames

Joa
him St

�

o
kler

(joint work with C. Chui, W. He, and K. Jetter)

The dual basis of the B-spline basis 
onsists of fun
tions of full support. We develop new

relations for 
ertain quasi-interpolants of B-splines that generalize the quasi-interpolants

of Bernstein-Durrmeyer type for the Bernstein polynomials. These relations give rise to

the de�nition of approximate duals of B-splines of order m, whi
h are a linear 
ombination

of only m� 1 B-splines and reprodu
e all polynomials of degree m� 1. The approximate

duals satisfy the same uniform stability estimate that was 
onje
tured by C. de Boor

and shown by A. Shadrin for the dual B-splines. They play an important role in the


onstru
tion of tight frames of 
ompa
tly supported splines on bounded intervals. Our

expli
it 
hara
terization of spline frames with arbitrary knots in
ludes the 
ases of multiple

non-uniform knots as well.

An extension of the Bernstein-Durrmeyer quasi-interpolants to the multivariate 
ase is

also mentioned in this talk. Parts of this work are joint work with C. Chui, W. He, and

K. Jetter.

Curvature Measures for Dis
rete Surfa
es

John M. Sullivan

There is a well-known interpretation of Gaussian 
urvature for dis
rete (triangulated)

surfa
es. It is natural be
ause it preserves the Gauss{Bonnet theorem, whi
h equates

the integral of Gaussian 
urvature to a boundary integral. Less familiar are analogous

boundary integral relations for mean 
urvature, in
luding the equation

Z

�D

� ds =

Z

�D

� � dx = 2

Z Z

D

H� dA = 2

Z Z

D

H dA;

whi
h 
an be understood as a balan
e of physi
al for
es.

We will show how to use su
h relations to guide the proper interpretation of mean


urvature (and other geometri
 quantities) for dis
rete surfa
es. This new understanding

helps to explain the theory of dis
rete minimal surfa
es. It also elu
idates why, in early

work on simulations of Willmore energy (W =

R

H

2

dA), 
ertain dis
retizations were better

than others.

Similarly, for spa
e 
urves, some quantities, like total 
urvature or even writhe, have

natural interpretations for polygons. We examine further 
ases, like knot energies and

ropelength, where a proper 
onsideration of the geometry involved 
an lead to a natural

dis
retization.
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Distan
e fun
tions, a
tive 
urves, and motion design

J. Wallner

(joint work with H. Pottmann)

We assume that a 
olle
tion of feature points x

1

; : : : ; x

r

in R

n

depends aÆnely on a

set of 
ontrol points b

1

; : : : ; b

d

| an example is provided by evaluating a B-spline 
urve

b(t) at pres
ribed parameter values x

i

= b(t

i

) | and that a geometri
 obje
t T allows


omputing the distan
e d(x; T ) of a point x from T . Then the so-
alled iterative 
losest

point algorithm may be used to let the 
olle
tion of feature points 
onverge towards T . It

works by iteratively �nding 
ontrol points whi
h minimize a 
ertain nonnegative quadrati


fun
tion determined by T 's distan
e �eld. In the 
ase that T has smooth boundary, we

present an extension of the ICP algorithm whi
h uses re�ned quadrati
 approximants and

appears to substantially in
rease the rate of 
onvergen
e.

An espe
ially important appli
ation of this method is the design of near-Eu
lidean aÆne

spline motions. A one-parameter aÆne spline motion (i.e., a spline 
urve b(t) in the aÆne

spa
e R

n�n+n

of aÆne transformations) is moved towards the Eu
lidean motion group T .

An aÆne transformation's footpoint on T is 
omputed via an SVD-type de
omposition of

its linear part.

Near-Eu
lidean near-gliding motions may be designed by moving b(t) towards the 
on-

�guration manifold of surfa
e-surfa
e 
onta
t, whi
h is, in general, a 1-
odimensional sub-

manifold of the Eu
lidean motion group.

Self-tuning algorithms for surfa
e �tting

Volker Weiss

(joint work with T. Varady)

Fitting parametri
 surfa
es with tight toleran
es is a 
ru
ial element in the pro
ess of

reverse engineering 
omplex shapes. The point 
loud to be approximated typi
ally 
ontains

a large number of noisy data points over an irregular domain. The 
reated surfa
es need

to be fair and extendable, and must be generated by minimal amount of user assistan
e.

The majority of 
lassi
al least-square surfa
e �tting methods is based on �xed 
on�g-

urations of several mathemati
al entities, su
h as the knot-ve
tors, the parametri
 values

asso
iated with the data points, and a "well 
hosen" smoothness fa
tor. These entities


an hardly be set in advan
e and iterative methods are needed to �nd their optimum.

Self-tuning surfa
e �tting is based only on a toleran
e value, everything else is 
omputed

by the algorithm itself.

Four related problems are dis
ussed:

(1) Generating valid "B-spline-like" initial parameterization.

(2) Setting automati
ally smoothness weights.

(3) Handling "weak" 
ontrol points.

(4) Inserting knots a

ording to a shape dependent strategy.

Edited by Georg Umlauf
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