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The conference was organized by Mike Hopkins (MIT), Karlheinz Knapp (Wuppertal)
and Erich Ossa (Wuppertal). 48 participants from Europe, Japan, Singapore, and the
United States attended.

All in all, 19 talks were given, covering a wide array of homotopy theory and interconnec-
tions to other areas of mathematics, such as representation theory and group cohomology.
Some major new developments presented were a proof of the longstanding conjecture that
every (quasi)finite loop space is homotopy equivalent to a smooth, compact, paralleli-
zable manifold, and a proof of the Martino-Priddy conjecture on classifying spaces of finite
groups. There were several talks on chromatic homotopy theory, some of them opening up
ways towards generalizations of elliptic cohomology. Among the highlights were two talks
showing how methods and ideas from commutative algebra may now be applied to yield
surprising new insights into stable homotopy theory.
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Abstracts

Periodic Localization and Goodwillie Calculus

Nicholas Kuhn

Goodwillie’s calculus of homotopy functors interacts in beautiful and deep ways with
Bousfield localization with respect to periodic homology theories. We have two theorems
illustrating this, with input used in proving the theorems coming from consequences of the
Nilpotence theorems of Devanitz, Hopkins, and Smith.

Let K(n) denote the nth Morava K–theory, localized at a prime p, and with n > 0.
Let T (n) denote the mapping telescope of a vn–self map of a type n finite spectrum. The
Bousfield classes compare: 〈T (n)〉 ≥ 〈K(n)〉, and the telescope conjecture is the statement
that equality holds.

Let Alg denote the category of commutative, augmented S–algebras. If X is an S–
module, let PX denote the free object in Alg generated by X. This is homotopy equivalent
to the wedge over d of (X∧d)hΣd

. Another example of an object in Alg is Σ∞Ω∞X+.
Alg is a fine model category, and the Goodwillie tower of its identity functor, evaluated

at an algebra R yields the André–Quillen tower of R. The tower for PX evidently splits
into the product of the homogeneous pieces (X∧d)hΣd

. Our first theorem implies that the
André–Quillen tower for Σ∞Ω∞X+ similarly splits after Bousfield localization with respect
to T (n).

Theorem A. There is a natural map LT (n)PX → LT (n)Σ
∞Ω∞X+ of commutative aug-

mented LT (n)S–algebras inducing a T (n)∗–equivalence of André–Quillen towers.

This theorem follows from an application of the telescopic functors constructed in the
mid 1980’s by Bousfield and myself.

Input A The evaluation ε : Σ∞Ω∞X → X admits a natural section after T (n)-localization.

Our second theorem concerns the periodic localization of all functors with domain and
range in the stable model category of S–modules.

Theorem B. All Goodwillie towers F1(X) ← F2(X) ← F3(X) ← · · · of polynomial
functors from S–modules to S–modules split as the product of their homogeneous fibres
after localization with respect to T (n), for all n > 0.

This follows from the next theorem, which strengthens to T (n) a result about K(n)
proved by Greenlees, Hovey, and Sadofsky.

Input B For all finite groups G, LT (n)TateG(LT (n)S) ' ∗.
The deduction of Theorem B from Input B uses an insight about polynomial functors

due to McCarthy.
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Witt vectors and equivariant stable homotopy

Morten Brun

This talk is guided by the fact that the zeroth homotopy group of the Cn-fixed points
of topological Hochschild homology of a commutative ring R is equal to the n-truncation
of the ring of big Witt vectors, denoted Wn(R). It has the following generalization: Let
A be a commutative ring-spectrum with an action of a finite group G. For a subgroup
H ⊆ G, let π0(A

H) denote the zeroth homotopy group of the H-fixed points of A. Then
there for every H ⊆ G there is a natural ring homomorphism WH(π0(A))→ π0(A

H), where
WH(π0(A) is the ring of H-Witt vectors of π0(A) defined by Dress and Siebeneicher. This
map is given by a universal property of the function H 7→ WH(π0(A)). I shall end the talk
by discussing what happens on higher homotopy groups.

