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The aim of this meeting was to bring together experts in various �elds of Graph The-

ory and resear
hers who design algorithms that exploit graph stru
tures. This merger of

traditional mathemati
ians and theoreti
al 
omputer s
ientists is be
oming in
reasingly

popular and important, as re
e
ted by the growing number of young people entering the

�eld and the 
alibre of the results being a
hieved. The broad algorithmi
 areas 
overed

at the workshop were re
ognition, approximation and optimization with fo
us on graph


olourings, 
y
le and path stru
ture of graphs and 
losure 
on
epts. Well prepared talks

and a high attendan
e rate at the talks made it a fruitful meeting.

Two additional survey talks about very re
ent developments, the "Strong Perfe
t Graph

Theorem" and "EÆ
ient Primality Testing" were presented by Annegret Wagler and Juraj

Hromkovi
, respe
tively. In the two problem sessions a number of 
hallenging problems

were posed, generating lively dis
ussion, often 
arrying on well into the night.

The meeting was organized by Derek Corneil (Toronto), Klaus Jansen (Kiel) and Ingo

S
hiermeyer (Freiberg); the 46 parti
ipants 
ame from 12 
ountries, many of them being

at Oberwolfa
h for the �rst time. The abstra
ts of the talks and the posed problems are

presented below. The ex
ellent working 
onditions at Oberwolfa
h and the inspiring atmo-

sphere made this a very su

essful meeting for resear
hers in di�erent �elds of Algorithmi


Graph Theory. Many new 
ollaborations were formed.

1



Abstra
ts

Prepro
essing for treewidth

Hans Bodlaender

Prepro
essing is an important but often underestimated te
hnique when solving problems

on graphs or other 
ombinatorial problems. In this talk, we look to simpli�
ation or

divide and 
onquer strategies for prepro
essing graphs when we want to 
ompute their

treewidth. Two te
hniques are 
onsidered: redu
tion and safe separators. Redu
tions lo-


ally rewrite the graphs using 
ertain `safe' rules, either taken from the work of Arnborg

and Proskurowski on re
ognizing graphs of treewidth three, or generalizations of these

rules. A safe separator allows to split the graph in smaller parts, su
h that the optimal

treewidth 
an be obtained from the optimal treewidth of the parts. Experiments on in-

stan
es obtained from probabilisti
 networks (used in some de
ision support systems) are

reported.

Properties of expanding graphs

Stephan Brandt

(joint work with Hajo Broersma, Reinhard Diestel, Matthias Kriesell (undire
ted 
ase)

and J�rgen Bang-Jensen (dire
ted 
ase))

A lot of resear
h was performed on the 
onstru
tion of expanding graphs and on the

evaluation of their expansion properties. Their graph theoreti
al properties seem to have

been rarely studied.

We investigate mainly those properties related to 
y
les in expanding graphs and di-

graphs using an expansion 
on
ept that is parti
ularly suitable to measure large expan-

sion. We show that a quadrati
 expansion fun
tion is suÆ
ient to imply a hamiltonian


y
le while we needed an exponential fun
tion to imply hamiltoni
ity in digraphs. In both


ases probably a suitable linear fun
tion is suÆ
ient. Moreover we show that linear ex-

pansion implies linear length 
y
les, as well as a 2-fa
tor and a 
y
le fa
tor for a suitable

linear fun
tion. For a fairly general 
lass of digraphs we prove a tight expansion bound for

hamiltoni
ity. With the use of our results for undire
ted graphs we 
an, e.g., prove some

graph theoreti
al properties of so-
alled Ramanujan graphs.

Graph Classes of Bounded and Unbounded Clique-Width

Andreas Brandst

�

adt

Re
ently, the 
on
ept of 
lique-width of graphs attra
ted mu
h attention sin
e it extends

the 
on
ept of treewidth of graphs and has similar 
onsequen
es for the eÆ
ient solution

of problems de�nable in Monadi
 Se
ond Order Logi
. It is known that 
ographs (i.e.

P

4

-free graphs) are exa
tly the graphs of 
lique-width at most two. We 
lassify all graph


lasses de�ned by forbidden indu
ed one-vertex extensions of the P

4

with respe
t to their


lique-width. This improves and extends some re
ently published papers.
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Lexi
ographi
 Breadth First Sear
h (LBFS) re
ognition algorithms for

various 
lasses of graphs

Derek Corneil

LBFS was introdu
ed in 1976 by Rose, Tarjan and Lueker in their seminal paper on the

re
ognition of 
hordal graphs. Re
ently it has been shown that using LBFS, one 
an

get linear time easily implementable algorithms for su
h problems as dominating pairs in

AT-free graphs, 
olouring in various families of perfe
t graphs, distan
e approximation in

various families of graphs and re
ognition algorithms (for interval and bipartite AT-free

graphs). In this talk new simple re
ognition algorithms as des
ribed for unit interval graphs

and 
ographs. It seems as though these algorithms are the simplest known.

