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The meeting was organized by Reinhard Diestel (Hamburg), Alexander Schrijver (Am-
sterdam) and Paul D. Seymour (Princeton). Almost 40 scientists from more than 10
countries took part to the happening and more than 30 participants could stay in Ober-
wolfach for the whole workshop. Important new results were presented and directions for
further research were discussed and considered. The organizers and participants thank the
“Mathematisches Forschungsinstitut Oberwolfach” for providing a comfortable and inspir-
ing setting for this conference. The pleasant atmosphere in Oberwolfach contributed to
the overall success of the meeting.

In the following we include the abstracts in alphabetical order.
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Abstracts

Independent systems of representatives

Ron Aharoni (Technion, Haifa)

Given a graph G and disjoint subsets V1, . . . , Vn of V (G) an “independent system of
representatives” (ISR) is a choice of independent (in G) vertices v1 ∈ V1, . . . , vn ∈ Vn.
Denote by I(G) the complex of independent sets in G, and by η(G) the connectivity (in
the homological sense) of I(G).

Theorem: If η(G[∪i∈IVi]) ≥ |I| for every I ⊆ {1, . . . , n}, then there exists an ISR.

The function η can be bounded below by various domination parameters of the graph.
Plugging these bounds into the theorem yields combinatorial versions of it.

Polynomial Recognition Algorithm for Perfect Graphs

Maria Chudnovsky (Princeton)

(joint work with Paul Seymour (Princeton))

A graph is perfect if for every induced subgraph of it, the chromatic number equals the
clique number. A graph is Berge if it contains no odd cycle of length greater than 3 and no
complement of such cycle. The recent proof of the Strong Perfect Graph Theorem reduced
the long standing open question of the existence of a poly time recognition algorithm for
perfect graphs to finding a poly time recognition algorithm for Berge graphs. We present
such an algorithm with complexity O(|V (G)|9). The algorithm is independent of the proof
of the Strong Perfect Graph Theorem and tests directly for the presence of an odd hole in
a graph.

Restricted t-matchings in bipartite graphs

Andràs Frank (Eötvös University, Budapest)

Let G = (S, T ; E) be a bipartite graph. By a bi-clique, we mean a complete bipartite
graph with at least one edge. Given integer t ≥ 2, a bi-clique is called large if it has more
than t vertices. A t-covering is a subset of edges intersecting every large bi-clique of G. It
can be shown rather easily that a t-cover actually intersects each large bi-clique H in at
least |V (H)| − t edges.

Theorem: The cardinality of a minimum t-covering is equal to the maximum of
∑

i(|V (Hi)|−
t) where H1, . . . , Hl are edge-disjoint large bi-cliques.

By a t-matching we mean a subgraph of G in which every degree is at most t. Kt,t

denotes a bi-clique on t + t nodes.

Theorem: The maximum cardinality of a Kt,t-free t-matching in a bipartite graph
G = (S, T ; E) is equal to:

min
Z⊆S∪T

{t|Z|+ i(G− Z)− ct(Z)},
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where i(x) denotes the number of edges induced by X, and ct(Z) denotes the number of
Kt,t-components of G− Z.

This result was proved for t = 2 by Z. Király, who sharpened an earlier result of
D. Hartvigsen.

[to appear in Discrete Applied Mathematics, 2003, guest editor S. Fujishige]

Excluding a planar graph from binary Matroids

Jim Geelen (University of Waterloo)

(joint work with Bert Gerards (CWI) and Geoff Whittle (Victoria University))

We prove that a binary matroid with huge branch-width contains the cycle matroid of a
large grid as a minor. More generally, this holds for matroids representable over any finite
field.

On the excluded minors for the matroids with branch-width k

Bert Gerards (CWI, Amsterdam)

(joint work with Jim Geelen, Neil Robertson (Ohio State University) and Geoff Whittle)

We prove that there are only finitely many excluded minors for branch-width at most k (for

each fixed k). Actually, we prove that each such excluded minor has at most 6k−1
5

elements.
Main ingredient in the proof is the result that each excluded minor for branch-width k is
“well-connected” in the sense that each l separation with l ≤ k has a side with at most
6l−1−1

5
elements.

Many edge-disjoint circuits through prescribed vertices

Luis Goddyn (Simon Fraser University, Canada)

(joint work with Laco Stacho)

One standard theme of “classical” graph theory considers circumstances under which a
graph is guaranteed to posses a long circuit. The degree condition of Ore is a pioneering
example. Another theme regards the packing of edge-disjoint circuits, usually Hamilton
circuits into a graph. Connectivity conditions typically arise here. This result is a common
generalization of strong recent results from the theme.