Cohomological quotients and the telescope conjecture

Henning Krause

A new type of quotients for triangulated categories is introduced. This generalizes the
classical quotient modulo a thick subcategory in the sense of Verdier. The concept of a
cohomological quotient is motivated by the failure of the telescope conjecture. In fact,
if C is a compactly generated triangulated category, then the cohomological quotients of
comp(C) correspond bijectively to the smashing localizations of C. Here, comp(C) denotes
the subcategory of compact objects in C, and a localization functor C → C is smashing
if it preserves coproducts. The cohomological quotients of a triangulated category form
a complete and cocomplete lattice. This leads for any exact functor C → D between
triangulated categories to a unique factorization C → C ′ → D such that

1) C → C ′ is a cohomological quotient, and
2) if C → C′′ → D is another factorization such that C → C′′ is a cohomological

quotient, then C → C ′ factors through C → C ′′.
As an application, we discuss when a ring homomorphism R→ S induces a cohomological
quotient per(R) → per(S) for the categories of perfect complexes. This leads to the
question, when every map in per(S) is (up to an isomorphism) induced from a map in
per(R). The answer generalizes recent work of Neeman and Ranicki.

Profinite spaces, complex cobordism, unstable operations,
and cohomology of mapping spaces

François-Xavier Dehon

We present division functors in MU-cohomology related to the cohomology of mapping
spaces in the spirit of Lannes’ T-functor.

Let grSet denote the category of graded sets, Ŝ the category of profinite spaces and hŜ
its homotopy category (as set up by Morel). For S in grSet we let K(S) be the product∏

s∈S MU|s| where (MUn)n stands for the Ω-spectrum associated to complex cobordism (so
that we have HomhŜ(X, K(S)) ' HomgrSet(S, MU∗X)). We denote G the associated monad
S 7→ MU∗K(S) and define the category KMU of MU-unstable algebras as the category of
G-algebras of grSet. The additive structure of G(S) is easy to describe from the fact the
profinite space K(S) is torsion free by a result of Wilson and the general case comes from
the coequalizer diagram G2(M) →←→ G(M) → M for M in KMU. We obtain an abelian

3



category M̂ with a tensor product ⊗̂ and a decreasing filtration of its objects with the
following properties:

– Let K denote the category of unstable algebras over the Steenrod algebra. For M in
KMU, M/f1 is naturally inK and there is a bijection HomKMU

(M, MU∗)'HomK(M/f1, Z/p).
– For a profinite space X there is a morphism MU∗X/f1 → H∗X which is iso if X is

torsion free, and a bijection π0X ' HomKMU
(MU∗X, MU∗).

– Let W be a torsion free space whose mod p cohomology is degree-wise finite and X a
profinite space, then there is an isomorphism MU∗W ⊗̂MU∗X ' MU∗W×X.

– The functor MU∗W ⊗̂− has a left adjoint in M̂ so it has a left adjoint (− : MU∗W )KMU

in KMU. The morphism (G(S) : MU∗W )KMU
→ MU∗map(W, K(S)) is an isomorphism.

We now state:

Theorem. The morphism (MU∗X : MU∗CP∞)KMU
→ MU∗map(CP∞, X) is an isomor-

phism if X is torsion free.

Consequently the map HomhŜ(CP∞, X) → HomKMU
(MU∗X, MU∗CP∞) is a bijection if

X is torsion free. Similar results hold for W = BZ/pn.

Configurations, Braids, and Homotopy Groups

Jie Wu

(joint work with Jon Berrick, Fred Cohen, and Yan Loi Wong)

Simplicial and ∆-structures of configuration spaces are investigated. New connections
between the homotopy groups of the 2-sphere and the braid groups are given. The higher
homotopy groups of the 2- sphere are shown to be the derived groups of the braid groups
over the 2-sphere. The higher homotopy groups of the 2-sphere are shown to be isomorphic
to the Brunnian braids over the 2-sphere modulo the Brunnian braids over the disk. More-
over the sequence of classical Artin pure braid groups has a canonical ∆-group structure
with the property that its Moore homotopy groups are the homotopy groups of S2.

