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The Arbeitsgemeinschaft brought together experts from two fields, learning about the
implementation and the applications of the convex integration method in differential ge-
ometry and in the calculus of variations.

These two aspects were not presented in two separated parts of the meeting but rather
developed in parallel. In this way we could see how M. Gromov’s approach, which was
motivated by the famous J. Nash’s flexibility theorem for C1-isometric embeddings and
which provided powerful tools for solving differential equations and inequalities arising in
geometry, was interacting with more analytical ideas, in particular from L. Tartar’s work,
and recently led to a variety of new results – reaching from material science to surprising
counterexamples in the theory of elliptic and parabolic PDEs.
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Abstracts

Introduction to the h-principle: topological methods for solving differential
equations and inequalities

Yasha Eliashberg

There exists a large class of differential equations and inequalities (relations) which have
huge spaces of solutions. Amazing classical example of this kind is the famous C1-isometric
immersion theorem of J. Nash. In the talk we described the language of jets, necessary for
the geometric description of this class of partial differential relations (PDR). We discussed
the notion of formal and genuine solutions of the PDR, and introduced the notion of the
h-principle, which is due to M. Gromov. One of the general methods for proving the h-
principle, the convex integration was illustrated for the problem of constructing a closed
k-form of norm 1.

Differential inclusions in the Calculus of Variations

László Székelyhidi

The talk gave an outline of convex integration in the context of multidimensional Calculus
of Variations. To motivate, we showed that in many typical minimization problems the
direct method fails. In particular for functionals

I[u] =

∫
Ω

f(Du)dx

where f ≥ 0 and K := {f = 0} is compact, global minimizers are Lipschitz mappings
satisfying

Du(x) ∈ K a.e. in Ω,

and may exist even if the direct method fails. The idea is to approximate solutions from
the class of piecewise affine mappings, obtaining members of the sequence from previous
ones by local perturbation in a way that the gradients used get “closer” to K. In the
method therefore we require that the original inclusion problem posed in a domain where
some approximating mapping is affine with matching boundary data admits a solution.
The significance of this observation is that it gives a global restriction on the class of func-
tions from which we can hope to approximate the solution. We analysed this restriction,
introducing approximate gradient distributions and generalized convexities.

On the other hand, using explicit constructions, iteration by local perturbation leads
to a subset of approximate gradient distributions called laminates. An important point
emphasized was that infinite iteration can lead to laminates which are supported on sets
without rank-1 connections. This highlights the difficulty in a priori deciding whether a
differential inclusion admits nontrivial Lipschitz solutions by convex integration or not.
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Methods for proving the h-principle 1: Holonomic Approximation

Nikolay Mishachev

The Holonomic Approximation Theorem shows that in some sense there are unexpect-
edly many holonomic sections near a submanifold A ⊂ V of positive codimension. The
Holonomic Approximation Theorem significantly simplifies Gromov’s continuous sheaves
method for solving partial differential relations.

In order to understand the meaning of the theorem, it is useful to start with the following
naive question: Is it possible to approximate any section F : V → X(r) by a holonomic sec-
tion? In other words, given an r-jet section and an arbitrarily small neighbourhood of the
image of this section in the jet space, can one find a holonomic section in this neighbour-
hood? Though in general the answer is evidently negative, the Holonomic Approximation
Theorem says that we always can find a holonomic approximation of a section F : V → X(r)

near a slightly C0-deformed submanifold Ã ⊂ V if the original submanifold A ⊂ V is of
positive codimension.

Given an arbitrary submanifold V0 ⊂ V of positive codimension, the Holonomic Approx-
imation Theorem allows us to solve any open differential relations R near a perturbed

submanifold Ṽ0 = h(V ) where h : V → V is a C0-small diffeomorphism. Gromov’s h-
principle for open Diff V -invariant differential relations on open manifolds, his directed
embedding theorem, as well as some other results in the spirit of the h-principle are im-
mediate corollaries of the Holonomic Approximation Theorem.

Methods for proving the h-principle 2: Removal of singularities

Bernhard Leeb

Following section 4.3 of the paper Construction of nonsingular isoperimetrical films by
Eliashberg and Gromov (1971) we explained the method of removal of singularities for
proving h-principles on the example of finding immersions of smooth manifolds into Eu-
clidean space.

Convergence of Gradients I: Controlled L∞-convergence

Pietro Celada

The talk describes the convex integration of Lipschitz partial differential relations (PDR)
as exposed in S. Müller and V. Šverák’s paper (Attainment results for the two-well problem
by convex integration in Geometric analysis and the calculus of variations, J. Jost ed. ,
Cambridge MA 1996).