Question: Given a set W of vertices in a graph G, and an integer k, do there exist k
pairwise edge disjoint circuits in G, each circuit containing all vertices in W (and possibly
more)?

Theorem: Such circuits exist, provided that

a) the subgraph induced by W is 2k-connected;
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b) any two vertices u, v ∈ W at distance two in the subgraph induced by W satisfy
the following “fan type” degree condition

max{degGu; degGv} ≥ n

2
+ 2(k − 1),

where n = |V (G)|.
The case k = 1 was proved by Bollobás and Brightwell in 1993. The case W = V (G)

was proved by G. Li in 2000. Conditions (a) and (b) are, in a sense, best possible.

Edge colouring in plane multigraph

Bertrand Guenin (University of Waterloo)

We show that a 4 regular planar multigraph has chromatic index 4 if and only if for every
odd subset of its vertices X, there are at least 4 edges with exactly one end in X. The
result was conjectured by Seymour in 79 and it implies the four colour theorem. The
corresponding result for 5 regular graphs also holds.

Transversals in Graphs

Penny Haxell (University of Waterloo)

Let G be a graph and V1 ∪ . . . Vn be a partition of the vertex set of G. An independent
transversal {v1, . . . , vn} is an independent set of vertices in G such that vi ∈ Vi for each
i. We give various conditions on G and the partition that guarantee the existence of an
independent transversal. Applications of these results to other combinatorial problems will
also be given such as list colouring, hypergraphs matching and strong chromatic number.

How to construct railway-routes

Andreas Huck (Deutsche Bahn AG)

We have a set of areas and for each pair (a, b) of areas, we have the average number of
daily travellers from a to b no matter what kind of transportation they use. The aim is a
good set of railway routes where each route is defined by a path in the graph representing
the railway net, a train type, and the departure and arrival times at each stop. ”Good”
means that the profit for the railway company should be as large as possible. On the one
hand, the route set must be attractive so that a lot of travellers will choose the railway (low
number of changes, small travel time, large number of train connections between the areas
etc.) but on the other hand, the route set must be economical, i.e. it must not contain too
much routes.

At the moment, the Deutsche Bahn AG is experimenting with a Greedy concept for
constructing good route sets which I developed and a concept based on meta heuristics
(simulated annealing, genetic algorithms etc.) developed by Frank Wagner, the Intranetz
company in Berlin, and the TU Berlin.
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Zero Distribution in Flow Polynomials of Cubic Graphs

Bill Jackson (Queen Mary College, London, UK)

A graph is near cubic if it has at most one vertex of degree other than three. The talk
describes several results on the zero distribution of flow polynomials of near cubic graphs
which imply that the only zeros of the flow polynomial of a cubic graph in (−∞, α) are
the integer zeros at 1 and 2, where α ≈ 2.54 is the zero of the flow polynomial of the cube
in (2, 3).

Dense minors in graphs of large girth

Daniela Kühn (Universität von Hamburg)

(joint work with Deryk Osthus (Humboldt-Universität zu Berlin))

Thomassen observed that if a graph of minimum degree at least 3 has large girth, then it
contains a large clique as minor. We obtained the following more detailed picture:

Theorem. For each odd integer g there exists a constant c such that every graph G of
minimum degree at least r and girth at least g contains some graph H as a minor whose

minimum degree is at least c(r − 1)
g+1
4 .

If g = 4k + 3 for some integer k then in fact c does not depend on g and thus every
graph of minimum degree at least 3 and girth at least 4 log2 r + o(log r) contains Kr as a
minor. Assuming the truth of a well-known conjecture, the bound in the theorem would
be best possible up to the value of the constant c.

Forbidden distances in the reals

I. Leader (Cambridge)

(joint work with N. Hindman, D. Strauss)

We show that there is a partition of the reals into finitely many classes with ‘many
forbidden distances’, in the following sense: for every positive x, there is a positive integer
n such that no two points in the same class are at distance x/n.

This problem arises naturally from some questions in Ramsey theory. The proof appears
to depend in a fundamental way on CH, but in fact it turns out that the result still holds
without CH.