Subalgebras of group cohomology defined by infinite loop spaces

John R. Hunton

(joint work with David J. Green and Björn Schuster)

For a finite group G and a representable cohomology theory E∗(−) we construct a sub-
ring, ChE(G), closed under the action of the Steenrod algebra, of the group cohomology
H∗(G) with coefficients in the field of p elements. For E complex K-theory, we recover
Thomas’ Chern subring, the subring of H∗(G) generated by Chern classes of unitary rep-
resentations. We discuss ChE(G) for a number of theories E. Theoretically, the ring ought
be most accessible when there is both a good model for E∗(BG) and a strong hold on the
coalgebraic ring H∗(E∗), that is the homology of the spaces in the Ω-spectrum for E. This

is so for examples such as E = K, π0
s and Ê(n), but it turns out that good results are also

obtainable in cases where there is no theory for E∗(BG) such as BP , k(n) and the (un-
complete) Johnson-Wilson spectra E(n). In all cases there are simple descriptions of the
varieties associated to the ChE(G) in terms of categories of elementary abelian subgroups
of G. Corollaries of this work include a ‘chromatic’ filtration of Quillen’s variety of H∗(G),
and a new proof and generalisation of Yagita’s theorem that the image of BP ∗(BG) in
mod p-cohomology is F -isomorphic to the whole of H∗(G).
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Harrison cohomology and rational homotopy of function spaces

Andrey Lazarev

(joint work with J. Block)

Let X and Y be two rational spaces, both nilpotent and of finite type, f : X → Y be
a fixed map and denote by Map(X, Y ) the function space from X into Y with f as a
basepoint. Denote by A∗(?) the Sullivan-deRham differential graded algebra of ?. Then
f induces a map of differential graded algebras A∗(Y ) → A∗(X) making A∗(X) into an
A∗(Y )-module. We show that the homotopy groups of πiMap(X, Y ) for i > 0 can be
expressed as Harrison cohomology of A∗(Y ) with coefficients in A∗(X).

For i = 0 the analogous result can be proved under the assumption that X = Y and
that X satisfies some additional finiteness conditions (e.g. X could be a finite Postnikov
tower). Recall that according to the well-known theorem of Sullivan and Wilkerson, the
set of homotopy self-equivalences of a rational space X is a set of Q-rational points of an
algebraic group scheme over Q. We show that the zeroth Harrison cohomology of A∗(Y )
with coefficients in A∗(X) supplied with the Gerstenhaber bracket is the Lie algebra of the
corresponding algebraic scheme.

A proof of the Martino-Priddy conjecture

Bob Oliver

The Martino-Priddy conjecture says that for any prime p and any pair of finite groups G
and G′, the p-completed classifying spaces BG∧

p and BG′∧
p are homotopy equivalent if and

only if there is an isomorphism between the Sylow p-subgroups of G and G′ which preserves
fusion. In other words, the p-local structure of the group determines the homotopy type
of its p-completed classifying space.

A p-subgroup P ≤ G is called p-centric in G if Z(P ) is a Sylow p-subgroup of CG(P );
equivalently, if CG(P ) = Z(P )×C ′

G(P ) for some group C ′
G(P ) of order prime to p. Let ZG

be the (contravariant) functor on the p-subgroup orbit category of G, defined by setting
ZG(P ) = Z(P ) if P is p-centric, and ZG(P ) = 0 otherwise. The proof of the Martino-
Priddy conjecture is first reduced to showing that lim←−

2(ZG) vanishes for any finite group G.
This reduction follows from a homotopy decomposition of Dwyer, who showed that BG is
mod p equivalent to the homotopy direct limit of classifying spaces of p-centric subgroups
of G. The proof that lim←−

2(ZG) = 0 is then carried out using the classification theorem for
finite simple groups.