Graph Deta
hments

Keith Edwards

A deta
hment of a graph G is a graph whi
h is obtained from G by splitting some or all of

its verti
es into 2 or more subverti
es. Any edges whi
h are in
ident with an original vertex

are shared out among its subverti
es. We will 
onsider the problem of de
iding, for two

given graphs G and H, whether or not H is a deta
hment of G, and we will des
ribe the


omputational 
omplexity of various 
ases of the problem, and state some open problems.

Sum Colouring Interval Graphs

Magn

�

us M. Halld

�

orsson

Given a vertex 
olouring with the natural numbers, its 
hromati
 sum is the sum of the


olours of the verti
es. The sum 
olouring problem is to �nd a 
olouring of a given graph

with a minimum 
hromati
 sum. We present an algorithm that approximates the sum


olouring problem in interval graphs within a fa
tor of 2, improving on the best previous

known fa
tor of 2 due to Ni
oloso, Sarrafzadeh and Song. Our algorithm applies to any 
lass

of graph for whi
h the maximum indu
ed k-
olourable subgraph problem is polynomially

solvable, in
luding 
omparability and 
o-
omparability graphs. The te
hnique used 
an be

seen as an extension of a randomized solution of an online number guessing problem. This

is joint work with Guy Kortsarz and Hadas Sha
hnai.

Ramsey numbers relative to graph sequen
es

Heiko Harborth

The 
lassi
al Ramsey number r(G;H) asks for the smallest number n su
h that every 2-


olouring of the edges of the 
omplete graph K

n


ontains given subgraphs G or H of the

�rst or se
ond 
olour, respe
tively. Instead of the sequen
e of the 
omplete graphs K

n

we


onsider other sequen
es of graphs H

n

as host graphs. Then R(G;H) is the smallest n su
h

that every 2-
olouring of the edges of H

n


ontains subgraphs G or H of the �rst or se
ond


olour, respe
tively. First results are presented for the sequen
es of 
omplete bipartite

graphs, of 
ube graphs, of o
tahedron graphs, and of di�erent types of gameboards.
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Cy
li
 
hromati
 number of plane graphs

Mirko Hor

�

n

�

ak

The 
y
li
 
hromati
 number of a graph G embedded in a surfa
e, in symbols �




(G), is the

smallest number of 
olours in su
h a vertex 
olouring of G that any two verti
es sharing

a 
ommon fa
e re
eive di�erent 
olours. Plummer and Toft 
onje
tured in 1987 (PTC)

that any 3-
onne
ted plane graph G satis�es �




(G) � �

�

(G) + 2 where �

�

(G) is the

maximum fa
e degree of G. They were able to prove that �




(G) � �

�

(G) + 9. PTC

has been proved if �

�

(G) � 4 or �

�

(G) � 22. The best presently known upper bound

related to PTC is �

�

(G)+5. To prove the result the Dis
harging Method together with an

appropriate set of redu
ible 
on�gurations is used. To illustrate it a spe
ial 
on�guration

is shown to be redu
ible (it 
annot appear in a minimal 
ounterexample to the inequality

�




(G) � �

�

(G) + 5 for 3-
onne
ted plane graphs G).

Linear Time Approximation Algorithms for the Mat
hing Problem

Stefan Hougardy

(joint work with D. Drake)

Currently the fastest algorithms for solving the maximum mat
hing problem or the max-

imum weighted mat
hing problem in graphs have running time O(n

1

=2m) respe
tively

O(nm+n

2

logn). For many appli
ations su
h running times are not a�ordable. This moti-

vates the study of more eÆ
ient approximation algorithms for these problems. We present

linear time approximation algorithms with an approximation ratio of 3=4 in the unweighted


ase and 1=2 in the weighted 
ase.

Stability of approximation algorithms

Juraj Hromkovi


The 
lassi
al approa
hes of 
lassifying the hardness of 
omputing tasks are not 
ompletely

satis�able be
ause of the de�nition of 
omplexity as the worst 
ase 
omplexity. Thus, a few

hard instan
es are suÆ
ient to de
lare a problem to be hard even when the typi
al problem

instan
es in appli
ations are easily solvable. The 
on
ept of stability of approximation

suggests to 
lassify the problem instan
es with respe
t to their hardness and so to spe
ify

the border of pra
ti
al solvability of optimization problems rather on the level of problem

instan
es than on the level of problems.