The problem consists of finding Lipschitz continuous solutions u : Ω ⊂ RN → RN to the
partial differential relation ∇u ∈ K having given affine boundary values on ∂Ω . In the
interesting cases, K is some compact set of N×N matrices with empty interior.

Following Gromov’s ideas, Müller and Šverák proved that, under suitable convexity
assumptions involving the notion of lamination convexity, a sequence of approximated
problems can be recursively solved. Whilst the approximating gradients ∇uk change faster
and faster to satisfy the PDR, the speed of L∞ convergence of the functions uk to the limit
function u can be chosen so as to enforce strong convergence of ∇uk to ∇u, thus proving
that u is a solution to the PDR.
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Convergence of Gradients II: The Baire category

Marianna Csörnyei

I gave a survey talk on the Baire-category theorem and the basic definitions and prop-
erties of Baire-1 functions, focusing on their continuity: a function f is Baire-1 if and only
if f |K admits a continuity point for every compact set K.

It is immediate to check that the gradient as a mapping from an L∞-closed subspace of
Lipschitz functions to Lp is Baire-1 for every p < ∞. As a corollary, one can always find

a Lipschitz function f so that fn
L∞−−→ f implies ∇fn

L1−→ ∇f . I showed how this simple
observation can be used to solve the finite gradient problem (B. Kirchheim: Deformations
with finitely many gradients and stability of quasiconvex hulls, C.R. Acad. Sci. paris
Sér I Math. 332/3 (2001) pp. 289-294.) I also showed how the Baire-category theorem
can be applied to solve certain quasiconvex Hamilton-Jacobi equations (B. Dacorogna, P.
Marcellini: General existence theorems for Hamilton-Jacobi Equations in the scalar and
vectorial cases, Acta Mathematica, 178/1 (1997), pp. 1-37.)

Method of convex integration for solving partial differential inequalities 1.

Darko Milinkovic

IfR is an open partial differential relation ample in coordinate directions, then it satisfies
all forms of the h-principle. The idea of the proof is finding a C0-approximation of the
map f with derivative df

dt
in Conv(A) by a map g with derivative dg

ds
in A.

Modification of gradients I: Existence of functions with prescribed jacobian
determinant

Sergio Conti

Typical applications to materials science require considering partial differential inclusions

∇u ∈ K where u : Ω ⊂ Rn 7→ Rm

and
K ⊂ Σ := {F ∈ Rm×n : M(F ) = t}

where t ∈ R and M is a given minor. In this case no open set can be generated by K.
This talk discussed the approach by S. Müller and V. Šverák, who showed that the

concept of in-approximation and hence the method of convex integration can be generalized
to relatively open subsets of Σ.

The basic approximation step is based on the existence of diffeomorphisms with given
determinant, as proved by B. Dacorogna and J. Moser.
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Modification of gradients II: convex integration in the rank-1 convex hull

Andrew Lorent

We present some of the results proved in the paper Convex integration with constraints
and applications to phase transitions and partial differential equations (Müller, S., Šverák.
J. Eur. Math. Soc. (JEMS) 1 (1999) 393-422).

This paper generalises previously known results in the following two ways. Firstly it
provides a proof of the existence of differential inclusions u : Ω → R2 satisfying{

Du ∈ U Ω
u = F on ∂Ω

where F is in the rank-1 convex hull of the open (or open inside the surface of matrices
satisfying a minor constraint) set of matrices U . Previously this was known for functions
satisfying the affine boundary condition with respect to the the much smaller lamination
convex hull .

Secondly it provides the existence of differential inclusions satisfying a minor constraint

of the form M(Du) := det

((
∂ui

∂xj

)k

i,j=1

)
= t where t 6= 0.

We present a proof of the first of these generalizations.

Method of convex integration for solving partial differential inequalities 2.

Hansjörg Geiges

Explicit examples are given of differential relations in jet bundles for which the so-
called ampleness criterion holds or does not hold. Ample differential relations satisfy the
h-principle, as demonstrated in the companion talk. Specifically, it is shown that the
immersion relation in positive codimension is ample, whereas the submersion relation is
not (none the less, the latter also satisfies the h-principle, as can be shown using the
holonomic approximation method). Then an ampleness criterion for directed immersions
is proved, which allows to deduce the h-principle for totally real immersions and, with a
little more care, totally real embeddings into almost complex manifolds. Finally, as an
appetiser for applications of convex integration to symplectic and contact geometry, it is
shown by explicit computation of the corresponding differential relation that any nowhere
zero differential 2-form on a 3-manifold can be homotoped through nowhere zero 2-forms
to a closed 2-form representing any given cohomology class.