Finite loop spaces are manifolds

Tilman Bauer

(joint work with Nitu Kitchloo, Dietrich Notbohm, and Erik Pedersen)

We prove the following theorem:

Theorem. Let X be a loop space such that H∗(X;Z) is finitely generated. Then X is
homotopy equivalent to a smooth, compact, parallelizable manifold.

Many examples different from Lie groups may be constructed by Zabrodsky’s method
of mixing of homotopy types at different primes.

The proof consists of a surgery and a homotopy-theoretic part. We first show that the
existence of a mildly enriched circle fibration with total space X and quasifinite, stably
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reducible base space makes the surgery and finiteness obstructions for X vanish and thus
makes X smoothable. The assumptions on such a circle fibration are such that their
existence is a local property: circle fibrations on all p-completions of X, for all primes p,
will glue to yield a circle fibration on X.

In the second part, we construct such circle fibrations for the p-completion of a loop
space, or, more generally, for p-compact groups. Since p-compact groups have maximal
tori, circle subgroups can always be found. The construction utilizes the classification of
p-adic pseudo-reflection groups, which occur as Weyl groups of p-compact groups, as well
as the classification of all p-compact groups up to rank 2.

E∞-ring structures for some periodic spectra

Birgit Richter

(joint work with Andrew Baker)

Alan Robinson established an obstruction theory for E∞ ring structures on commutative
ring spectra. The obstruction groups live in Gamma cohomology. This is a cohomology
theory for commutative algebras which should be thought of as André-Quillen cohomology
for E∞ algebras.

We prove:
The spectra complex K-theory, its p-localization, the first Johnson-Wilson spectrum

E(1) and the In-adic completions of all Johnson-Wilson spectra each have a unique E∞
structure.

The method of proof involves the calculation of the algebra of cooperations and their
Gamma cohomology with rational and p-adic coefficients.

The homology of inverse limits of spectra and the
chromatic splitting conjecture

Hal Sadofsky

Hopkins’s chromatic splitting conjecture predicts that for X finite:

(1) The map Ln−1X → Ln−1LK(n)X splits, i.e. Ln−1LK(n)X ' Ln−1X ∨ P , and
(2) P has a particular form, which we will not discuss here.

We prove 1. for X finite type n − 1. As a corollary, we deduce that LK(n−1)LK(n)X '
LK(n−1)X ∨ P ′ for some P ′.

Our methods are of more general interest than our results; given a tower of spectra

· · · → Xi → Xi−1 → · · · → X1

and a multiplicative homology theory E where E∗E is flat over E∗, we produce a spectral
sequence which computes (under favourable circumstances) E∗(holim LEXi), with E2-term
given by derived functors of inverse limits of E∗E-comodules.

We then use this to approximate E(n)∗(LK(n)X), and the proof proceeds formally from
that point.
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Toward higher chromatic analogs of elliptic cohomology

Douglas C. Ravenel

Elliptic cohomology fails to detect vn-periodic phenomena because the formal group
attached to an elliptic curve has height at most 2. In order to go deeper into the chromatic
tower one needs a curve of genus > 1 whose Jacobian has a 1-dimensional formal summand
of height > 2. I will describe such examples in this talk.

Why do I want to be a pro-homotopy theorist?

Wojciech Chachólski

Many properties of spaces are reflections of more general pro-properties of towers. These
Pro properties typically contain much more information than their space level analogues.
Pro setting is also very convenient for constructing and studying completions and localiza-
tion functors. The aim of the talk is to present several motivating examples. I will show
that various trivialization conditions can be generalized to the Pro setting and explain
what new information is carried by these more general statement. This will be illustrated
for contractibility, triviality of fibre bundles, triviality of resolutions.

I will then construct various completion towers and show their relation to the Bousfield-
Kan tower and the localization tower.