Graph decomposition and topological quantum field theory

Làszlò Lovàsz (Microsoft Research)

(joint work with Mike Friedman, Kevin Walker and Dominic Welsh)

Topological quantum field theory leads to a number of very combinatorial questions about
planar curves and graphs. This talk surveys some of these, based on joint work with Mike
Friedman, Kevin Walker and Dominic Welsh. It turns out that the occurrence of the golden
ratio in Tutte’s work on the chromatic polynomial and in some studies in quantum field
theory have a common root. These studies also motivate some questions about graphs
that are interesting on their own right, like rank-connectivity and physicalness of a graph
parameter.
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High connectivity keeping sets in graphs and digraphs

W. Mader (Hannover University)

The following theorem was proved.

Theorem: For all positive integers n, k, there is an integer g(n, k) so that every finite
n-connected graph G with at least g(n, k) vertices contains a vertex set A with |A| = k
such that G− A is still (n− 2)-connected.

This result does not remain true for n − 1 instead of n − 2 or if the condition G(A)
connected is added. In the last case, (n− 3)-connected would be best possible, but I could
prove this only for k = 4. A corresponding result for digraphs is conjectured and proved
in the last case.

Strongly 2-connected digraphs

William McCuaig (Burnaby, Canada)

A digraph D is strongly 2-connected if D 6= ∅ and for every vertex x ∈ V (D) the digraph
D − x is strongly connected. A digraph D is strongly connected if |V (D)| ≥ 2 and for
every u, v ∈ V (D) there exists a u, v-dipath. We give a method for generating strongly
2-connected digraphs. Starting with a base set consisting of 4 families, all strongly 2-
connected digraphs can be constructed using 2 local operations.

Circular chromatic number of edge-weighted graphs

Bojan Mohar Mohar (University of Ljubljana, Slovenia)

The notion of circular colourings of edge-weighted graphs was introduced. This notion
generalizes the notion of circular colourings of graphs, the channel assignment problem, and
several other optimization problems. For instance, its restriction to colourings of weighted
complete graphs corresponds to the travelling salesman problem (metric case). It also gives
rise to a new definition of the chromatic number of directed graphs. Various basic results
about the circular chromatic number of edge-weighted graphs were presented.

Subdivisions and Minors in locally Sparse Graphs

Deryk Osthus (HU Berlin)

(joint work with Daniela Kühn (Hamburg University))

Mader proved that for every positive integer r there exists a positive integer g(r) such
that every graph of minimum degree at least r and girth at least g(r) contains a subdivision
of TKr+1 of a complete graph Kr+1. We proved that a girth of 200 will do (or a girth of
15 if r is large). If the girth is at least 5, we still obtain a TKp, where p is almost linear in
the minimum degree.

Similarly, a graph of large girth (or even a Ks,s free one) contains a large complete minor.
For example, our results imply that Hadwiger’s conjecture is true for all Ks,s-free graphs
whose chromatic number is sufficiently large compared to s. Also, they can be applied to
linkage problems.
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The structure of 3-separations of a 3-connected matroid

James Oxley (Louisiana State University)

(joint work with Charles Semple and Geoff Whittle)

More than twenty years ago, Cunningham and Edmonds showed that every 2-connected
matroid M has a tree decomposition that enables one

(i) to canonically reconstruct M ; and
(ii) to describe all 2-separations of M .

In particular, the 2-separations coincide with partitions induced by edges or special vertices
of the tree. It is not possible to canonically reconstruct all 3-connected matroids from their
3-separations. However, every 3-connected matroid has an associated tree that displays all
3-separations, up to a certain natural equivalence. As with 2-connected matroids, these
3-separations are displayed either by edges or by special vertices of the associated tree.

Knots in spatially embedded graphs

Rudi Pendavingh (Eindhoven University, the Netherlands)

Conway and Gordon show in a 1983 paper that K7 is knotted in the sense that for each
tame embedding f : K7 ↪→ R3 there is some circuit C of K7 such that f [C] is a nontrivial
knot. Specifically, they show that∑

C∈H(K7)

α(f [C]) is odd, for all f : K7 ↪→ R3,

where H(K7) is the set of Hamiltonian circuits of K7 and α(K) is the Arf invariant.
Knottedness follows since α(unknot) = 0. To similarly show that another graph G is
knotted, we need a set of circuits C(G) to tale the role of H(K7). Our main theorem is a
characterization of such C(G) by an explicit list of parity constraints. It follows that all
graphs obtained from K1,1,3,3 by both ∆Y - and Y ∆-exchanges are knotted (there are 58
such graphs). In the set of 20 graphs obtained from K7 by ∆Y ’s and Y ∆’s, only the 14
graphs gotten by only ∆Y ’s are shown to be knotted. Since it is easy to see that ∆Y ’s
preserve knottedness, this means that the latter already follows from Conway and Gordon’s
Theorem. The second result is that each graph that has an embedding in the Klein bottle
has a knotless embedding.