Modification of Gradients III: Other constraints

Dragomir Dragnev

We present a technique for modifying an affine function whilst keeping its boundary values
unchanged and having its gradient up to an arbitrary small error distributed on two desired
rank-one connected matrices. Next we show that this construction can be extended to the
situation of affine functions with symmetric gradients and that it is possible to approximate
any C1 function with symmetric gradient by piecewise affine C1 functions with symmetric
gradients on domains in Rn.

5



Further we discuss the existence of piecewise affine solutions of partial differential inclu-
sions of the form:

∇f ∈ K ⊂ Mm×n a. e. in Ω ⊂ Rn

f(x) = Ax on ∂Ω.

for boundary data A in some open set U ⊂ Mm×n, provided that the set K can be reached
from the interior of U by rank-one segments. As an application, the existence of piecewise
affine solutions of the SO(2) two-well problem is established.

Convex integration as a method of finding C1-solutions of first order PDE’s

Bernd Mümken

In this lecture we considered a typical example for the C⊥-dense h-principle for a closed
differential relation R ⊂ X(r). We illustrated the general idea of replacing R by a nearby
system of open metaneighbourhoods MetεR to construct solutions fε ∈ Γ(X) of MetεR,
which converge to a solution of R.

Failure of regularity for elliptic systems

Jan Kristensen

In this talk the counterexample to partial regularity of extremals for strongly quasiconvex
integrals discovered by S. Müller and V. Šverák is presented. After a brief description of
regularity results for global minimizers I describe how to rewrite the second order Euler-
Lagrange equation as a first order differential inclusion. I then explain how the stable
embedding of the T4-configuration is performed by a genericity argument, and how this
allows one to construct an in-approximation.

Failure of regularity II

Miroslav Chleb́ık

There have been a number of recent successes (by Müller and Šverák) of using Gromov’s
method of convex integration and its variants and extensions to construct elliptic and
parabolic 2 × 2 systems which admit weak solutions that are Lipschitz but nowhere C1.
These examples at the same time show failure of (even partial) regularity, the lack of the
uniqueness, and (in the parabolic case) the failure of the energy identities and inequalities
for Lipschitz (weak) solutions.

The talk is concentrated on those recent results and on present limits of the methods to
construct (or to exclude the existence of) ‘wild’ solutions to partial differential inclusions
that come from strongly elliptic (or parabolic) systems. The methods are limited by the
fact that we are still lacking a fundamental understanding of quasiconvexity, an efficiently
manageable characterization of quasiconvex functions. Further progress will require a
deeper understanding of the geometry of rank-one convexity as well. Many open problems
with implications to regularity/failure of regularity for PDE systems are discussed.
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Nash-Kuiper C1-isometric embedding theorem

Peter Albers and Kai Zehmisch

In these two lectures a proof, employing convex integration, of the famous Nash–Kuiper
Isometric C1–Embedding Theorem was presented. The theorem states:

Theorem 1. (Nash ’54: n ≤ q − 2, Kuiper ’55: n = q − 1) Any strictly short
C1–immersion f : (V n, g) −→ (Rq, hstd), n < q, can be C0–approximated by isometric
C1–immersions. Moreover, if f is an embedding, it can be C0–approximated by isometric
C1–embeddings.

A C1–map f : (V n, g) −→ (W q, h) between (smooth) Riemannian manifolds (V n, g) and
(W q, h) is by definition strictly short, if f ∗h < g. The above theorem is the essential step
to establish (various) h–principles for C1–immersions. In the course of the proof, first the

theorem is modified to hold for ε–isometric approximating maps f̃ , i.e. maps satisfying
(1 − ε)g < f̃ ∗h < (1 + ε)g, by using parametric one–dimensional convex integration it-

eratively. Thereby, C1–control of f̃ is established. Using this C1–control the ε–isometric
approximation can be found to C1–converge in the limit ε → 0 to an honest C1–isometry
still C0–close to the given strictly short map, constituting the desired approximation. As a
corollary of the Nash–Kuiper theorem the existence of a C1–smooth isometric embedding
of the standard sphere S2 or the standard disk D2, respectively, into an arbitrarily small
ball in R3 follows. In contrast to the theorem the following holds: any C2–embedding of
S2 into R3 is conjugate to the standard one.