EÆ
ient primality testing

Juraj Hromkovi


The aim of this talk was to present the development of ideas for eÆ
ient primality testing

starting from the method of abundan
e of witnesses for designing randomized algorithms

and �nishing with the use of witness 
on
ept to obtain a polynomial-time deterministi


algorithm for primality testing.
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Approximation algorithms for the fra
tional 
overing problem

Klaus Jansen

We generalize a method by Grigoriadis et al. to 
ompute an approximate solution of

the fra
tional 
overing (and max-min resour
e sharing) problem with M nonnegative lin-

ear (
on
ave) 
onstraints f

m

on a 
onvex set B to the 
ase with general approximate

blo
k solvers (i.e. with only 
onstant, logarithmi
, or even worse approximation ratios).

The algorithm is based on a Lagrangian de
omposition whi
h uses a modi�ed logarith-

mi
 potential fun
tion and on several other ideas. We show that the algorithm runs in

O(M�

�2

ln(M�

�1

)) iterations (or blo
k optimization steps) for any �xed relative a

ura
y

� 2 (0; 1). Furthermore, we show how to apply this method for the fra
tional weighted

graph 
olouring problem.

Steiner problems for tournament-like digraphs

Joergen Bang-Jensen

(joint work with Gregory Gutin and Anders Yeo)

We 
onsider the so-
alled dire
ted Steiner problem. Here we are given a strongly 
onne
ted

digraph D and subset X of its verti
es and the goal is to �nd a strong subdigraph whi
h


overs X and has a few ar
s as possible. This problem is NP-hard for general digraphs

as it generalizes the hamiltonian 
y
le problem. We des
ribe polynomial algorithms for

solving the problem in the 
ase of digraphs that are either lo
ally semi
omplete or extended

semi
omplete. Finally we dis
uss the related problem of �nding in a strong digraph with

arbitrary real-valued 
osts on the verti
es a strong subdigraph of minimum 
ost.

Cir
ular 
hromati
 numbers of 
ertain planar graphs and small graphs

Arnfried Kemnitz

(joint work with Peter Wellmann)

A (k; d)-
olouring (k; d 2 N; k � 2d) of a graphG is an assignment 
 of 
olours f0; 1; : : : ; k�

1g to the verti
es of G su
h that d � j
(v

i

)� 
(v

j

)j � k�d whenever two verti
es v

i

and v

j

are adja
ent. The 
ir
ular 
hromati
 number �




(G) (sometimes also 
alled star 
hromati


number) is de�ned by �




(G) = inffk=d : G has a (k; d)-
olouringg.

Sin
e a (k; 1)-
olouring of G is a k-
olouring of G, the 
ir
ular 
hromati
 number is a

re�nement of the 
hromati
 number and therefore 
ontains more information about the

stru
ture of the graph G.

We determine �




(G) for Platoni
 solid graphs, Ar
himedean solid graphs, Ar
himedean

prism graphs, outerplanar graphs and for all graphs of order at most 7.

5



On L(d; 1)� labellings of graphs

Anja Kohl

Given a graph G = (V;E) and nonnegative integers d and k, an L(d; k)�labelling of G is

a fun
tion f : V (G)! f0; 1; :::g su
h that for any two verti
es x and y

1. j f(x)� f(y) j � d if d(x; y) = 1 and

2. j f(x)� f(y) j � k if d(x; y) = 2.

The L(d; k)�number of G, denoted by �

d;k

(G), is the smallest number m su
h that G has

a L(d; k)�labelling with maxff(x) : x 2 V (G)g = m.

We will present some known bounds for �

d;1

(G) for general graphs, and some exa
t values

of �

d;1

(G) for spe
ial 
lasses of graphs. Moreover, we will determine �

d;1

(G) for the three

regular tilings of the plane and for the rth power of paths and 
y
les.

On Generalizations of k-ordered hamiltonian graphs

Linda Lesniak

A graph G is k-ordered hamiltonian if for every sequen
e v

1

; v

2

; :::; v

k

of k verti
es ofG there

is a hamiltonian 
y
le inG that en
ounters these verti
es in this order. Two generalizations

of k-ordered hamiltonian graphs are dis
ussed.

On the 
hromati
 index of linear hypergraphs

Marian Margraf

(joint work with Hauke Klein)

The 
elebrated Erd�os, Faber and Lov�asz Conje
ture may be stated as follows: Any linear

hypergraph on v points has 
hromati
 index at most v: First we show that the 
onje
ture is

equivalent to the following assumption: For any graph �(G) � v(G), where v(G) denotes

the linear interse
tion number ofG. Moreover, jV j � v(G)+v(G) for any graphG = (V;E).