The essential ideal: a selective survey

David J. Green

Consider the mod-p cohomology ring H∗(G) of a finite group G. By definition, the
essential ideal consists of those classes whose restriction to every proper subgroup is zero.
Of old, detection results led to important theorems: a good example being one of Quillen’s
proofs of the Adams Conjecture. More recently, people have started deriving consequences
of non-detection, that is of the presence of essential classes. Three good examples are

(1) J. F. Carlson’s theorem that the presence of essential classes ensures that Duflot’s
group-theoretic lower bound for the depth of the cohomology ring is attained.

(2) The cohomological characterisation by Adem and Karagueuzian of those p-groups
all of whose order p elements are central.

(3) The result of Pakianathan and Yalçın that if the nilpotence degree of the essential
ideal exceeds two, then there is a fixed point theorem for G-CW-complexes in low
dimensions akin to a well-known result in the theory of transformation groups which
holds for all dimensions if the group is elementary abelian. To date there is only
one example of a non-elementary abelian group with this high nilpotency degree
property: the Sylow 2-subgroup of SU3(4).

After presenting these results I discussed in detail the proof of the theorems of Carlson and
Duflot. The key techniques are comodule structure and systems of parameters with nice
properties. One further corollary is that the essential ideal is free and finitely generated as
a module over a certain polynomial algebra on d generators, where d is the p-rank of the
centre of the group. Curiously, for this one has to assume that the group does not have
the cyclic group of order p as a direct factor.
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Self-maps of loop spaces

Fred Cohen

Let X denote a path-connected CW complex and P n(pr) = Sn−1 ∪pr en the mod pr Moore
space with top cell in dimension n.

Theorem. If n ≥ 4 and the order of the identity for P n(pr) is pq, then the pq+1-power
map on Ω2(X ∧ P n(pr)) is null-homotopic.

Corollary. If X = Σ3A and the pq-th co-H-power map on X is null, then pq+1π∗X − 0.

Methods: (I) The first step involves combinatorial group theory to give the “universal
self-maps” in the group [ΩΣ2X, ΩΣ2X]. This group is an inverse limit, lim←−n

Hn, with

Hn←− Lie(n)←− 1
↓↓

Hn−1

↓
1

where Lie(n) = center(Hn).
(II) The second step is a homotopical version of the Eilenberg-Moore spectral sequence
based on work with Dai Tamaki. An analysis of “attaching maps” for Ω2Σ2(P n(pr) ∧X)
based on “cells” (P n(pr) ∧X)nq gives the requisite null-homotopies using part (I).

Galois theory of commutative S-algebras

John Rognes

Let G be a finite group, E a spectrum. A map A→ B of commutative S-algebras is an
E-local G-Galois extension if G acts on B through A-algebra maps so that the canonical
maps i : A→ BhG and h : B ∧A B →

∏
G B are E-equivalences. A homomorphism R→ T

is a G-Galois extension of commutative rings if and only if the map HR → HT is a G-
Galois extension of commutative S-algebras, where H is the Eilenberg-MacLane functor.
c : KO → KU is a (quadratic) C2-Galois extension, while Jp → KUp is a K(1)-local Z∗

p-
pro-Galois extension, and more generally LK(n)S→ En is a K(n)-local Sn o Cn-pro-Galois
extension, where Sn is the nth Morava stabilizer group. We show that B is faithful and
dualizable as an A-module. G-Galois extensions are preserved by arbitrary base change,
and detected by faithful and dualizable base change. It follows that for subgroups H ⊂ G
the extension BhH → B is H-Galois, and if H is normal, A → BhH is G/H-Galois.
Applications are envisaged to the geometry of Spec(S), descent for algebraic K-theory of
commutative S-algebras, and K(n)-compact groups.
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Arithmetic equivariant elliptic cohomology

Neil P. Strickland

Recall that an elliptic spectrum is a triple E = (E, C, t), where

(a) E is a homotopy-commutative ring spectrum whose homotopy is two-periodic and
concentrated in even degrees, giving a formal group P over the scheme S :=
spec(π0E);

(b) C is an elliptic curve over S;

(c) t is an isomorphism P ' Ĉ of formal groups over S, where Ĉ is the formal neigh-
bourhood of the zero section in C.