A-Path Packing Structure of Graphs

András Sebö (Leibniz-Imag, Grenoble)

(joint work with László Szegö (Egerváry Research Group, Budapest))

I stated and sketched the proof of Gallai-Edmonds type structure theorems for Mader’s
edge- and vertex-disjoint paths. I have also spent much time explaining what Gallai-
Edmonds type structure theorem is and what are the possible applications. Our main
motivations are algorithmic.
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Graph capacity and graph entropy

Gábor Simonyi (Alfred Renyi Mathematical Institute, Budapest)

Asymptotic growth rates of graph invariants like the clique chromatic number and the
chromatic number lead to well-investigated graph parameters as Shannon capacity and
the fractional chromatic number. Sperner capacity is a generalization of the former to
digraphs. Its extremal values over all orientations of an undirected graph lead to several
open questions that are summarized in the talk. A probabilistic refinement of the latter
(i.e. of the fractional chromatic number) leads to the notion of graph entropy and shows
its relation to Gerde and McDiarmid’s recent notion of imperfection ratio that is expressed
by the following theorem.
Theorem. log imp(G) = maxP{H(G, p) + H(G, p)−H(p)}.
Where imp(G) stand for the imperfection ratio and H(G, p) is the entropy of graph G with
respect to probability distribution p given on its vertices. H(p) is the Shannon entropy of
p, i.e., −

∑
i pi log pi.

The Strong Perfect Graph Theorem

Robin Thomas (Georgia Tech)

(joint work with M. Chudnovsky, N. Robertson and P.D. Seymour)

A graph is perfect if for every induced subgraph the chromatic number is equal to the
cardinality of a maximum complete subgraph. Berge conjectured in 1960 that a graph is
perfect if and only if it has no induced subgraph isomorphic to a cycle of odd length, or
the complement of such cycle. In the talk we briefly survey the history and relevance of
perfect graphs, and then outline a proof of Berge’s conjecture, found in joint work with
M. Chudnovsky, N. Robertson and P.D. Seymour.

Extremal results for incomplete minors

Andrew Thomason (University of Cambridge)

(joint work with Joseph Myers)

We describe how the extremal function (that is, the average degree needed) for forcing a
minor isomorphic to the graph H depends on the structure of H. For graphs H of order t
the extremal function is in fact determined by the parameter

γ(H) = min
w

1

t

∑
u∈H

w(u) such that
∑

uv∈E(H)

t−w(u)w(v) ≤ t ,

where the minimum is over all assignments w : V (H) → R+ of non-negative weights to
the vertices of H.

The principal reason for the significance of this parameter is a threshold result, stating
that H is a minor of almost no graphs of density lower than the threshold but H is minor
of all (not just almost all) graphs of higher density. The threshold can be evaluated in
terms of γ(H).

The parameter γ(H) itself is probably difficult to evaluate but ways are discussed in
which it can be estimated more or less exactly for nearly all H.
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k-color-critical graphs of girth q on a fixed surface

Carsten Thomassen (Tech. University Denmark)

Are there infinitely many (k + 1)-colour-critical graphs of girth q on a fixed surface? This
question has been answered in the literature except for one case: k = 3, q = 5. I have
recently proved that in this case, the number of critical graphs is finite. As a consequence,
there exists a polynomial time algorithm for finding the chromatic number of a graph of
girth 5 on any fixed surface.