It follows that at least G or G ful�lls the assumption.

Cir
ular 
hromati
 number of digraphs

Bojan Mohar

The notion of the 
ir
ular 
hromati
 number is a natural re�nement of the usual 
hromati


number. A generalization of this 
on
ept to graphs with edge-weights has been introdu
ed

re
ently and there are natural links of this extension of the 
hromati
 graph theory to

several other, seemingly unrelated areas, e.g., the travelling salesman problem. An inter-

esting spe
ial 
ase is also a new notion of the 
hromati
 number of a digraph whose main

properties have been presented in some more depth.
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AND/OR-Graphs

Rolf H. M

�

ohring

(joint work with Martin Skutella und Frederik Stork)

Partial orders on a set V 
an be generalized by adding to the usual pre
eden
e 
onstraints

\v 2 V is above all elements from W � V " (AND 
onstraint) disjun
tive 
onstraints of

the form \v is above at least one element from W (OR 
onstraint).

Similar to the representation of partial orders by a
y
li
 dire
ted graphs, these more

general pre
eden
e 
onstraints 
an be represented by so-
alled AND/OR networks, whi
h

need no longer be a
y
li
. Besides in s
heduling, su
h networks have appli
ations in games

on graphs (mean payo� games), logi
 (Horn 
lauses) and AI (theorem proving).

This le
ture will des
ribe some of these appli
ations and investigate basi
 algorithmi


tasks on AND/OR networks. These in
lude testing feasibility of a system of AND/OR


onditions, 
omputing the transitive 
losure and the transitive redu
tion, and { in the


ontext of s
heduling { 
omputing earliest start times. While most of these tasks are

shown to be solvable eÆ
iently, we do not know a polynomial time algorithm for the

general 
ase of earliest start times, although the 
orresponding de
ision problem is in NP

\ 
oNP.

Station Pla
ement for Multi-hop Routing

Manuela Montangero

(joint work with Clemente Galdi and Christos Kaklamanis)

Consider the following multi
ast problem: we are given a population P and a bidire
tional

tree T = (V;E) where verti
es are network nodes and ea
h user u 2 P resides at some leaf

of the tree. Let s 2 V be a node (sour
e) in T willing to broad
ast a message (series of) to

the users in P . Ea
h node of the tree 
harges a known fee to dupli
ate messages, given by

fun
tion p : V nP !R

+

; every edge of the tree has a known and �xed length l : E !R

+

;

every user has a maximum utility, given by fun
tion u : P ! R

+

, whi
h represents how

mu
h it is willing to pay to re
eive the message form s. The 
ost of a broad
ast is given

by three fa
tors: the sum of the lengths of the edges used by messages, where the length

is 
ounted on
e for every time an edge is used; the sum of the fees asked by internal nodes

dupli
ating messages; the opposite of the sum of the utilities of the users rea
hed by the

broad
ast. The aim is to minimize the 
ost of the broad
ast.

Traditionally, there are mainly two forms of routing for broad
ast: In the uni
ast routing

ea
h message sent from the sour
e is delivered to a single destination. A message that has

to be sent to di�erent destinations is sent in separate 
opies to ea
h destination, with the


onsequen
e that many identi
al messages traverse the links 
lose to the sour
e wasting

bandwidth. In the multi
ast routing the sour
e sends only one message per out-going

edge. Whenever a message rea
hes an internal node it is dupli
ated and sent over ea
h

downstream link. In this way ea
h link is traversed only by one message but every internal

node in the tree dupli
ates messages, in
urring in high 
ost.

We propose to use an intermediate solution, the multi-hop routing in whi
h only some

nodes on ea
h sour
e-destination path dupli
ate messages. Whenever a message is dupli-


ated by an internal node, this is dire
tly delivered to other dupli
ating nodes and/or to

some destinations along a path, usually 
omposed by more than one edge. In parti
ular,

we 
onsider the 
ase in whi
h at most a �xed number, say k, of dupli
ations per message
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an be done before the message rea
hes its destination. The problem is, now, to determine

the best 
hoi
e of nodes that have to dupli
ate messages.

We show 
entralized and distributed algorithms to eÆ
iently �nd the optimal solution

for the problem, under the hypothesis that a node dupli
ating a message be
omes a new

sour
e for the subtree rooted in the node.

If we 
onsider a general graph G instead of a tree T , we prove that the problem is NP-

hard even if k = 1, length on edges are 
onstant and equal to one and both p and u are

the 
onstant fun
tion zero. Under the same hypothesis for fun
tions p and u, we give a


entralized approximation algorithm, based on boundend depth Steiner trees, to �nd an

approximate solution on general graphs that is log jP j far away from optimum, when k is


onstant.