We write k = OS = π0E. Given S and C, there is often a canonical (or even unique)
choice of E as above.

Now fix an elliptic spectrum E = (E, C, t). Given a compact Lie group G, it is natural
to hope for a G-equivariant version of E, represented by an equivariant ring spectrum EG.
This would almost surely be automatic, if we had a sufficiently geometric construction of
elliptic cohomology. Conversely, by building EG in a more ad hoc manner, we hope to gain
intuition and experimental data to point the way to a geometric construction.

In the case of a finite abelian group A, the theory of equivariant formal groups gives a
detailed picture of what EA should look like, assuming that it exists. We will describe a
method that works backwards from this picture to give a construction of EA. The main part
of the construction assumes that E is In-torsion and vn-periodic for some n ∈ {0, 1, 2}; it
uses geometric fixed points, the Borel construction, and an algebraic extension. The K(n)-
local case then follows by passage to inverse limits, and the general case can be addressed
using chromatic fracture squares, although there are obstructions to the final steps of this
approach.

p odd versus p = 2 for p-compact groups

Jesper M. Møller

The classification theorem for p-compact groups at odd primes has been completed
recently. It says that two p-compact groups are isomorphic if and only if their maximal
torus normalizers are isomorphic. Focus is therefore now on the case p = 2.

The main purpose of the talk was to clarify the differences between 2-compact groups
and p-compact groups for p > 2 when it comes to classification. The major differences are
listed in this table over the first few cohomology groups H1(W ; Ť ) where W is the Weyl
group and Ť the maximal torus of a connected p-compact group:

H i(W ; Ť ) p > 2 p = 2

i = 0 Ž(X) ⊂ Ž(X)
i = 1 0 (Z/2)e

i = 2 0 (Z/2)f

This means that when p = 2,

• the invariants for the Weyl group action are no longer necessarily equal to the
center,
• there are automorphisms of the maximal torus normalizers that do not extend to

automorphisms of the 2-compact group,
• the maximal torus normalizer does not necessarily split.
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I outlined a classification program for 2-compact groups that take these differences into
account. The program essentially reduces the classification conjecture to the case of the
connected, simple, centerfree 2-compact groups. The program does go through for the
2-compact groups in the infinite A-family and leads to the following concrete result

Theorem. The 2-compact group PU(n + 1) is N-determined.

A 2-compact group is N -determined if it is determined up to isomorphism by its maximal
torus normalizer. i.e. if it satisfies the classification conjecture.

New twists to duality in topology and algebra

John Greenlees

(joint work with W. G. Dwyer and S. Iyengar)

The talk discussed a number of examples of strictly commutative ring spectra R with a
‘residue field’ k.

CA: A commutative local Noetherian ring R with residue field k.
CX: The cochains on a space R = C∗(X; k).
GH: The chromatic example with R = LnX

0 (the Ln-local sphere) and k = K(n) (nth
Morava K theory).

It then discussed what it means for R to be regular or Gorenstein, and in the latter case,
what it means to be orientable. In Case CA, both regular and Gorenstein mean the usual
thing, and all Gorenstein rings are orientable. In Case CX, if k is of characteristic p and
X is connected and p-complete then R is regular if and only if X is the classifying space of
a p-compact group. It is Gorenstein if X is a manifold and it is orientably Gorenstein if X
is orientable over k. It is also Gorenstein if X is the classifying space of any compact Lie
group, and orientable if the adjoint bundle is orientable over k. In case GH Gross-Hopkins
duality states that the example is Gorenstein, and precisely identifies the non-orientability.

It was also discussed how the notion of proxy-regularity lets one deduce duality state-
ments when R is Gorenstein. This gives the local cohomology theorem for group cohomol-
ogy rings and the conventional form of Gross-Hopkins duality.

Edited by Björn Schuster
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