A polynomial algorithm for recognizing perfect graphs

Kristina Vuskovic (University of Leeds, UK)

(joint work with Gérard Cornuéjols, Wy and Xiuming Lin)

A hole is a chordless cycle of length at least 4. A hole is odd if it contains an odd
number of edges, and otherwise it is even. A graph G contains a graph H if H is iso-
morphic to an induced subgraph of G. A graph is H-free if it does not contain H. By
the Strong Perfect Graph theorem, recently proved by Chudnovsky, Robertson, Seymour
and Thomas, a graph G is perfect if and only if neither G nor G contains an odd hole.
In this talk I present an algorithm that tests whether G and G are odd hole free. The
algorithm consists of 2 parts. In the first part, given an input graph G, a clean graph G′

is produced or it is concluded that G or G is not odd-hole-free. And the second part tests
whether G′ contains an odd hole. The first part of the algorithm is done in joint work
with Chudnovsky, Cornúejols, Lin and Seymour. The second part is done in 2 different
ways, one way produced by Chudnovsky and Seymour, and the other by our team. Our
approach uses the decomposition method. We use the decomposition theorem for odd-hole
free graphs, obtained in joint work with Conforti and Cornuéjols, that states that an odd-
hole-free graph is either basic (bipartite graphs, line graph of a bipartite graph or their
complements) or it has a double star cutset or a 2-join.

Recent Progress in Matroid Representation Theory

Geoff Whittle (Victoria University, Wellington, New Zealand)

The basic questions of matroid representation theory have proved to be very persistent
and difficult to resolve. However, there has been some progress in recent years using
techniques inspired by the Graph Minors project of Robertson and Seymour. In the talk,
I outlined recent results and discussed prospects for further progress.

Kp-minor in p-connected graphs

Cun-Quan Zhang (West Virginia University)

(joint work with K. Kawarabayashi, R. Luo, J. Niu)

Let G be a (k + 2)-connected graph where k ≥ 5. We proved that if G contains three
complete graphs of order k, say L1, L2, L3 such that |L1 ∪ L2 ∪ L3| ≥ 3k − 3, then G
contains a Kk+2-minor. This result generalizes some early results by Robertson, Seymour
and Thomas (Combinatorica, 1993) for k = 4, and Kawarabayashi and Toft for k = 5.

Edited by Romeo Rizzi
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daniela.kuehn@math.uni-hamburg.de

Mathematisches Seminar
Universität Hamburg
Bundesstr. 55
D–20146 Hamburg

Dr. Imre Leader
i.leader@dpmms.cam.ac.uk

Dept. of Pure Mathematics and
Mathematical Statistics
Center for Mathematical Sciences
Wilberforce Road
GB-Cambridge CB3 OWB

Prof. Dr. Laszlo Lovasz
lovasz@cs.yale.edu

lovasz@microsoft.com

Microsoft Research
One Microsoft Way
Redmond, WA 98052-6399 – USA

Prof. Dr. Wolfgang Mader
mader@math.uni-hannover.de

Institut für Mathematik
Universität Hannover
Welfengarten 1
D–30167 Hannover

11



Prof. Dr. Bill McCuaig
wmccuaig@netcom.ca

5268 Eglinton St.
Burnaby, B.C. V5G 2B2 – Canada

Prof. Dr. Bojan Mohar
bojan.mohar@uni-lj.si

FMF - Matematika
University of Ljubljana
Jadranska 19
1111 Ljubljana – Slovenia

Dr. Deryk Osthus
osthus@informatik.hu-berlin.de

Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6
D–10044 Berlin

Prof. Dr. James Oxley
oxley@math.lsu.edu

Dept. of Mathematics
Louisiana State University
Baton Rouge, LA 70803-4918 – USA

Dr. Rudi Pendavingh
rudi@win.tue.nl

Dept. of Mathematics and
Computer Science
Eindhoven University of Technology
Postbus 513
NL-5600 MB Eindhoven

Dr. Erich Prisner
Eppendorfer Weg 203
20253 Hamburg

Prof. Dr. Bruce Reed
breed@cs.mcgill.ca

School of Computer Science
McGill University
3480 University Street
Montreal Quebec H3A 2A7 – Canada

Prof. Dr. Bruce Richter
brichter@uwaterloo.ca

Department of Combinatorics and
Optimization
University of Waterloo
Waterloo, Ont. N2L 3G1 – Canada

Prof. Dr. Romeo Rizzi
romeo@science.unitn.it

Dip. di Informatica e
Telecommunicazioni
I-38100 Trento

Prof. Dr. Neil Robertson
robertso@math.ohio-state.edu

Department of Mathematics
Ohio State University
231 West 18th Avenue
Columbus, OH 43210-1174 – USA

Prof. Dr. Alexander Schrijver
lex@cwi.nl

CWI
Postbus 94079
NL-1090 GB Amsterdam

Prof. Dr. Alex Scott
scott@math.ucl.ac.uk

Department of Mathematics
University College London
Gower Street
GB-London WC1E 6BT

Prof. Dr. Andras Sebö
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