An O(2

n=6:15

)-algorithm for Exa
t 3-Satis�ability

using the Con
ept of Formula Graphs

Bert Randerath

(joint work with Ewald Spe
kenmeyer and Stefan Pors
hen)

Let F = C

1

^ � � � ^ C

m

be a Boolean formula in 
onjun
tive normal form over a set V

of n propositional variables, s.t. ea
h 
lause C

i


ontains at most three literals l over V:

Solving the problem exa
t 3-satis�ability (X3SAT ) for F means to de
ide whether there

is a truth assignment setting exa
tly one literal in ea
h 
lause of F to true. S
haefer

proved 1978 a di
hotomy result on generalized satis�ability problems. On part of this

result, 
lassifying whether a given generalized satis�ability problem is in P or is NP -


omplete, is the statement that X3SAT is NP-
omplete. By exploiting the 
on
ept of

graph formulas and an a

ompanying perfe
t mat
hing redu
tion we prove that X3SAT

is deterministi
ally de
idable in time O(2

0:18674n

): Thereby we improve a result of Drori

and Peleg stating X3SAT 2 O(2

0:2072n

) and a bound of O(2

0:200002n

) for the 
orresponding

enumeration problem #X3SAT stated in a preprint from Dahl�of and Jonson. After that by

a more involved deterministi
 
ase analysis we are able to show that X3SAT 2 O(2

n=6:15

).

Contra
tible subgraphs, 
y
le properties in 
ubi
 graphs and hamiltonian

properties of line graphs

Zden

�

ek Ryj

�

a

�


ek

The 
ontra
tibility te
hnique was developed re
ently as an extension of the well-known

Catlin's redu
tion te
hnique for hamiltonian properties of line graphs (it turns out that

- roughly speaking - a graph F is 
ontra
tible if and only if the 
ir
umferen
e of L(G)

equals the 
ir
umferen
e of L(Gj

F

) for any graph G 
ontaining F ). The te
hnique yields

a new powerful 
losure 
on
ept for line graphs and 
ould be a potential tool for atta
king

some long-standing open problems, e.g. the dominating 
y
le 
onje
ture (every essentially

4-edge-
onne
ted 
ubi
 graph G has a 
y
le C su
h that G� C is edgeless).
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Forbidden subgraphs and 3-
olourability

Ingo S
hiermeyer

(joint work with Bert Randerath and Meike Tewes)

The 3-
olourability problem is a well-known NP-
omplete problem. It remains NP-
omplete

for triangle-free graphs of maximum degree 4 and for 
law-free graphs.

Sumner has shown that triangle-free and P

5

-free or triangle-free, P

6

-free and C

6

-free graphs

are 3-
olourable.

We present polynomial time algorithms to 
olour a (K

3

; P

5

)-free graph with three 
olours

and a (K

3

; P

6

)-free graph with four 
olours. Furthermore we show that (after suitable re-

du
tions) every 4-
hromati
 (K

3

; P

6

)-free graph G 
ontains the My
ielski-Gr�otzs
h graph

as an indu
ed subgraph and is a subgraph of the Clebs
h graph.

Using small dominating sets we show that 3-
olourability 
an be de
ided and a 
orre-

sponding 3-
olouring 
an be determined in polynomial time for the 
lass of P

6

-free graphs.

3-
olourability 
an be also de
ided and a 
orresponding 3-
olouring 
an be determined

in polynomial time for the 
lass of 
law-free and hourglass-free graphs (K

1;3

; K

1

+ 2K

2

)

and 
law-free and t-spider-free graphs (a K

1;t

with ea
h edge subdivided).

Approximation Algorithms on Weighted Graphs with Sharpened Triangle

Inequality

Sebastian Seibert

(joint work with Hans-Joa
him B
kenhauer, Dirk Bongartz, Juraj Hromkovi�
, Ralf

Klasing, Guido Proietti, and Walter Unger)

We say that a weighted, 
omplete undire
ted graph obeys the �-triangle inequality (�

�

-

inequality) if for the given � 2 R

�1=2

the weight fun
tion 
 satis�es


(u; v) � � � (
(u; w) + 
(w; v))

for all u; v; w 2 V . In 
ase � > 1, we speak of the relaxed, in 
ase

1

2

� � < 1 of the

sharpened �

�

-inequality.

As a �rst problem, we look at the traveling salesman problem (TSP). In re
ent resear
h,

algorithms for the relaxed 
ase have been developed, whose approximation ratio depends

only on �, and whi
h therefore are 
alled stable. This extends 
ontinously from the well

known

3

2

ratio for the 
lassi
al triangle inequality (
ase � = 1).