Applications to material science

Georg Dolzmann

This lecture discusses connections between minimizers for variational problems describing
solid-solid phase transformations and solutions of partial differential inclusions (PDIs). A
typical model for a cubic to tetragonal transformation is given by: Minimize∫

Ω

W (Du)dx

in AF = {u ∈ W 1,∞(Ω;Rn), u(x) = Fx on ∂Ω} where W ≥ 0 is the free energy density
which satisfies

K = {W = 0} = SO(3)U1 ∪ SO(3)U2 ∪ SO(3)U3.

An “absolute” minimizer u is therefore a solution of the PDI{
Du ∈ K a.e. in Ω,

u(x) = Fx on ∂Ω.

The methods developed by Müller and Šverák ensure the existence of solutions if the
compact set K admits an in-approximation with (relatively) open sets and if F lies in the
(relative) interior of Krc. Explicit formulae for Krc are known for k-well problems in 2× 2
matrices with equal determinant and for the general two-well problem in two dimensions.
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The N-gradient problem

Agnieszka Kalamajska

We consider Partial Differential Inclusions of the form Du ∈ K, where K = {A1, . . . , AN} ⊆
Mn×m consists of N pairwise rank–one disconnected matrices and ask when the solution
to every such inclusion is necessarily an affine function. J.M. Ball and R.D. James showed
in 1987 that this is true for N = 2. Their result was extended by V. Šverák in 1992 to
N = 3.

We present recent work of M. Chleb́ık and B. Kirchheim from 2000 who proved that it
is also true in the case N = 4. The proof uses dimensional and geometric arguments which
allow reducing the problem to the case n = m = 2 and the following three situations:

(1) A1 = 0 and det(Ai) > 0 for i = 2, 3, 4
(2) w||Ajv for j = 1, . . . , 4 and some w, v ∈ S1;
(3) A1, . . . , A4 are symmetric and have the same determinant D

In Case 1) the result follows from Bojarski’s theorem on quasiconformal mappings. In
Case 2) one shows directly that Du is constant along certain lines and the problem re-
duces to the two gradient problem. The most nontrivial is Case 3): for D > 0 regularity
follows from Šverák’s result on regularity of the Monge–Ampère equation; the case D ≤ 0
requires delicate and deep analysis based on maximum–like principles known in the theory
of mappings of bounded distortion.

We also report on the recent result of B. Kirchheim and D. Preiss that there exist
nonaffine solutions to the 5 gradient problem.

Convex integration of higher order PDE

Ursula Hamenstädt

We discuss how convex integration can be used to find solutions for the following second
order PDE for maps f = (f1, f2) ∈ C2(U, R2), U ⊂ R2 open: write

X = U × R2

X(1) = space of 1-jets of sections f of X
Xc = space of “jets” of the form jcf = (j1f, ∂x∂yf)
X⊥ = space of “jets” of the form j⊥f = (jcf, ∂2

xf).

Let A1 : Xc 7→ R, A2 : X⊥ 7→ (0,∞) be continuous and

∂2
xf1 + (∂2

xf2)
3 − A1(j

cf) = 0

(∂2
yf1)

2 + (∂2
yf2)

2 − A2(j
⊥f) = 0.

The best regularity class of solutions produced by convex integration

David Spring

A general problem in Convex Integration Theory is to improve the smoothness class of
Cr-solutions to closed differential relations in r-jet spaces and still preserve the Cr−1-density
results with respect to the initial data consisting of suitable families of short solutions. In
general we prove that the smoothness class cannot be improved to class Cr+1, while still
maintaining Cr−1-density results with respect to the initial data. In case r = 1, we consider
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the following first order system associated to f = (f1, f2) : K → R2, where K is a rectangle
in R2 with coordinates (x, y) ∈ R2 :

(*)
(∂xf1)

2 + (∂xf2)
2 = A(x, y, f)

(∂yf1)
2 + (∂yf2)

2 = A(x, y, f).

We assume A > 0. Let Solp be the space of Cp-solutions to the system (∗), p ≥ 1. Let
Sh ⊂ C1(K, R2) be the open subspace in the C1-topology consisting of short solutions:
the map h = (h1, h2) is short if h satisfies the system (∗) with equality in both equations
replaced by “< ”. Convex integration theory proves the C0-density result : Sh ⊂ Sol1.

If in addition (Ax ± Ay)
2 > 0 on K then we prove that there is an open set D ⊂ Sh

such that D ∩Sol2 = ∅, i.e., the C2-solutions of (∗) cannot satisfy the required C0-density
results on the space of short maps. Similar negative results can be proved for suitable rth
order systems analogous to (∗), for all r ≥ 1.

Edited by László Székelyhidi
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