Here, we extend this resear
h to the sharpened 
ase. First, we show APX-hardness even

if � gets arbitrarily 
lose to

1

2

. This 
ontrasts to another spe
ialization of the �-inequality,

the Eu
lidian 
ase, where a PTAS exists.

Then we show how existing algorithms 
an be adopted for the sharpened �

�

-inequality,

and we develop a new one whi
h performs better for � <

2

3

.

Other problems that suggest a similar investigation are: sear
h for a minimal k-edge-


onne
ted, or 2-vertex-
onne
ted spanning subgraph (MinkECSS, Min2VCSS), or aug-

ment a given subgraph into a spanning 2-edge-
onne
ted one at minimal additional 
osts

(Min2ECA). The best known approximation ratios for these problems were 2 in general,

and

3

2

for Min2ECSS, Min2VCSS under �-inequality.

First, we transfer the lower bound from �

�

-TSP to these problems. Then, we develop

new approximation algorithms for these problems under sharpened �

�

-inequality. The

new algorithms give better approximation ratios (depending on �) at least for � <

2

3

, and

in some 
ases beyond.
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Complexity of the k-
olour problem on a �xed surfa
e

Carsten Thomassen

The following general problem is dis
ussed. Fix a surfa
e S and natural numbers k,q. Does

there exist a polynomial time algorithm for de
iding whether a graph of girth q embedded

on S 
an be k-
oloured. The problem is trivial for k less than 3 and NP-
omplete for

k=q=3. For (k,q)=(3,4) or (4,3) we do not know if the problem is NP-
omplete, and we

do not know a polynomial time algorithm ex
ept for the sphere and (when (k,q)=(3,4))

the proje
tive plane. In all other 
ases a polynomial time algorithm is known. The most

diÆ
ult 
ases (apart from the algorithm for 4-
olouring a planar graph) are the 
ase k=5,

q=3 whi
h was settled a few years ago, and the 
ase k=3,q=5 whi
h was settled re
ently.

Sear
h problems with guaranteed solution

Zsolt Tuza

(joint work with C. Bazgan and M. Santha)

We study the approximability of sear
h problems where the existen
e of a solution is

guaranteed by some \stru
tural" property. In parti
ular, we 
onsider

(1) Pigeonhole Subset Sums: Given a set of natural numbers a

1

; : : : ; a

n

with a

1

+� � �+a

n

<

2

n

� 1, �nd two subsets with the same sum.

(2) Se
ond Hamiltonian Cy
le: Given a 3-regular graph G and a Hamiltonian 
y
le

H � G, �nd another Hamiltonian 
y
le of G.

We design a FPTAS �nding two disjoint partial sums whose ratio is nearly 1, and an

EPTAS �nding a 
y
le H

0

� G, H

0

6= H, whose length is nearly n (the number of verti
es).

It remains an open problem to �nd exa
t solutions for (1) and (2) in polynomial time.

Partial list 
olourings of graphs

Margit Voigt

Let G be a graph with vertex set V , jV j = n, edge set E and 
hromati
 number �(G).

Furthermore let L(v) be a list of allowed 
olours assigned to ea
h vertex v 2 V (G). The


olle
tion of all lists is 
alled a list assignment and denoted by L.

The graph G is 
alled L-list 
olourable if there is a 
olouring 
 of the verti
es of G su
h

that 
(v) 6= 
(w) for all vw 2 E(G) and 
(v) 2 L(v) for all v 2 V (G). Furthermore,

G is k-
hoosable if it is L-list 
olourable for every list assignment L with jL(v)j = k for

all v 2 V (G). The list 
hromati
 number �

`

(G) is the smallest number k su
h that G is

k � 
hoosable.

Furthermore let �

L

be the maximum number of verti
es of G whi
h are 
olourable with

respe
t to the list assignment L. De�ne �

t

:= min�

L

where the minimum is taken over all

list assignments L with jL(v)j = t for all v 2 V .

Clearly, if t � �

`

(G) then �

t

= n. Thus it is interesting to ask about �

t

if t < �

`

(G).

Re
ent results and algorithmi
 aspe
ts 
on
erning this question are dis
ussed in the

talk.
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Perfe
tness is an Elusive Graph Property

Annegret Wagler

A graph property is 
alled elusive (or evasive) if every algorithm for testing this property

has to read in the worst 
ase

�

n

2

�

entries of the adja
en
y matrix of the given graph.

Several graph properties have been shown to be elusive, e.g. planarity (Best et al 1974),

k-
olourability (Bollobas 1978), 2-
onne
tivity (Tries
h 1982), or the membership in any

minor 
losed family (Chakrabarti, Khot, Shi 2002) . A famous 
onje
ture of Karp (1973)

says that every non-trivial monotone graph property is elusive. We prove that a non-

monotone but hereditary graph property is elusive: perfe
tness.

A framework for network reliability problems on graphs of bounded treewidth

Thomas Wolle

We 
onsider problems related to the network reliability problem, restri
ted to graphs of

bounded treewidth. We look at undire
ted simple graphs with ea
h vertex and edge a

number in [0; 1℄ asso
iated. These graphs model networks in whi
h sites and links 
an fail,

with a given probability, independently of whether other sites or links fail or not. The

number in [0; 1℄ asso
iated to ea
h element is the probability that this element does not

fail. In addition, there are distinguished sets of verti
es: a set S of servers, and a set L of


lients.

We present a dynami
 programming framework for graphs of bounded treewidth for


omputing for a large number of di�erent properties Y whether Y holds for the graph

formed by the nodes and edges that did not fail. For instan
e, it is shown that one 
an


ompute in linear time the probability that all 
lients are 
onne
ted to at least one server,

assuming the treewidth of the input graph is bounded. The 
lassi
al S-terminal reliability

problem 
an be solved in linear time as well using this framework. The method is appli
able

to a large number of related questions. Depending on the parti
ular problem, the algorithm

obtained by the method uses linear, polynomial, or exponential time.

On some spe
ial pa
kings of trees

Mariusz Wo

�

zniak

A pa
king of a tree T = (V;E) of order n is a a permutation � : V ! V su
h that if xy 2 E,

then �(x)�(y) =2 E. It is known that all non-star trees are pa
kable. Two examples of

spe
ial situation were 
onsidered.

A) A 
y
li
 permutation allows to get a pa
king of given non-star tree T su
h that the

graph T � �(T ) is planar. This fa
t was proved by A.Gar
ia, C.Hernando, F.Hurtado,

M.Noy and J.Tejel (Pa
king Trees into Planar Graphs, JGT 40 (2002), 172-181). The

presented proof is easier and shorter than the original one.

B) Distin
t length labelling (DLL) of a tree of size t in K

n

(n-odd) is very useful tool

related to some pa
king or de
omposition problems. For instan
e, Ragonal graphs, Prepr.

ser. - Univ. Ljubl. Inst. Math., 2001, vol. 39, no. 776.
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Problems

Open problems involving sum multi
olouring

Magn

�

us M. Halld

�

orsson

Given a graph G = (V;E) and a length fun
tion x : V ! N, a proper multi
olouring is

a fun
tion  : V ! 2

N

assigning sets of 
olours to the verti
es su
h that ea
h vertex v

re
eives x(v) 
olours, j	(v)j = x(v), and adja
ent verti
es re
eive non-overlapping sets of


olours,  (v) \  (u) = ; for u; v 2 V . In the non-preemptive version, the 
olours assigned

to a vertex must form a 
ontiguous sequen
e, while in the preemptive version, any sequen
e

of 
olours is valid. The sum multi
olouring problem is to �nd a multi
olouring of a given

graph su
h that the sum

P

v2V

max


2 (v)


 of the largest 
olours assigned to ea
h vertex is

minimized.

(1) Is there a polynomial algorithm for preemptive sum multi
olouring of paths? For

weights up to nearly logarithmi
, the problem is solvable in polynomial time even

on trees, while in general there exists a polynomial time approximation s
heme

that applies also to partial k-trees [1℄. Re
ently, Marx [3℄ showed that the problem

is NP-hard for trees. His redu
tion holds also for polynomial lengths and binary

trees. The problem of determining the solvability of paths has eluded 
onsiderable

e�ort.

(2) Is there a polynomial algorithm for non-preemptive sum multi
olouring of outer-

planar graphs? A O(n

2

) time algorithm is known for this problem on trees and a

fully polynomial-time approximation s
heme for partial k-trees [2℄. The question is

whether there exists a more general 
lass of graphs than trees for whi
h the problem

is polynomially solvable.

Referen
es

[1℄ M. M. Halld�orsson and G. Kortsarz. Tools for Multi
olouring with Appli
ations to Planar Graphs

and Partial k-Trees. Journal of Algorithms, 42(2), 334-366, February 2002.

[2℄ M. M. Halld�orsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Sha
hnai, and J. A. Telle. Multi-

Colouring Trees. In Pro
eedings 5th Intl. Computing and Combinatori
s Conf. (COCOON), Tokyo,

Japan, LNCS Vol. 1627, Springer-Verlag, July 1999. To appear in Information and Computation.

[3℄ D. Marx. The Complexity of Tree Multi
olourings. In Pro
. 27th Intl. Symp. Math. Found. Comput.

S
i. (MFCS), LNCS, 2002.

Forbidden subgraphs and 3-
olourability

Bert Randerath and Ingo S
hiermeyer

The 3-
olourability problem is a well-known NP-
omplete problem. Using small dominat-

ing sets we have shown re
ently that 3-
olourability 
an be de
ided and a 
orresponding

3-
olouring 
an be determined in polynomial time for the 
lass of P

6

-free graphs (graphs


ontaining no indu
ed P

6

).

Question: Is 3-
olourability solvable in polynomial time for the 
lass of P

7

-free graphs?

Does there exists k � 7 su
h that 3-
olourability remains NP-
omplete for P

k

-free graphs?
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Weakly pan
y
li
 graphs

Zden

�

ek Ryj

�

a

�


ek

Let G be a �nite simple undire
ted graph and let g(G) and 
(G) be the girth and the


ir
umferen
e of G (i.e. the length of a shortest 
y
le of G and the length of a longest


y
le of G), respe
tively. We say that G is weakly pan
y
li
 if G 
ontains 
y
les of all

lengths ` for g(G) � ` � 
(G). The graph G is lo
ally 
onne
ted if the neighborhood of

every vertex of G indu
es a 
onne
ted graph.

Conje
ture: Every 
onne
ted lo
ally 
onne
ted graph is weakly pan
y
li
.

Hexagonal graphs are indu
ed subgraphs of the triangular latti
e

Janez

�

Zerovnik

Problem I: n-[k℄
olouring is an assignment of k subsets of f0; 1; : : : ; n � 1g to verti
es

of G. It is known that every triangle-free hexagonal graph is 5-[2℄
olourable and there

is a distributed algorithm for 5-[2℄
olouring [2℄. It is also known that every triangle-free

hexagonal graph is 7-[3℄
olourable [1℄. Question: Is every triangle-free hexagonal graph is 9-

[4℄
olourable? (The aÆrmative answer would imply the 
onje
ture of Reed and M
Diarmid

[4℄.) Subproblem: �nd algorithmi
 solutions.

Problem II: A graph G is H-
olourable, if there is a homomorphism from G to H. We

know that every triangle-free hexagonal graph is C

5

-
olourable [9℄. There are examples of

triangle-free hexagonal graphs whi
h are not C

9

-
olourable. (See Fig. 1.) Question: Is it

true that every triangle-free hexagonal graph is C

7

-
olourable?

Problem III: Weighted hexagonal graph has a weighting fun
tion d : V (G) ! N and

d(v) is refered to as the demand of V . The weighted 
lique number of G, ~!(G), is just the

maximum of the sums of vertex demands over all 
liques of G. The weighted 
hromati


number of G, ~�(G), is the minimum number of 
olours needed for an assignment su
h that

ea
h vertex is assigned d(v) 
olours and the sets of 
olours assigned to adja
ent verti
es

are disjoint. It is known [4, 6, 7, 8℄ that for weighted hexagonal graphs

~!(G) � ~�(G) �

�

4~!(G) + 1

3

�

M
Diarmid and Reed 
onje
tured that for triangle free hexagonal graphs ~�(G) �

j

9~!(G)

8

k

.

A

ording to Havet ~�(G) �

�

7D

3

�

= d

7~!(G)

6

e for triangle free hexagonal graphs with uniform

demand D [1℄. Klostermeyer and Zhang have proved the following: for any " > 0 there

exists an integer M su
h that if there is no odd 
y
le of length � M in G, ~�(G) �

(1 + ")~!(G) [3℄. Havet 
onje
tures that ~�(G) �

(2p+1)~!(G)

2p

for triangular latti
e graphs

with no indu
ed odd 
y
les of size less than 2p + 1. Problem: Prove or disprove the two


onje
tures. Subproblem: If true, �nd algorithmi
 solutions.

Problem IV: The hexagonal 
ells naturally arise from the optimal sphere (ball) pa
king

on the plane. It may be interesting to 
onsider the 
orresponding problem on the 3D


ellular system. Question: What ratio ~�(G)=~!(G) 
an we obtain by generalization of

the red-blue-green-(purple) algorithms? The problem may also be of pra
ti
al interest,

be
ause when designing a network in the urban environment with very high buildings the

3-dimensional model is mu
h more natural than the 2-dimensional model.
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For additional referen
es and related problems see [5℄.
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Figure 1. An example of a hexagonal graph, whi
h is not C

9

-
olourable:

Edited by Marian Margraf
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